\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 180, pp. 1--7.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/180\hfil Analytic solutions] {Analytic solutions for iterative functional differential equations} \author[P. Zhang\hfil EJDE-2012/180\hfilneg] {Pingping Zhang} % in alphabetical order \address{Pingping Zhang \newline Department of Mathematics, Sichuan University\\ Chengdu, Sichuan 610064, China} \email{zhangpingpingmath@163.com} \thanks{Submitted June 7, 2012. Published October 16, 2012.} \thanks{Supported by grants J12L59, ZR2012AQ028, ZR2011AL001 and BZXYL1005.} \subjclass[2000]{34K05, 39B12, 39B32} \keywords{Iterative differential equation; existence; analytic solution; \hfill\break\indent polynomial solution} \begin{abstract} Because of its technical difficulties the existence of analytic solutions to the iterative differential equation $x'(z)=x(az+bx(z)+c x'(z))$ is a source of open problems. In this article we obtain analytic solutions, using Schauder's fixed point theorem. Also we present a unique solution which is a nonconstant polynomial in the complex field. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction} The study of differential equations with variable delays $$x'(t)=f(t,x(t-\tau(t))), \label{f}$$ began in 60's. Then both theory and applications have been considered; see the monographs \cite{RB,JH,HS}. In recent years equations with complicated deviating arguments $\tau(x(t))$ have attracted the attention of mathematicians, since these equations often appear in applied sciences. For example, Cooke established the following equation, related to a genetic phenomenon \cite{KC}, $$x'(t)+ax(t-h(t,x(t)))=F(t),\quad t\in\mathbb{R}.$$ Periodic solutions in periodic systems for the population model $$x'(t)=f(t,x(t-\tau(t,x(t)))),\quad t\in\mathbb{R}$$ were investigated in \cite{YL}, where $f$ and $\tau$ have the same period. On the other hand, the analytic solutions of the equation $x'(z)=x(z-\tau(z))$, such as $x'(z)=x(az+bx(z))$ and $x'(z)=x(az+bx'(z))$, even the more complicated equation $\alpha z+\beta x'(z)=x(az+bx''(z))$, have been investigated in the complex field; see for example \cite{EE,ZJ,LL}, \cite{SC1}-\cite{HS}, \cite{WS}-\cite{PZ}. In these studies, the Schr\"{o}der transformation is an important tool which can reduce the equation involving iteration of unknown functions to an auxiliary differential equation without the iterative operation. To the best of our knowledge, there are only a few results on analytic solutions of the iterative differential equation that includes state and state derivative simultaneously in $\tau(z)$. The main reason is that this equation being rewritten as another one which does not involve $\tau(z)$ is difficult to analyze; there the Schr\"{o}der transformation, a very useful method in the eliminating iteration of unknown function, does not work. In this article we study analytic solutions of the equation $$x'(z)=x(az+bx(z)+c x'(z)),\quad z\in\mathbb{C} \label{main}$$ by using Schauder's fixed point theorem, in which $a,b,c$ are complex constants. Moreover, we find the unique nonconstant polynomial solution in complex field. \section{Analytic solution} In this section we aim to find analytic solutions of equation \eqref{main} in a neighborhood of the origin by using Schauder's fixed point theorem. In addition, a non-existence result on analytic solutions is also given, which is generalized to the equations involving higher order derivatives. \begin{theorem} \label{thm1} Suppose that $|a|<1$ and $(1-|a|)|x_0|+|a|+|b|+|c|<1$, then \eqref{main} has an analytic solution of the form $$x(z)=x_0+\sum_{n=1}^\infty a_n z^n \label{analytic}$$ in a neighborhood of the origin. \end{theorem} \begin{proof} It suffices to find the solution of an integral equation $$x(z)=x_0 + \int_{0}^{z} x(as+bx(s)+cx'(s)) ds. \label{integral}$$ Since $(1-|a|)|x_0|+|a|+|b|+|c|<1$, there exists positive value $h$ satisfying $$\frac{(|b|+|c|)|x_0|}{1-|a|-|b|-|c|}< h< 1-|x_0|. \label{23}$$ For constants $M$ and $L$ satisfy $$\frac{|x_0|}{1-h}\leq M\leq 1 \qquad {\rm and} \qquad L>\frac{1+M|b|}{1-M|c|},\label{24}$$ we define functional subspace \begin{align*} X_h =\Big\{&x \in C^1(\bar{B}_h(0),\mathbb{C}): x(0)=x_{0},\; |x(z_1)-x(z_2)| \le M|z_1 -z_2|,\\ & \|x'\|_{C^0}\leq |x_0|+Mh, \|{x_1}'-{x_2}'\|_{C^0}\leq L\|x_1-x_2\|_{C^0},\\ & \forall z_1,z_2 \in \bar{B}_h(0),\forall x_1,x_2 \in C^1(\bar{B}_h(0),\mathbb{C})\Big\}, \end{align*} where $\bar{B}_h(0)$ is the closure of open ball $B_h(0)$ centered at $0$ with radius $h$. Clearly, $X_h$ is a convex and closed subset of $C^1(\bar{B}_h(0),\mathbb{C})$, a Banach space with the standard norm $\|x\|_C^0=\|x\|_{C^0} +\|x'\|_{C^0}$, where $\|x\|_{C^0} =\max_{z\in\bar{B}_h(0)} |x(z)|$ and $\|x'\|_{C^0} =\max_{z\in\bar{B}_h(0)} |x'(z)|$. Moreover, we have $|x_n(z)|\leq |x_0|+Mh$ for any $x_n \in X_h$. So $\{x_n (z)\}$ is compact in $\bar{B}_h(0)$ by Ascoli-Arzela Lemma. Therefore, $X_h$ is a compact and convex subset of the Banach space $C^1(\bar{B}_h(0),\mathbb{C})$. Now we define the operator $\mathcal{J}$ on $X_h$ by $$\mathcal{J} x(z) := x_0 + \int_{0}^{z} x(as+bx(s)+cx'(s)) ds. \label{map}$$ Then a fixed point of map $\mathcal{J}$ is a solution of the integral equation \eqref{integral}. From \eqref{23}, we have \begin{align*} |az+bx(z)+cx'(z)| &\leq |a|h+|b|\cdot(|x_0|+Mh)+|c|\cdot(|x_0|+Mh)\\ &\leq |a|h+|b|\cdot(|x_0|+h)+|c|\cdot(|x_0|+h) \\ &\leq h,\quad \forall z\in\bar{B}_h(0); \end{align*} i.e., $x(az+bx(z)+cx'(z))$ is well-defined for $x \in X_h$. To verify $\mathcal{J} (X_h) \subset X_h$, we note that for arbitrary $x \in X_h$, $\mathcal{J} x(0) = x_{0}+\int_{0}^{0} x(as+bx(s)+cx'(s))ds=x_0,$ and from \eqref{24}, \begin{align*} | \mathcal{J} x(z_2)-\mathcal{J} x(z_1)| &\leq | \int_{z_1}^{z_2} x(as+bx(s)+cx'(s))ds |\\ &\leq (|x_0|+Mh) |z_2-z_1|\\ &\leq M |z_2-z_1|. \end{align*} We also have $|(\mathcal{J} x)'(z)|\leq |x_0|+Mh$; i.e., $\|(\mathcal{J} x)'\|_{C^0}\leq |x_0|+Mh$. Moreover, for any $x_1, x_2 \in X_h$, $$\begin{split} &|(\mathcal{J} x_1)'(z)-(\mathcal{J} x_2)'(z)| \\ &= |x_1 (az+bx_1 (z)+c{x_1}'(z))-x_2 (az+bx_2 (z)+c{x_2}'(z))| \\ &\leq |x_1 (az+bx_1 (z)+c{x_1}'(z))-x_2 (az+bx_1 (z)+c{x_1}'(z))| \\ &\quad + |x_2 (az+bx_1 (z)+c{x_1}'(z))-x_2 (az+bx_2 (z)+c{x_2}'(z))| \\ &\leq \|x_1 -x_2 \|_{C^0}+ M(|b|\cdot\|x_1 -x_2 \|_{C^0}+|c|\cdot\|{x_1}' -{x_2}' \|_{C^0}) \\ &\leq \|x_1 -x_2 \|_{C^0}+ M(|b|+|c|L)\cdot\|x_1 -x_2 \|_{C^0} \\ &=(1+M(|b|+|c|L))\|x_1-x_2\|_{C^0} \\ &\leq L\|x_1-x_2\|_{C^0}. \end{split} \label{J}$$ These relations imply that $\mathcal{J} x \in X_h$; i.e., $\mathcal{J}$ is a self-mapping. Furthermore, from \eqref{J} we also see that \begin{align*} &|\mathcal{J} x_1(z)-\mathcal{J} x_2(z)| \\ &\leq | \int_{0}^z |x_1 (as+bx_1 (s)+c{x_1}'(s))-x_2 (as+bx_2 (s)+c{x_2}'(s))|ds \\ &\leq | \int_{0}^z L\|x_1 -x_2 \|_{C^0}ds \\ &\leq hL\|x_1-x_2\|_{C^0}, \end{align*} implying that $\mathcal{J}$ is continuous. Therefore we can conclude from Schauder's Fixed Point Theorem that $\mathcal{J}$ has a fixed point $x \in X_h$; i.e., $\mathcal{J} x = x$, which gives a solution for equation \eqref{main} associated with $x(0)=x_0$ on the domain $|z|\leq h$, naturally, it is an analytic solution of equation \eqref{main} with the form $x(z)=x_0+\sum_{n=1}^\infty a_n z^n$ in complex field $|z|\leq h$. This completes the proof. \end{proof} \begin{example} \label{examp1}\rm Consider equation $$x'(z)=x(az+bx(z)+c x'(z)), \label{27}$$ where $a=\sqrt{2}/{4}+i\sqrt{2}/{4}$, $b=c=\sqrt{2}/{16}+i\sqrt{2}/{16}$. Since $|a|=1/2$, $|b|=|c|=1/8$, then for arbitrary $|x_0|<1/2$, equation \eqref{27} has an analytic solution with the form as $x(z)=x_0+\sum_{n=1}^\infty a_n z^n$ in a neighborhood of the origin. \end{example} Next, we obtain a result on non-existence of analytic solution for equation \eqref{main}, which can be generalized to the equations with high order derivatives. \begin{theorem} \label{thm2} Equation \eqref{main} has no nonzero analytic solution of the form $$x(z)=\sum_{n=2}^\infty a_n z^n. \label{main2}$$ \end{theorem} \begin{proof} Substituting \eqref{main2} into \eqref{main}, we have $$\sum_{n=1}^\infty (n+1)a_{n+1} z^n = \sum_{n=2}^\infty a_{n} (q (z))^n, \label{3a}$$ where $$q(z)=(a+2a_2 c)z+\sum_{n=2}^\infty (a_n b+(n+1)a_{n+1} c)z^n.$$ Comparing coefficient of $z$ in \eqref{3a}, we have $2a_2=0$; that is, $a_2 =0$. In general we obtain $a_n =0$, $n=3,4,\dots$, as coefficient of $z^n$ in \eqref{3a}. Therefore, equation \eqref{main} has only the zero analytic solution of the form \eqref{main2}. \end{proof} To extend the above result, we have the non-existence of nonzero analytic solutions to the more general equations. \begin{theorem} \label{thm3} The equation $$x'(z)=x(az+bx(z)+c x^{(m)}(z)),\quad m=2,3,\dots, \label{4}$$ has no nonzero analytic solution of the form $x(z)=\sum_{n=m+1}^\infty a_n z^n.$ \end{theorem} The proof of the above theorem is similar to Theorem \ref{thm2} and is omitted. \section{Polynomial solution} In this section we find the unique nonconstant complex polynomial solution to \eqref{main}. Furthermore, the iterative differential equations including high order derivatives have also unique nonconstant complex polynomial solution which is independent of the order of derivative. \begin{theorem} \label{thm4} Suppose that $a\neq 0,1$ and $b\neq0$, then \eqref{main} has a unique nonconstant complex polynomial solution $$x(z)=\frac{a^2 c+ab}{(a-1)b^2}-\frac{a}{b}z. \label{main1}$$ \end{theorem} \begin{proof} Let $$x(z)=\sum_{i=0}^n a_i z^i. \label{abc}$$ Substituting \eqref{abc} into \eqref{main}, we have $$\begin{split} &a_1 +2a_2 z+ 3a_3 z^2 +\dots +na_n z^{n-1} \\ &= a_0 +a_1 p_n (z)+a_2 (p_n (z))^2+\dots +a_n (p_n (z))^n, \end{split}\label{a}$$ where $$\begin{split} p_n (z)&= (a_0 b+a_1 c)+(a+a_1 b+2a_2 c)z+(a_2 b+3a_3 c)z^2 \\ &\quad +(a_3 b+4a_4 c)z^3+\dots +(a_{n-1} b+na_n c)z^{n-1}+a_n bz^n. \end{split}\label{b}$$ Comparing coefficient of $z^{n^2}$, we have $$a_n (a_n b)^n=0;$$ that is, $a_n =0$. Then \eqref{a} and \eqref{b} are simplified into $$\begin{split} &a_1 +2a_2 z+ 3a_3 z^2 +\dots +(n-1)a_{n-1} z^{n-2} \\ &= a_0 +a_1 p_{n-1} (z)+a_2 (p_{n-1} (z))^2+\dots +a_{n-1} (p_{n-1} (z))^{n-1}, \end{split}\label{aa}$$ and $$\begin{split} p_{n-1} (z) &= (a_0 b+a_1 c)+(a+a_1 b+2a_2 c)z+(a_2 b+3a_3 c)z^2 +(a_3 b+4a_4 c)z^3 \\ &\quad +\dots +(a_{n-2} b+(n-1)a_{n-1} c)z^{n-2}+a_{n-1} bz^{n-1}, \end{split}\label{bb}$$ respectively. Comparing coefficient of $z^{(n-1)^2}$, we obtain $$a_{n-1} (a_{n-1} b)^{n-1}=0;$$ that is, $a_{n-1}=0$. Thus, repeating the same procedure as before, we can obtain the simplest forms of \eqref{a} and \eqref{b} respectively as \begin{gather*} a_1 = a_0 +a_1 p_{1} (z), \\ p_{1} (z)=(a_0 b+a_1 c)+(a+a_1 b)z. \end{gather*} Namely, $$a_1 = a_0 +a_1 ((a_0 b+a_1 c)+(a+a_1 b)z). \label{aaaa}$$ From which, we obtain a nonconstant complex polynomial solution \eqref{main1}, which also is unique since it is determined only by constants $a,b,c$ in equation \eqref{main}. \end{proof} \begin{example} \label{examp2} \rm Consider the equation $$x'(z)=x(az+bx(z)+cx'(z)), \label{38}$$ where $a=1+i$, $b=1+2i$, $c=3+i$. Then \eqref{38} has a unique complex polynomial solution $x(z)=(3-9i)/(4+3i)-(1+i)z/(1+2i)$. \end{example} For the iterative differential equations involving high-order derivatives, we have the following result. \begin{theorem} \label{thm5} Suppose that $a\neq 0,1$ and $b\neq0$, then the equation $$x'(z)=x(az+bx(z)+c x^{(m)}(z)),\ \ m=2,3,\dots , \label{2}$$ has a unique nonconstant complex polynomial solution $x(z)=\frac{a}{(a-1)b}-\frac{a}{b}z.$ \end{theorem} The proof of the above theorem is similar to Theorem \ref{thm4}, and is omitted. \begin{example} \label{examp3}\rm Consider the equation $$x'(z)=x(az+bx(z)+cx^{(m)}(z)) \label{39}$$ for arbitrary $m\in\{2,3,\dots \}$, where $a=2+i$, $b=1+i$, $c=3+3i$. Then \eqref{39} has a unique complex polynomial solution $x(z)=(1-2i)/2-(2+i)z/(1+i)$. \end{example} \subsection*{Acknowledgments} The author is grateful to the anonymous referees for their detailed comments and remarks which helped to clarify this article. \begin{thebibliography}{99} \bibitem{RB} R. Bellman, K. Cooke; Differential Difference Equations, \emph{Academic Press}, 1963. \bibitem{KC} K. Cooke; Functional differential systems: Some models and perturbation problems, \emph{In Proceedings of the International Symposium on Differential Equations and Dynamical Systems,} Puerto Rico, 1965, Academic Press, New York, (1967). \bibitem{RD} R. Driver; Existence theory for a delay-differential system, \emph{Contributions to Diff. Equa.,} \textbf{I} (1963). \bibitem{EE} E. Eder; The functional differential equation $x'(t)=x(x(t))$, \emph{J. Diff. Equa.,} \textbf{54} (1984), 390-400. \bibitem{JH} J. Hale; Theory of Functional differential equation, \emph{Springer-Verlag,} 1997. \bibitem{ZJ} Z. Jackiewicz; Existence and uniqueness of solutions of neutral delay-differential equations with state dependent delays, \emph{Funk. Ekv.,} \textbf{30} (1987), 9-17. \bibitem{LL} L. Liu; Local analytic solutions of a functional differential equation $\alpha z+\beta x'(z)=x(az+bx''(z))$, \emph{Appl. Math. Comput.,} \textbf{215} (2009), 644-652. \bibitem{YL} Y. Li, Y. Kuang; Periodic solutions in periodic state-dependent delay equations and population models, \emph{ Proceedings of the American Mathematical Society,} \textbf{130} (5) (2001), 1345-1353. \bibitem{SC1} J. Si, S. Cheng; Note on an iterative functional differential equation, \emph{Demostrat. Math.,} \textbf{31} (3) (1998), 599-614. \bibitem{SC2} J. Si, S. Cheng; Smooth solutions of a nonhomogeneous iterative functional differential equation, \emph{Proc. Royal Soc. Edinburgh Sect. A.,} \textbf{128A} (1998), 821-831. \bibitem{SLC} J. Si, W. Li, S. Cheng; Analytic solutions of an iterative functional differential equation, \emph{Comput. Math. Appl.,} \textbf{33} (6) (1997), 47-51. \bibitem{SL} J. Si, T. Liu; Local analytic solutions of a functional differential equation with a deviating argument depending on the state derivative near resonance, \emph{Comput. Math. Appl.,} \textbf{54} (2007), 750-762. \bibitem{SWC} J. Si, X. Wang, S. Cheng; Analytic solutions of a functional differential equation with a state derivative dependent delay, \emph{Aequationes Math.,} \textbf{57} (1999), 75-86. \bibitem{SW} J. Si, X. Wang; Analytic solutions of a second-order iterative functional differential equation, \emph{Comput. Math. Appl.,} \textbf{43} (2002), 81-90. \bibitem{SZ} J. Si, W. Zhang; Analytic solutions of a class of iterative functional differential equations, \emph{J. Comput. Appl. Math.,} \textbf{162}(2004), 467-481. \bibitem{HS} H. Smith; An introduction to delay differential equations with applications to the life sciences, \emph{Springer,} 2010. \bibitem{KW} K. Wang; On the equation $x'(t)=f(x(x(t)))$, \emph{Funk. Ekv.,} \textbf{33} (1990), 405-425. \bibitem{WS} X. Wang, J. Si; Analytic solutions of an iterative functional differential equation, \emph{J. Math. Anal. Appl.,} \textbf{262} (2001), 490-498. \bibitem{PZ} P. Zhang, L. Mi; Analytic solutions of a second order iterative functional differential equation, \emph{Appl. Math. Comp.,} \textbf{210} (2009), 277-283. \end{thebibliography} \end{document}