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MINIMIZERS OF A VARIATIONAL PROBLEM INHERIT THE
SYMMETRY OF THE DOMAIN

MARCELO MONTENEGRO, ENRICO VALDINOCI

Abstract. We give a general framework under which the minimizers of a
variational problem inherit the symmetry of the ambient space. The main
technique used is the moving plane (or sliding) method.

1. Introduction

It is a hot topic in PDE to determine wether or not a solution possess some
kind of symmetry. Besides the celebrated result of [2], much effort has been put in
addressing this problem in several situations, and many fundamental questions are
still open (see, among the others, for instance [4, 5] and references therein).

Indeed, the so-called moving plane (or sliding) method has been widely used
to prove radial symmetry for positive solutions of elliptic equations. The classical
references are the papers [2, 3], where the authors proved that positive solutions
of the semilinear equation −∆u(x) + f(u(x)) = 0 on a ball are radially symmetric
provided that u = 0 on the boundary of the ball. The same conclusion holds in
x ∈ RN if one assumes that u decays to zero at infinity. They were also able to
treat the equation with radially dependent nonlinearity −∆u(x) + f(|x|, u(x)) = 0
provided ∂f(r, u)/∂r < 0 for every r > 0.

Later, in [7] and [8] radial symmetry or partial symmetry for global minimizers of
functionals was considered, and the advantage of the reflection method considered
there relies in its simplicity and generality. Indeed, there are at least three cases
not covered by [2, 3] which have been taken into account in [7] and [8], which also
includes more general boundary conditions, no requirement is taken on the sign of
the minimizer, and domains like the annulus may be treated as well.

The technique of reflecting the minimizers has been also used in [9], where the
use of the unique continuation principle of [7, 8] was replaced by suitable regularity
assumptions.

Another approach to prove symmetry lies in the technique of symmetrization,
which, for example, may be used to show the symmetry of minimizers assuming
that the minimizer is positive and that the nonlinearity is monotone with respect
to r (see [10]) The foliated Schwartz symmetrization can be used to prove the
axial symmetry of the minimizers without any assumption on the sign of u and
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of ∂f(r, u)/∂r (see [10, 11]). We also refer to [1] for further insight on symmetry
problems.

In this note, which is very elementary in spirit, we show that minimizers of
variational problems inherit the natural symmetries induced by the domain and by
the equation. For this, the use of the maximum principle or of the moving plane
method is not necessary and so things are much easier, and much more general,
than in the case of nonminimal solutions. Indeed, we will revisit the approach
of [7, 8] to obtain symmetry in a more general setting. Our motivation also comes
from the paper [6] where the authors use a generalization of [2] to obtain symmetry
for positive solutions of −∆u + f(u) = 0 with Dirichlet boundary condition on a
domain that could be, for instance, a David star, a square, a stellated cube or a
Kepler’s stella octangula. The general feature in common to these domains is the
so-called Steiner-symmetry, which is one of the essential ingredients of [6]. Here we
are able to treat non-Steiner-symmetric domains like the five star pentagon and the
Kepler-Poinsot polyhedron (see, e.g., Example 2.8). The reader is referred to [6]
for many pictures of such domains.

The method we use is somewhat classical, and the basic idea is already sketched
on [4, p. 19], of which we repeat here the very clear exposition:

Suppose u minimizes a strictly convex functional I(v) on a convex
set of admissible functions v. Moreover v is defined on a symmetric
set Ω; i.e., Ω is invariant under some group action. If g is an
element of the group, g(Ω) = Ω and consequently u(x) = u(g(x));
i.e., u is invariant under the group action; otherwise the convex
combination w(x) = [u(x)+u(g(x))]/2 would have smaller “energy”
I(w) < I(u), a contradiction.

2. Statements of results

Now, we introduce formally our framework. Given n, m, ` ∈ N, we define

R` := Rnm` × · · · × Rnm × Rm =
[ ∏̀

j=1

Rnmj
]
× Rm.

For an open set Ω ⊆ Rn, we consider a measurable function ψ : R` × Ω → R.
Let W(Ω) be the set of functions from Ω ⊆ Rn to Rm that are `-times differen-

tiable a.e. in Ω. For any u ∈ W(Ω) and any x ∈ Ω we write

Ψ[u](x) := ψ
(
D`u(x), . . . , Du(x), u(x), x

)
.

We consider the set of admissible functions

A(Ω) :=
{
u ∈ W(Ω) s.t. Ψ[u] ∈ L1(Ω)

}
and we define

IΩ[u] :=

{∫
Ω

Ψ[u](x) dx if u ∈ A(Ω),
+∞ otherwise.

Given u, v ∈ W(Ω), t ∈ (0, 1) and x ∈ Ω, we consider the convex combination

[u, v]t(x) := tu(x) + (1− t)v(x).

We take S(Ω) ⊆ A(Ω) such that

if u and v ∈ S(Ω) then there exists t ∈ (0, 1) such that [u, v]t ∈ S(Ω). (2.1)
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We suppose that Ψ is strictly convex in S(Ω); i.e., for every u, v ∈ S(Ω), if t ∈ (0, 1)
is as in (2.1), we have that

Ψ[[u, v]t](x) ≤ tΨ[u](x) + (1− t)Ψ[v](x) for every x ∈ Ω,
and if equality holds for a.e. x ∈ Ω then u = v a.e. in Ω.

(2.2)

Given a Lipschitz bijection S : Ω → Ω, we say that S is a symmetry for IΩ in S(Ω)
if the following conditions hold:

if u ∈ S(Ω) and uS(x) := u(S(x)) for any x ∈ Ω, we have that uS ∈ S(Ω) (2.3)

and
ψ

(
D`uS(x), . . . , DuS(x), uS(x), x

)
= ψ

(
D`u(S(x)), . . . , Du(S(x)), u(S(x)), S(x)

)
|detDS(x)| for a.e. x ∈ Ω.

(2.4)

In this setting, minimizers inherit the symmetry of S:

Theorem 2.1. Let S : Ω → Ω be a symmetry for IΩ in S(Ω). Assume that there
exists u? ∈ S(Ω) such that

IΩ[u?] = inf
u∈S(Ω)

IΩ[u] < +∞.

Then u?
(
S(x)

)
= u(x) for a.e. x ∈ Ω.

Proof. The proof is a simple combination of two well-known principles. The first
principle is the fact that strictly convex functionals attain at most one minimum.
The second one is that uniqueness implies symmetry with respect to every trans-
formation which leaves the functional values unchanged. Here is the argument in
detail. By (2.3),

u?
S ∈ S(Ω). (2.5)

Also, by (2.4),

IΩ[u?
S ] =

∫
Ω

ψ
(
D`u?

S(x), . . . , u?
S(x), x

)
dx

=
∫

Ω

ψ
(
D`u?(S(x)), . . . , u?(S(x)), S(x)

)
|detDS(x)| dx

=
∫

Ω

ψ
(
D`u?(y), . . . , u?(y), y

)
dy

= IΩ[u?].

Therefore, by (2.1), (2.2) and (2.5), there exists t ∈ (0, 1) such that the following
computation holds:

IΩ[u?] = inf
u∈S(Ω)

IΩ[u]

≤ IΩ[[u?, u?
S ]t]

=
∫

Ω

Ψ[[u?, u?
S ]t](x) dx

≤
∫

Ω

tΨ[u?](x) + (1− t)Ψ[u?
S ](x) dx

= tIΩ[u?] + (1− t)IΩ[u?
S ]

= IΩ[u?].
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Hence
Ψ[[u?, u?

S ]t] = tΨ[u?](x) + (1− t)Ψ[u?
S ](x)

a.e. x ∈ Ω, so (2.2) implies that u? = u?
S a.e. in Ω, as desired. �

Remark 2.2. Of course, given the simplicity of Theorem 2.1 and of its proof, we
cannot really claim any priority or originality in it, but we think it could be useful
to have the result stated and understood in such a general form.

Remark 2.3. In most of the applications, the symmetry S is a rigid motion (in
particular, a reflection or a rotation), so |detDS| = 1. However, we thought it
was somewhat useful to speak about more general type of symmetries (see also the
forthcoming Example 2.6 where |detDS| 6= 1).

Remark 2.4. The space S(Ω) is designed to include the boundary data (see the
examples below).

Remark 2.5. In the particular case ψ := |∇u|2 + G(u), the convexity condi-
tion (2.2) boils down to the monotonicity of the nonlinearity G′(u), i.e. on a sign
condition on the linear term G′′(u) driving the linearized equation. In this case,
this assumption reduces to the classical one which makes the maximum principle
hold.

Though the statement of Theorem 2.1 is quite general, it may be useful to give
some very simple, not exhaustive, but concrete, applications.

Example 2.6. Let n = m = ` = 1. We take the rectangle Ω := [−1/2, 1]× [−1, 1]
and we define, for any x = (x1, x2) ∈ R2,

S(x) :=

{
(−2x1, x2) if x1 < 0,
(−x1/2, x2) if x1 ≥ 0.

Let also

a(x) :=

{
1 if x1 < 0,
2 if x1 ≥ 0.

We observe that, if x1 6= 0, then

a(S(x)) =
2

a(x)
. (2.6)

Given (r, x) ∈ R2 × Ω, we define

ψ(r, x) := a(x)r21 +
r22
a(x)

.

We also take ū ∈ C∞(R) and uo(x1, x2) = ū(x2). We notice that

uo(S(x)) = uo(x). (2.7)

Thus, if we define

S(Ω) := W 1,2
uo

(Ω) =
{
u ∈W 1,2(Ω) s.t. u− uo ∈W 1,2

0 (Ω)
}
, (2.8)

we have that (2.3) holds, due to (2.7). Moreover, a careful computation shows that
(2.4) is satisfied, due to (2.6).

Also, (2.2) follows from the strict convexity of the maps r1 7→ r21 and r2 7→ r22;
notice that if equality holds in (2.2) then ∇u = ∇v, hence u = v + c, for some
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c ∈ R. From the boundary data in (2.8), we obtain that c = 0, and this shows
that (2.2) is satisfied. Then, Theorem 2.1 applies to this case.

We remark that, in this case, S is not a rigid motion. In fact, more general types
of symmetries and domains (such as the ones with the shape of a scamorza-cheese)
may be treated with the same idea; i.e., decomposing S into a reflection and two
dialations on the opposite halfplane. Of course, the more complicated Ω and S are,
the more complicated needs to be the function ψ in order to satisfy the invariance
in (2.2).

Example 2.7. Let ` = 1, n = 2 and m = 1. We take Ω = [−1, 1] × [−2, 2] and
we consider the odd reflection S(x) := −x. Let G ∈ C∞(R), p ∈ (1,+∞) and, for
every r ∈ R2 and τ ∈ R, we set

ψ(r, τ, x) :=
|r|p

p
− ar21

2
+G(|x|2)τ

and S(Ω) := W 1,p
0 (Ω). The corresponding PDE (in the weak sense) is

∆pu− a∂11u = G(|x|2),
where, as usual, ∆pu := div (|∇u|p−2∇u) is the p-Laplace operator. Then, Theo-
rem 2.1 applies and it gives that the minimal solution is odd.

The case of an even function G(x1, x2) may be treated as well. Notice that, in
general, some conditions are needed to ensure that the functional IΩ is bounded
from below (but it is not the aim of this note to discuss such conditions, since we
just assume in Theorem 2.1 the existence of a minimizer).

Example 2.8. Let ` = 1, n = 2 and m = 1. Given G, H ∈ C∞(R), r ∈ R2 and
τ ∈ R, we define

ψ(r, τ, x) :=
|r|2

2
+G(|x|2)H(τ).

We observe that the associated PDE has the form

∆u = G(|x|2)H ′(u). (2.9)

Let R ∈ Mat(n × n) be the anticlockwise rotation of angle 2π/5 and let Ω be a
regular five-pointed star (i.e., a star pentagon) centered at the origin. In this case,
the setting of Theorem 2.1 holds with S(x) := Rx, if H is convex and G ≥ 0.

This gives that minimal solutions of (2.9) in the five-pointed star domain are
symmetric under 2π/5 rotations.

We remark that the five-pointed star domain is not Steiner-symmetric, so it is
not known in general whether all the solutions endow the same symmetry (see [6]).
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