\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 176, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/176\hfil Existence of solutions] {Existence of solutions for a nonlinear fractional boundary value problem via a local minimum theorem} \author[C. Bai \hfil EJDE-2012/176\hfilneg] {Chuanzhi Bai} % in alphabetical order \address{Chuanzhi Bai \newline Department of Mathematics, Huaiyin Normal University, Huaian, Jiangsu 223300, China} \email{czbai8@sohu.com} \thanks{Submitted July 30, 2012. Published October 12, 2012.} \subjclass[2000]{58E05, 34B15, 26A33} \keywords{Critical points; fractional differential equations; \hfill\break\indent boundary-value problem} \begin{abstract} This article concerns the existence of solutions to the nonlinear fractional boundary-value problem \begin{gather*} \frac{d}{dt} \Big({}_0 D_t^{\alpha-1}({}_0^c D_t^{\alpha} u(t)) -{}_t D_T^{\alpha-1}({}_t^c D_T^{\alpha} u(t))\Big) +\lambda f(u(t)) = 0, \quad\text{a.e. } t \in [0, T], \\ u(0) = u(T) = 0, \end{gather*} where $\alpha \in (1/2, 1]$, and $\lambda$ is a positive real parameter. The approach is based on a local minimum theorem established by Bonanno. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} Fractional differential equations have been proved to be valuable tools in the modeling of many phenomena in various fields of physic, chemistry, biology, engineering and economics. There has been significant development in fractional differential equations, one can see the monographs of Miller and Ross \cite{m2}, Samko et al \cite{s1}, Podlubny \cite{p1}, Hilfer \cite{h1}, Kilbas et al \cite{k1} and the papers \cite{a1,a2,b1,b2,b3,b4,k2,l1,w1,w2,z1} and the references therein. Critical point theory has been very useful in determining the existence of solution for integer order differential equations with some boundary conditions, for example \cite{c1,l1,l2,m1,r1,t1}. But until now, there are few results on the solution to fractional BVP which were established by the critical point theory, since it is often very difficult to establish a suitable space and variational functional for fractional BVP. Recently, Jiao and Zhou \cite{j1} investigated the fractional boundary-value problem \begin{gather*} \frac{d}{dt} \Big(\frac{1}{2} {}_0 D_t^{-\beta}(u'(t)) + \frac{1}{2} {} _t D_T^{-\beta}(u'(t))\Big) + \nabla F(t, u(t)) = 0, \quad \text{a.e. } t \in [0, T], \\ u(0) = u(T) = 0, \end{gather*} by using the critical point theory, where $_0 D_t^{-\beta}$ and $_t D_T^{-\beta}$ are the left and right Riemann-Liouville fractional integrals of order $0 \le \beta < 1$ respectively, $F : [0, T] \times \mathbb{R}^N \to \mathbb{R}$ is a given function and $\nabla F(t, x)$ is the gradient of $F$ at $x$. In this article, by using a local minimum theorem established by Bonanno in \cite{b5}, a new approach is provided to investigate the existence of solutions to the following fractional boundary value problems $$\begin{gathered} \frac{d}{dt} \Big({}_0 D_t^{\alpha-1}({}_0^c D_t^{\alpha} u(t)) - {}_t D_T^{\alpha-1}({}_t^c D_T^{\alpha} u(t))\Big) + \lambda f(u(t)) = 0, \quad\text{a.e. } t \in [0, T], \\ u(0) = u(T) = 0, \end{gathered} \label{e1.1}$$ where $\alpha \in (1/2, 1]$, ${}_0 D_t^{\alpha-1}$ and ${}_t D_T^{\alpha-1}$ are the left and right Riemann-Liouville fractional integrals of order $1-\alpha$ respectively, $_0^c D_t^{\alpha}$ and $_t^c D_T^{\alpha}$ are the left and right Caputo fractional derivatives of order $0< \alpha \leq 1$ respectively, $\lambda$ is a positive real parameter, and $f : \mathbb{R} \to \mathbb{R}$ is a continuous function. \section{Preliminaries} In this section, we introduce some definitions and properties of the fractional calculus which are used in this article. \begin{definition}[\cite{k1}] \label{def2.1} \rm Let $f$ be a function defined on $[a , b]$. The left and right Riemann-Liouville fractional integrals of order $\alpha$ for a function $f$ are defined by \begin{gather*} {}_a D_t^{-\alpha}f(t) = \frac{1}{\Gamma(\alpha)} \int_a^t (t-s)^{\alpha-1} f(s) ds, \quad t \in [a, b], \; \alpha > 0,\\ {}_t D_b^{-\alpha}f(t) = \frac{1}{\Gamma(\alpha)} \int_t^b (s-t)^{\alpha-1} f(s) ds, \quad t \in [a, b], \; \alpha > 0, \end{gather*} provided the right-hand sides are pointwise defined on $[a, b]$, where $\Gamma(\alpha)$ is the standard gamma function. \end{definition} \begin{definition}[\cite{k1}] \label{def2.2} \rm Let $\gamma \ge 0$ and $n \in \mathbb{N}$. (i) If $\gamma \in (n-1, n)$ and $f \in AC^n([a, b], \mathbb{R}^N)$, then the left and right Caputo fractional derivatives of order $\gamma$ for function $f$ denoted by $_a^c D_t^{\gamma}f(t)$ and $_t^c D_b^{\gamma}f(t)$, respectively, exist almost everywhere on $[a, b]$, $_a^c D_t^{\gamma}f(t)$ and $_t^c D_b^{\gamma}f(t)$ are represented by \begin{gather*} {}_a^c D_t^{\gamma}f(t) = \frac{1}{\Gamma(n-\gamma)} \int_a^t (t-s)^{n-\gamma-1} f^{(n)}(s) ds, \quad t \in [a, b],\\ {}_t^c D_b^{\gamma}f(t) = \frac{(-1)^n}{\Gamma(n-\gamma)} \int_t^b (s-t)^{n-\gamma-1} f^{(n)}(s) ds, \quad t \in [a, b], \end{gather*} respectively. (ii) If $\gamma = n - 1$ and $f \in AC^{n-1}([a, b], \mathbb{R}^N)$, then $_a^c D_t^{n-1}f(t)$ and $_t^c D_b^{n-1}f(t)$ are represented by ${}_a^c D_t^{n-1}f(t) = f^{(n-1)}(t), \quad\text{and}\quad _t^c D_b^{n-1}f(t) = (-1)^{(n-1)} f^{(n-1)}(t), \quad t \in [a, b].$ \end{definition} With these definitions, we have the rule for fractional integration by parts, and the composition of the Riemann-Liouville fractional integration operator with the Caputo fractional differentiation operator, which were proved in \cite{k1,s1}. \begin{proposition}[\cite{k1,s1}] \label{prop2.1} We have the following property of fractional integration $$\int_a^b [_a D_t^{-\gamma}f(t)] g(t) dt = \int_a^b [_t D_b^{-\gamma}g(t)] f(t) dt, \quad \gamma > 0,\label{e2.1}$$ provided that $f \in L^p([a, b], \mathbb{R}^N)$, $g \in L^q([a, b], \mathbb{R}^N)$ and $p \ge 1$, $q \ge 1$, $1/p + 1/q \le 1 + \gamma$ or $p \neq 1$, $q \neq 1$, $1/p + 1/q = 1 + \gamma$. \end{proposition} \begin{proposition}[\cite{k1}] \label{prop2.2 } Let $n \in \mathbb{N}$ and $n-1 < \gamma \le n$. If $f \in AC^n([a, b], \mathbb{R}^N)$ or $f \in C^n([a, b], \mathbb{R}^N)$, then \begin{gather*} {}_a D_t^{-\gamma}({}_a^c D_t^{\gamma} f(t)) = f(t) - \sum _{j=0}^{n-1} \frac{f^{(j)}(a)}{j!}(t-a)^j\,,\\ {}_t D_b^{-\gamma}({}_t^c D_b^{\gamma} f(t)) = f(t) - \sum _{j=0}^{n-1} \frac{(-1)^jf^{(j)}(b)}{j!}(b-t)^j, \end{gather*} for $t \in [a, b]$. In particular, if $0 < \gamma \le 1$ and $f \in AC([a, b], \mathbb{R}^N)$ or $f \in C^1([a, b], \mathbb{R}^N)$, then $${}_a D_t^{-\gamma}({}_a^c D_t^{\gamma} f(t)) = f(t) - f(a), \quad \text{and} \quad _t D_b^{-\gamma}({}_t^c D_b^{\gamma} f(t)) = f(t) - f(b). \label{e2.2}$$ \end{proposition} \begin{remark} \label{rmk2.1} \rm In view of \eqref{e2.1} and Definition \ref{def2.2}, it is obvious that $u \in AC([0, T])$ is a solution of \eqref{e1.1} if and only if $u$ is a solution of the problem $$\begin{gathered} \frac{d}{dt} \left({}_0 D_t^{-\beta}(u'(t)) + {}_t D_T^{-\beta}(u'(t))\right) + \lambda f(u(t)) = 0, \quad\text{a.e. } t \in [0, T], \\ u(0) = u(T) = 0, \end{gathered} \label{e2.3}$$ where $\beta = 2(1-\alpha) \in [0, 1)$. \end{remark} To establish a variational structure for \eqref{e1.1}, it is necessary to construct appropriate function spaces. Denote by $C_0^{\infty}[0, T]$ the set of all functions $g \in C^{\infty}[0, T]$ with $g(0) = g(T) = 0$. \begin{definition}[\cite{j1}] \label{def2.3} \rm Let $0 < \alpha \le 1$. The fractional derivative space $E_0^{\alpha}$ is defined by the closure of $C_0^{\infty}[0, T]$ with respect to the norm $\|u\|_{\alpha} = \Big(\int_0^T |_0^c D_t^{\alpha} u(t)|^2 dt + \int_0^T |u(t)|^2 dt \Big)^{1/2}, \quad \forall u \in E^{\alpha}.$ \end{definition} \begin{remark} \label{rmk2.2} \rm It is obvious that the fractional derivative space $E_0^{\alpha}$ is the space of functions $u \in L^2[0, T]$ having an $\alpha$-order Caputo fractional derivative $_0^c D_t^{\alpha} u \in L^2[0, T]$ and $u(0) = u(T) = 0$. \end{remark} \begin{proposition}[\cite{j1}] \label{prop2.3 } Let $0 < \alpha \le 1$. The fractional derivative space $E_0^{\alpha}$ is reflexive and separable Banach space. \end{proposition} \begin{lemma}[\cite{j1}] \label{lem2.1} Let $0 < \alpha \le 1$. For all $u\in E_0^{\alpha}$, we have \begin{gather} \|u\|_{L^2} \le \frac{T^{\alpha}}{\Gamma(\alpha+1)} \|\empty_0^c D_t^{\alpha}u\|_{L^2}, \label{e2.4} \\ \|u\|_{\infty} \le \frac{T^{\alpha - 1/2}}{\Gamma(\alpha)(2(\alpha-1)+1)^{1/2}} \|_0^c D_t^{\alpha} u\|_{L^2}. \label{e2.5} \end{gather} \end{lemma} By \eqref{e2.4}, we can consider $E_0^{\alpha}$ with respect to the norm $$\|u\|_{\alpha} = \Big(\int_0^T |_0^c D_t^{\alpha} u(t)|^2 dt\Big)^{1/2} = \|_0^c D_t^{\alpha} u\|_{L^2}, \quad \forall u \in E_0^{\alpha} \label{e2.6}$$ in the following analysis. \begin{lemma}[\cite{j1}] \label{lem2.2} Let $1/2 < \alpha \le 1$, then for all any $u \in E_0^{\alpha}$, we have $$|\cos (\pi \alpha)| \|u\|_{\alpha}^2 \le - \int_0^T {}_0^c D_t^{\alpha} u(t) \cdot {}_t^c D_T^{\alpha} u(t) dt \le \frac{1}{|\cos (\pi \alpha)|} \|u\|_{\alpha}^2. \label{e2.7}$$ \end{lemma} Our main tools is the local minimum theorem \cite{b5} which is recalled below. Given a set $X$ and two functionals $\Phi, \Psi : X \to \mathbb{R}$, let \begin{gather} \beta(r_1, r_2) = \inf _{v \in \Phi^{-1}(]r_1, r_2[)} \frac{\sup_{u \in \Phi^{-1}(]r_1, r_2[)} \Psi(u) - \Psi(v)}{r_2 - \Phi(v)}, \label{e2.8}\\ \rho_2(r_1, r_2) = \sup _{v \in \Phi^{-1}(]r_1, r_2[)} \frac{\Psi(v) - \sup_{u \in \Phi^{-1}(]-\infty, r_1])} \Psi(u)}{\Phi(v) - r_1}, \label{e2.9} \end{gather} for all $r_1, r_2 \in R$, with $r_1 < r_2$. \begin{theorem}[\cite{b5}] \label{thm2.1} Let $X$ be a reflexive real Banach space; $\Phi : X \to \mathbb{R}$ be a sequentially weakly lower semicontinuous, coercive and continuously Gateaux differential function whose Gateaux derivative admits a continuous inverse on $X^*$; $\Psi : X \to \mathbb{R}$ be a continuously Gateaux differentiable function whose Gateaux derivative is compact. Put $I_{\lambda} = \Phi - \lambda \Psi$ and assume that there are $r_1, r_2 \in \mathbb{R}$, with $r_1 < r_2$, such that $\beta(r_1, r_2) < \rho_2(r_1, r_2),$ where $\beta$ and $\rho_2$ are given by \eqref{e2.8} and \eqref{e2.9}. Then, for each $\lambda \in \big(\frac{1}{\rho_2(r_1, r_2)}, \frac{1}{\beta(r_1, r_2)}\big)$ there is $u_{0, \lambda} \in \Phi^{-1}(]r_1, r_2[)$ such that $I_{\lambda}(u_{0, \lambda}) \le I_{\lambda}(u)$ for all $u \in \Phi^{-1}(]r_1, r_2[)$ and $I'_{\lambda}(u_{0, \lambda}) = 0$. \end{theorem} \section{Main result} For given $u \in E_0^{\alpha}$, we define functionals $\Phi, \Psi : E^{\alpha} \to \mathbb{R}$ as follows: $\Phi(u) := - \int_0^T {}_0^c D_t^{\alpha} u(t) \cdot {}_t^c D_T^{\alpha} u(t) dt, \quad \Psi(u) := \int_0^T F(u(t))dt,$ where $F(u) = \int_0^u f(s)ds$. Clearly, $\Phi$ and $\Psi$ are Gateaux differentiable functional whose Gateaux derivative at the point $u \in E_0^{\alpha}$ are given by \begin{gather*} \Phi'(u)v = - \int_0^T({}_0^c D_t^{\alpha} u(t) \cdot {}_t^c D_T^{\alpha} v(t) + {}_t^c D_T^{\alpha} u(t) \cdot {}_0^c D_t^{\alpha} v(t)) dt, \\ \Psi'(u)v = \int_0^T f(u(t)) v(t) dt = - \int_0^T \int_0^t f(u(s))ds \cdot v'(t) dt, \end{gather*} for every $v \in E_0^{\alpha}$. By Definition \ref{def2.2} and \eqref{e2.2}, we have $\Phi'(u)v = \int_0^T({}_0 D_t^{\alpha-1}({}_0^c D_t^{\alpha} u(t)) - {}_t D_T^{\alpha-1}({}_t^c D_T^{\alpha} u(t))) \cdot v'(t) dt.$ Hence, $I_{\lambda} = \Phi - \lambda \Psi \in C^1(E_0^{\alpha}, \mathbb{R})$. If $u_* \in E_0^{\alpha}$ is a critical point of $I_{\lambda}$, then \begin{aligned} 0 = I_{\lambda}'(u_*)v &=\int_0^T \Big({}_0 D_t^{\alpha-1}({}_0^c D_t^{\alpha} u_*(t)) - {}_t D_T^{\alpha-1}({}_t^c D_T^{\alpha} u_*(t)) \\ &\quad + \lambda \int_0^t f(u_*(s))ds\Big) \cdot v'(t) dt, \end{aligned}\label{e3.1} for $v \in E_0^{\alpha}$. We can choose $v \in E_0^{\alpha}$ such that $v(t) = \sin \frac{2k\pi t}{T} \quad \text{ or} \quad v(t) = 1 - \cos \frac{2k\pi t}{T}, \quad k = 1, 2, \dots .$ The theory of Fourier series and \eqref{e3.1} imply $${}_0 D_t^{\alpha-1}({}_0^c D_t^{\alpha} u_*(t)) - {}_t D_T^{\alpha-1}({}_t^c D_T^{\alpha} u_*(t)) + \lambda \int_0^t f(u_*(s))ds = C \label{e3.2}$$ a.e. on $[0, T]$ for some $C \in \mathbb{R}$. By \eqref{e3.2}, it is easy to show that $u_* \in E_0^{\alpha}$ is a solution of \eqref{e1.1}. By Lemma \ref{lem2.1}, when $\alpha > 1/2$, for each $u \in E_0^{\alpha}$ we have $$\|u\|_{\infty} \le \Omega \Big(\int_0^T |_0^c D_t^{\alpha} u(t)|^2 dt \Big)^{1/2} = \Omega \|u\|_{\alpha}, \label{e3.3}$$ where $$\Omega = \frac{T^{\alpha-\frac{1}{2}}}{\Gamma(\alpha) \sqrt{2(\alpha-1) + 1}}. \label{e3.4}$$ Given two constants $c \ge 0$ and $d \neq 0$, with $c \neq \sqrt{\frac{\omega_{\alpha, d}}{|\cos(\pi \alpha)|}} \cdot \Omega$, where $\Omega$ as in \eqref{e3.4}. Put $\omega_{\alpha, d} := \frac{4\Gamma^2(2-\alpha)}{\Gamma(4-2\alpha)} T^{1-2\alpha} d^2 (2^{2\alpha-1}-1).$ \begin{theorem} \label{thm3.1} Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function and $\frac{1}{2} < \alpha \le 1$. Assume that there exist a positive constant $c$ and a constant $d \neq 0$ with $$\sqrt{\frac{\omega_{\alpha, d}}{|\cos(\pi \alpha)|}} \, \Omega < c, \label{e3.5}$$ such that $$0 < \frac{ \max _{|\eta| \le c} F(\eta)}{c^2 |\cos(\pi \alpha)|} < \frac{\frac{1}{\Gamma(2-\alpha)|d|} \int_0^{\Gamma(2-\alpha)|d|} F(x)dx}{ \omega_{\alpha,d}\Omega^2}. \label{e3.6}$$ Then, for each $\lambda \in \Big(\frac{\omega_{\alpha,d} \Gamma(2-\alpha)|d|} {T \int_0^{\Gamma(2-\alpha)|d|} F(x)dx}, \frac{c^2 |\cos(\pi \alpha)|}{T\Omega^2 \max _{|\eta| \le c} F(\eta)}\Big),$ problem \eqref{e1.1} admits at least one solution $\bar{u}$ such that $\|\bar{u}\|_{\alpha} < c/\Omega$. \end{theorem} \begin{proof} Let $\Phi, \Psi$ be the functionals defined above. It is well known that they satisfy all regularity assumptions requested in Theorem \ref{thm2.1} and that the critical point of the functional $\Phi - \lambda \Psi$ in $E_0^{\alpha}$ is exactly the solution of \eqref{e1.1}. Put $$\label{e3.7} \begin{gathered} r = \frac{|\cos(\pi \alpha)|}{\Omega^2} c^2, \\ u_0(t) = \begin{cases} \frac{2 \Gamma(2-\alpha) d}{T} t, & t \in [0, T/2),\\ \frac{2 \Gamma(2-\alpha) d}{T}(T - t), & t \in [T/2, T] \end{cases} \end{gathered}$$ It is easy to check that $u_0(0) = u_0(T) = 0$ and $u_0 \in L^2[0, T]$. The direct calculation shows that ${}_0^c D_t^{\alpha} u_0(t) = \begin{cases} \frac{2d}{T} t^{1-\alpha}, & t \in [0,T/2),\\ \frac{2d}{T}(t^{1-\alpha} - 2 (t-\frac{T}{2})^{1-\alpha}), & t \in [T/2, T] \end{cases}$ and \begin{align*} \|u_0\|_{\alpha}^2 &= \int_0^T ({}_0^c D_t^{\alpha} u_0(t))^2 dt = \int_0^{\frac{T}{2}} + \int_{T/2}^T ({}_0^c D_t^{\alpha} u_0(t))^2 dt \\ &= \frac{4d^2}{T^2}\Big[\int_0^T t^{2(1-\alpha)} dt - 4 \int_{T/2}^T t^{1-\alpha} (t-\frac{T}{2})^{1-\alpha} dt + 4 \int_{T/2}^T (t-\frac{T}{2})^{2(1-\alpha)} dt \Big]\\ &= \frac{4(1+2^{2\alpha-1})d^2}{3-2\alpha} T^{1-2\alpha} - \frac{16d^2}{T^2} \int_{T/2}^T t^{1-\alpha} (t-\frac{T}{2})^{1-\alpha} dt < \infty. \end{align*} That is, ${}_0^c D_t^{\alpha} u_0 \in L^2[0, T]$. Thus, $u_0 \in E_0^{\alpha}$. Moreover, the direct calculation shows ${}_t^c D_T^{\alpha} u_0(t) = \begin{cases} \frac{2d}{T}((T - t)^{1-\alpha} - 2 (\frac{T}{2} - t)^{1-\alpha}), & t \in [0,T/2),\\ \frac{2d}{T}(T - t)^{1-\alpha}, & t \in [T/2, T] \end{cases}$ and \begin{align*} \Phi(u_0) &= - \int_0^T {}_0^c D_t^{\alpha} u_0(t) \cdot {}_t^c D_T^{\alpha} u_0(t) dt \\ &= - (\frac{2d}{T})^2 \Big[\int_0^{\frac{T}{2}} t^{1-\alpha} \Big((T - t)^{1-\alpha} - 2 \big(\frac{T}{2} - t\big)^{1-\alpha}\Big)dt \\ &\quad + \int_{T/2}^T (T - t)^{1-\alpha} \cdot \Big(t^{1-\alpha} - 2 (t-\frac{T}{2})^{1-\alpha}\Big)dt\Big] \\ &= - (\frac{2d}{T})^2 \Big[\int_0^T t^{1-\alpha} (T - t)^{1-\alpha} dt - 4 \int_0^{\frac{T}{2}} t^{1-\alpha} \big(\frac{T}{2} - t\big)^{1-\alpha}dt \Big] \\ &= - (\frac{2d}{T})^2 \Big[\frac{\Gamma^2(2-\alpha)}{\Gamma(4-2\alpha)} T^{3-2\alpha} - 4 \frac{\Gamma^2(2-\alpha)}{\Gamma(4-2\alpha)} (\frac{T}{2})^{3-2\alpha}\Big] \\ &= \frac{4\Gamma^2(2-\alpha)}{\Gamma(4-2\alpha)} T^{1-2\alpha} (2^{2\alpha-1}-1)d^2 = \omega_{\alpha, d}, \end{align*} and $\Psi(u_0) = \int_0^T F(u_0(t)) dt = \frac{T}{\Gamma(2-\alpha) |d|} \int_0^{\Gamma(2-\alpha) |d|} F(x) dx.$ Hence, from \eqref{e3.5}, one has $0 < \omega_{\alpha, d} < \frac{|\cos(\pi \alpha)|}{\Omega^2} c^2$; that is, $0 < \Phi(u_0) < r$. Moreover, for all $u \in E_0^{\alpha}$ such that $u \in \Phi^{-1}(]-\infty, r])$, by \eqref{e2.7} we have $|\cos (\pi \alpha)| \|u\|_{\alpha}^2 \le \Phi(u) \le r,$ which implies $$\|u\|_{\alpha}^2 \le \frac{1}{|\cos(\pi \alpha)|} r.\label{e3.8}$$ Thus, by \eqref{e3.3}, \eqref{e3.8} and \eqref{e3.7} we obtain $|u(t)| < \Omega \|u\|_{\alpha} \le \Omega \sqrt{\frac{r}{|\cos(\pi \alpha)|}} = c, \quad \forall t \in [0, T].$ Hence, $\Psi(u) = \int_0^T F(u(t)) dt \le \int_0^T \max _{|\eta| \le c} F(\eta) dt = T \max _{|\eta| \le c} F(\eta),$ for all $u \in E_0^{\alpha}$ such that $u \in \Phi^{-1}(]-\infty, r])$. Hence, $\sup _{u \in \Phi^{-1}(]-\infty, r])} \Psi(u) \le T \max _{|\eta| \le c} F(\eta).$ Hence, one has \begin{aligned} \beta(0, r) &\le \frac{\sup_{u \in \Phi^{-1}(]-\infty, r])} \Psi(u) - \Psi(u_0)}{r - \Phi(u_0)} \\ & \le \Omega^2 T \frac{ \max _{|\eta| \le c} F(\eta) - \frac{1}{\Gamma(2-\alpha)|d|} \int_0^{\Gamma(2-\alpha) |d|} F(x)dx}{|\cos(\pi \alpha)| c^2 - \omega_{\alpha,d} \Omega^2} \\ & < \Omega^2 T \frac{ \max _{|\eta| \le c} F(\eta) - \frac{\omega_{\alpha,d} \Omega^2}{|\cos(\pi \alpha)| c^2} \max _{|\eta| \le c} F(\eta)}{|\cos(\pi \alpha)| c^2 - \omega_{\alpha,d} \Omega^2} \\ & = \Omega^2 T \frac{ \max _{|\eta| \le c} F(\eta)}{c^2 |\cos(\pi \alpha)|}, \end{aligned}\label{e3.9} by condition \eqref{e3.6}. On the other hand, if $u \in \Phi^{-1}(]-\infty, 0])$, then $\Phi(u) \le 0$. Thus, by \eqref{e2.4} and \eqref{e2.7} we have $\|u\|_{L^2} = 0$; that is, $u(t) = 0$, a.e. $t \in [0, T]$. Hence, \begin{aligned} \rho_2(0, r) &\ge \frac{\Psi(u_0) - \sup_{u \in \Phi^{-1}(]-\infty, 0])} \Psi(u)}{\Phi(u_0)} = \frac{\Psi(u_0)}{\Phi(u_0)} \\ & = T \frac{ \frac{1}{\Gamma(2-\alpha)|d|} \int_0^{\Gamma(2-\alpha) |d|} F(x)dx }{\omega_{\alpha,d}}. \end{aligned}\label{e3.10} Thus, by \eqref{e3.9}, \eqref{e3.10} and \eqref{e3.6} it follows that $\beta(0, r) < \rho_2(0, r)$. So, from Theorem \ref{thm2.1} for each $\lambda \in \Big(\frac{\omega_{\alpha,d} \Gamma(2-\alpha)|d|}{T \int_0^{\Gamma(2-\alpha) |d|} F(x)dx}, \frac{c^2 |\cos(\pi \alpha)|}{T\Omega^2 \max _{|\eta| \le c} F(\eta)}\Big) \subset \Big(\frac{1}{\rho_2(0, r)}, \ \frac{1}{\beta(0, r)}\Big),$ the function $\Phi - \lambda \Psi$ admits at least one critical point $\bar{u}$ such that $0 < \Phi(\bar{u}) < r$; that is, $\|\bar{u}\|_{\alpha} < \frac{c}{\Omega}$, and the conclusion is achieved. \end{proof} We conclude with an example that illustrates the results obtained here. Let $\alpha = 0.8$, $T = 1$, and $f(u) = \cos (\pi u/3)$. Then \eqref{e1.1} reduces to the boundary-value problem $$\begin{gathered} \frac{d}{dt} \Big({}_0 D_t^{-0.2}({}_0^c D_t^{0.8} u(t)) - {}_t D_1^{-0.2}({}_t^c D_1^{0.8} u(t))\Big) + \lambda \cos (\frac{\pi}{3}u(t)) = 0, \quad\text{a.e. }t \in [0, 1], \\ u(0) = u(1) = 0. \end{gathered} \label{e3.11}$$ Owing to Theorem \ref{thm3.1}, for each $\lambda \in (3.2964, 4.30512)$, boundary-value problem \eqref{e3.11} admits at least one solution. In fact, put $c = 2.5$ and $d = 1$, it is easy to calculate that $\Omega = 1.1089$, $\omega_{0.8, 1} = 1.4$ and $\sqrt{\frac{\omega_{0.8, 1}}{|\cos(0.8 \pi)|}} \, \Omega = 1.4588 < 2.5 = c.$ Moreover, we have $$\frac{\frac{1}{\Gamma(2-\alpha)|d|} \int_0^{\Gamma(2-\alpha) |d|} F(x)dx}{ \omega_{\alpha,d} \Omega^2} = \frac{\frac{1}{\Gamma(1.2)} \int_0^{\Gamma(1.2)} \frac{3}{\pi} \sin (\pi x/3) dx}{\omega_{0.8,1} \cdot \Omega^2} = 0.2467, \label{e3.12}$$ and $$\frac{ \max _{|\eta| \le c} F(\eta)}{c^2 |\cos(\pi \alpha)|} = \frac{3/\pi }{2.5^2 \cdot |\cos(0.8 \pi)|} = 0.1889, \label{e3.13}$$ which implies that condition \eqref{e3.6} holds. Thus, by Theorem \ref{thm3.1}, for each $\lambda \in (3.2964, 4.3051)$, problem \eqref{e3.11} admits at least one solution $\bar{u}$ such that $\|\bar{u}\|_{0.8} < 2.2545$. \subsection*{Acknowledgements} This work is supported by Natural Science Foundation of Jiangsu Province (grant BK2011407), and by the Natural Science Foundation of China (grant 10771212). \begin{thebibliography}{00} \bibitem{m2} K. S. Miller, B. Ross; \emph{An Introduction to the Fractional Calculus and Fractional Differential Equations}, Wiley, New York, 1993. \bibitem{s1} S. G. Samko, A. A. Kilbas, O. I. Marichev; \emph{Fractional Integral and Derivatives: Theory and Applications}, Gordon and Breach, Longhorne, PA, 1993. \bibitem{p1} I. Podlubny; \emph{Fractional Differential Equations}, Academic Press, San Diego, 1999. \bibitem{h1} R. Hilfer; \emph{Applications of Fractional Calculus in Physics}, World Scientific, Singapore, 2000. \bibitem{k1} A. A. Kilbas, H. M. Srivastava, J. J. Trujillo; \emph{Theory and Applications of Fractional Differential Equations}, Elsevier, Amsterdam, 2006. \bibitem{l1} V. Lakshmikantham, A. S. Vatsala; \emph{Basic theory of fractional differential equations}, Nonlinear Anal. TMA 69 (2008), 2677-2682. \bibitem{a1} R. P. Agarwal, M. Benchohra, S. Hamani; \emph{A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions}, Acta Appl. Math. 109 (2010), 973-1033. \bibitem{a2} B. Ahmad, J. J. Nieto; \emph{Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions}, Comput. Math. Appl. 58 (2009), 1838-1843. \bibitem{b1} Z. Bai, H. Lu; \emph{Positive solutions for boundary value problem of nonlinear fractional differential equation}, J. Math. Anal. Appl. 311 (2005), 495-505. \bibitem{b2} C. Bai; \emph{Impulsive periodic boundary value problems for fractional differential equation involving Riemann-Liouville sequential fractional derivative}, J. Math. Anal. Appl. 384 (2011), 211-231. \bibitem{b3} C. Bai; \emph{Solvability of multi-point boundary value problem of nonlinear impulsive fractional differential equation at resonance}, Electron. J. Qual. Theory Differ. Equ. 2011 (2011) No. 89, 1-19. \bibitem{b4} M. Benchohra, S. Hamani, S. K. Ntouyas; \emph{Boundary value problems for differential equations with fractional order and nonlocal conditions}, Nonlinear Anal. TMA 71 (2009), 2391-2396. \bibitem{k2} N. Kosmatov; \emph{Integral equations and initial value problems for nonlinear differential equations of fractional order}, Nonlinear Anal. 70 (7) (2009), 2521-2529. \bibitem{w1} J. Wang, Y. Zhou; \emph{A class of fractional evolution equations and optimal controls}, Nonlinear Anal. RWA 12 (2011), 262-272. \bibitem{w2} Z. Wei, W. Dong, J. Che; \emph{Periodic boundary value problems for fractional differential equations involving a Riemann-Liouville fractional derivative}, Nonlinear Anal. 73 (2010), 3232-3238 \bibitem{z1} S. Zhang; \emph{Positive solutions to singular boundary value problem for nonlinear fractional differential equation}, Comput. Math. Appl. 59 (2010), 1300-1309. \bibitem{r1} P. H. Rabinowitz; \emph{Minimax Methods in Critical Point Theory with Applications to Differential Equations}, in: CBMS, vol. 65, American Mathematical Society, 1986. \bibitem{m1} J. Mawhin, M. Willem; \emph{Critical Point Theorey and Hamiltonian Systems}, Springer, New York, 1989. \bibitem{l2} F. Li, Z. Liang, Q. Zhang; \emph{Existence of solutions to a class of nonlinear second order two-point boundary value problems}, J. Math. Anal. Appl. 312 (2005), 357-373. \bibitem{t1} C. Tang, X. Wu; \emph{Some critical point theorems and their applications to periodic solution for second order Hamiltonian systems}, J. Differential Equations 248 (2010), 660-692. \bibitem{c1} J.-N. Corvellec, V. V. Motreanu, C. Saccon; \emph{Doubly resonant semilinear elliptic problems via nonsmooth critical point theory}, J. Differential Equations 248 (2010), 2064-2091. \bibitem{j1} F. Jiao, Y. Zhou; \emph{Existence of solutions for a class of fractional boundary value problems via critical point theory}, Comput. Math. Appl. 62 (2011), 1181-1199. \bibitem{b5} G. Bonanno; \emph{A critical point theorem via the Ekeland variational principle}, Nonlinear Anal. 75 (2012), 2992-3007. \end{thebibliography} \end{document}