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SOLUTIONS TO A PARTIAL INTEGRO-DIFFERENTIAL
PARABOLIC SYSTEM ARISING IN THE PRICING OF
FINANCIAL OPTIONS IN REGIME-SWITCHING JUMP

DIFFUSION MODELS

IONUT FLORESCU, RUIHUA LIU, MARIA CRISTINA MARIANI

Abstract. We study a complex system of partial integro-differential equa-
tions (PIDE) of parabolic type modeling the option pricing problem in a
regime-switching jump diffusion model. Under suitable conditions, we prove
the existence of solutions of the PIDE system in a general domain by using
the method of upper and lower solutions.

1. Introduction

The problem of pricing derivatives in financial mathematics often leads to study-
ing partial differential and/or integral equations. The typical differential equations
obtained are of parabolic type. In recent years, the complexity of the equations
studied has increased, due to the inclusion of stochastic volatility, stochastic in-
terest rate, and jumps in the mathematical models governing the dynamics of the
underlying asset prices. The integral terms in a partial differential equation with
integral terms (henceforth PIDE) come from modeling jumps in the underlying
asset prices.

Florescu and Mariani [4] considered a continuous time asset price model contain-
ing both stochastic volatility and discontinuous jumps. In this model, the volatility
is driven by a second correlated Brownian motion and the jump is modeled by a
compound Poisson process. Standard risk-neutral pricing principle is used to ob-
tain a single second-order partial integro-differential equation (PIDE) for the prices
of European options written on the asset. Motivated by this financial mathematics
problem, a general integro-differential parabolic problem is posed and studied in the
cited work [4]. The existence of solution is proved by employing a method of upper
and lower solutions and a diagonal argument. Moreover, the proof can provide
an approximation method for numerically finding the solution of the general type
PIDE which was later implemented in [5]. In the current work we are discussing
a more general model capable of producing realistic paths. The resulting option
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price may be found as the solution of a system of PIDE’s, which to our knowledge,
have never been studied before by the method employed in this work.

The main result of this paper is Theorem 3.2 which provides conditions on the
integral terms in the PIDE system which guarantee the existence of the solution to
this system. The emphasis in this work is on the applied mathematical methods
rather than the stochastic process due to the technical nature of this result.

2. Motivating the PIDE System under Study

In this section, we introduce and motivate the regime-switching jump diffusion
model, the option pricing problem, and the resulting system of partial integro-
differential equations we will study in the next section.

2.1. About the suitability of the stochastic model postulated. From the
beginning of the 20-th century starting with Louis Jean-Baptiste Alphonse Bache-
lier (1870-1946) researchers have been looking for mathematical models which are
capable of capturing the main features of an observed price path. The most fa-
mous attempt is the Black-Scholes-Merton model [2, 11] which influenced so much
of the literature on asset pricing. Of course, the model is now known to be too
simple for high frequency data and many attempts have been made in the last 20
years to capture the complexity exhibited by the evolution of asset prices. In recent
years, considerable attention has been drawn to regime-switching models in finan-
cial mathematics aiming to include the influence of macroeconomic factors on the
individual asset price behavior. See, for example [6, 9, 10]. In this setting, asset
prices are dictated by a number of stochastic differential equations coupled by a
finite-state Markov chain, which represents various randomly changing economi-
cal factors. Mathematically, the regime-switching models generalize the traditional
models in such a way that various coefficients in the models depend on the Markov
chain. Consequently, a system (not a single one) of coupled PDEs (or PIDEs) is
obtained for option prices.

To further illustrate the motivation of this study, in Figure 1 we present the one
day evolution of high frequency data (all trades) for a particular equity gathered
from a single exchange. This image or sample path is generally representative for
many traded assets in any markets during any given day. Looking at the image we
recognize several characteristics which can be captured by using a regime-switching
jump diffusion model. The price path seems to jump in several places during the
day (either up or down) and in between these jumps it seems to follow processes
with perhaps different parameters. For example, the variability at the beginning
of the day seems to be larger than the variability in the middle of the day. As
described next, in a regime-switching jump diffusion model the process jumps at
random times by a random amount and, in between jumps, the process could
follow diffusions with distinct coefficients. We believe such a model is appropriate
for describing the observed features of the asset price during the day.

2.2. Regime-switching jump diffusion model. We assume that all the sto-
chastic processes in this paper are defined on some underlying complete probability
space (S,F ,P). Let Bt be a one-dimensional standard Brownian motion. Let
αt be a continuous-time Markov chain with state space M := {1, . . . ,m}. Let
Q = (qij)m×m be the intensity matrix (or the generator) of αt. In this context the
generator qij , i, j = 1, . . . ,m satisfy:
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Figure 1. Tick data for one trading day and a certain equity

(I) qij ≥ 0 if i 6= j;
(II) qii = −

∑
j 6=i qij for each i = 1, . . . ,m.

We assume that the Brownian motion Bt and the Markov chain αt are independent.
Let Nt be a Cox process (a specialized non-homogeneous Poisson process) with

regime-dependent intensity λαt . Thus, when the current state is αt = i, the time
until the next jump is given by an exponential random variable with mean 1/λi. Nt

models the number of the jumps in the asset price up to time t. Let the jump sizes
be given by a sequence of iid random variables Yi, i = 1, 2, . . . , with probability
density g(y). Assume that the jump sizes Yi, i = 1, 2, . . . , are independent of Bt

and αt.
We model the time evolution of the asset price St by using the regime-switching

jump diffusion:
dSt

St
= µαtdt + σαtdBt + dJt, t ≥ 0, (2.1)

where µαt and σαt are the appreciation rate and the volatility rate of the asset St,
respectively. Jt is the jump component given by

Jt =
Nt∑

k=1

(Yk − 1). (2.2)

The Yi − 1 values represent the percentage of the asset price by which the process
jumps. Note that, in between switching times the process follows a regular jump
diffusion with constant coefficients. However, the coefficients are switching as gov-
erned by the corresponding state of the Markov chain. In the model setting (2.1)
the volatility is modeled as a finite-state stochastic Markov chain σαt . As further
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reference for the model usefulness, (2.1) may be considered as a discrete approxi-
mation of a continuous-time diffusion model for the stochastic volatility (e.g. the
Heston’s model). See Liu [9] and references therein for more details.

2.3. The option pricing problem. Given that the asset price process follows
the hypothesized model (2.1) we look into the problem of derivative pricing writ-
ten on the corresponding asset. To this end denote rαt the risk-free interest rate
corresponding to the state αt of the Markov chain.

We consider an European type option written on the asset St with maturity
T < ∞. Let Vi(S, t) denote the option value functions at time to maturity t, when
the asset price St = S and the regime αt = i (assuming that the regime αt is
observable). Under these assumptions the value functions Vi(S, t), i = 1, . . . ,m,
satisfy the system of PIDEs

1
2
σ2

i S2 ∂2Vi

∂S2
+ (ri − λiκ)S

∂Vi

∂S
− riVi −

∂Vi

∂t

+ λiE[Vi(SY, t)− Vi(S, t)] +
∑
j 6=i

qij [Vj − Vi] = 0,
(2.3)

where we use the notation κ = E[Y − 1] =
∫

(y − 1)g(y)dy. Recalling that qii =
−

∑
j 6=i qij and using the density g(y), we can rewrite (2.3) as

1
2
σ2

i S2 ∂2Vi

∂S2
+ (ri − λiκ)S

∂Vi

∂S
− (ri + λi − qii)Vi −

∂Vi

∂t

= −λi

∫
Vi(Sy, t)g(y)dy −

∑
j 6=i

qijVj .
(2.4)

Standard risk-neutral pricing principle is used for the derivation of equation (2.3)
from the dynamics (2.1) (not presented here), we refer for instance to [6, 7].

Such types of systems are complicated and hard to approach. In [4] we analyze
a single PIDE which appears when the process exhibit jumps and has stochastic
volatility. The approach was further implemented and an algorithm to calculate
the solution was provided in [5]. The current problem is more complex by involving
a system of PIDE’s. However, note that the system is coupled only through the
final term in the equation (2.4), the rest of the terms in each equation i are in the
respective Vi(·, ·). This fact provides hope that an existence proof (and a potential
solving algorithm) may be provided in the current situation as well.

As a historical note William Feller (1906-1970) and his students developed the
semigroup theory for Markov Processes and there is a well known direct link through
them with the resulting PDE’s for option pricing (see e.g., [3] or [13] for excellent
reviews of this connection). However, they worked with diffusion processes (and
later jump diffusion processes) characterizing Markov processes and these models
lead to simple PIDE’s.

In the case presented here, while the regime switching is governed by a con-
tinuous-time Markov chain and while each process being switched is indeed a
continuous-time Markov process (jump diffusion), the overall structure may not
be described by a simple Markov process with a diffusion + density type infini-
tesimal generator. Instead, the resulting overall Markov process is complex and
produces the type of coupled systems of PIDE’s studied in this paper. The work
we present proves an existence of solution theorem for such systems. This system
is very different from the work published in Pitt’s dissertation in 1967 [12] and
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naturally the analysis follows different techniques, thus our proof (about a different
problem) is different than the analysis done by Pitt, that was later extended to
time dependent coefficients on a simpler Markov process.

3. The General PIDE System

To obtain a solution to the system (2.4) we formulate the problem using more
general terms. This will provide a universal approach to the kind of PIDE systems
arising when solving complex option pricing problems.

We first recall that the Black-Scholes equation

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0

becomes a heat type equation after performing the classical (Euler type) change of
variable: S = Eex and t = T− 2τ

σ2 , where E, T, σ are constants, see for example [14].
From now on, we assume that this classical change of variable for Black-Scholes type
equations was performed.

To this end, let Ω ⊂ Rd be an unbounded smooth domain, and we consider a
collection of m functions ui(x, t), i = 1, . . . ,m, where x = (x1, x2, . . . , xd) (ui :
Rd × [0, T ] → R). Let the operator Li be defined by:

Liui =
d∑

j=1

d∑
k=1

ai
jk(x, t)

∂ui

∂xj∂xk
+

d∑
j=1

bi
j(x, t)

∂ui

∂xj
+ ci(x, t)ui, i = 1, . . . ,m, (3.1)

where the coefficients ai
jk, bi

j and ci, i ∈ {1, . . . ,m}; j, k ∈ {1, . . . , d} belong to the
Hölder space Cδ,δ/2(Ω× [0, T ]) and satisfy the following conditions:

• There exist two constants Λ1, Λ2 with 0 < Λ1 ≤ Λ2 < ∞ such that

Λ1|v|2 ≤
d∑

j=1

d∑
k=1

ai
jk(x, t)vjvk ≤ Λ2|v|2 for v = (v1, . . . , vd)T ∈ Rd. (3.2)

• There exists a constant C > 0 such that

|bi
j(x, t)| ≤ C. (3.3)

• The functions
ci(x, t) ≤ 0. (3.4)

This general formulation encompasses all models presented including as degen-
erate cases the diffusion model of Black Scholes and the jump diffusion of Merton.
The conditions are needed to ensure the existence of solution for a system of the
type (2.4). Generally, these conditions are satisfied by most option pricing equa-
tions arising in finance.

The generalized problem corresponding to the system of PIDE’s in equation (2.4)
on an unbounded smooth domain Ω is:

Liui −
∂ui

∂t
= Gi(t, ui)−

∑
j 6=i

qijuj in Ω× (0, T )

ui(x, 0) = ui,0(x) on Ω× {0}
ui(x, t) = hi(x, t) on ∂Ω× (0, T )

(3.5)
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for i = 1, . . . ,m, where Gi, are continuous integral operators. We assume that the
boundary conditions ui,0 ∈ C2+δ(Ω), and hi ∈ C2+δ,1+δ/2(Ω × [0, T ]) satisfy the
compatibility condition

hi(x, 0) = ui,0(x), for any x ∈ ∂Ω, i = 1, . . . ,m. (3.6)

We note that as applied to problem (2.4) the operators Li and Gi differ in the
parameter values only, not in functional form. However, the general problem for-
mulation as described above contains the case when the option is written on a
basket of assets (not only a single stock) which are all modeled by different jump-
diffusion type processes and they are all dependent on the same regime-switching
Markov process αt.

The goal is to establish the existence of a solution to the system (3.5) using the
method of upper and lower solutions.

Definition 3.1. A collection of m smooth functions u = {ui, 1 ≤ i ≤ m} is called
an upper (lower) solution of problem (3.5) if:

Liui −
∂ui

∂t
≤ (≥)Gi(t, ui)−

∑
j 6=i

qijuj in Ω× (0, T )

ui(x, 0) ≥ (≤)ui,0(x) on Ω× {0}
ui(x, t) ≥ (≤)hi(x, t) on ∂Ω× (0, T )

(3.7)

for i = 1, . . . ,m.

Our main result is stated in the following theorem.

Theorem 3.2. Let the operators Li and Gi, 1 ≤ i ≤ m be as defined above. Assume
that either:

• for each 1 ≤ i ≤ m, Gi is non-increasing with respect to ui, or
• for each 1 ≤ i ≤ m, there exists a continuous and increasing one-dimen-

sional function fi such that Gi(t, ui)− fi(ui) is non-increasing with respect
to ui.

Furthermore, assume there exist a lower solution α = {αi, 1 ≤ i ≤ m} and an upper
solution β = {βi, 1 ≤ i ≤ m} of problem (3.5) satisfying α ≤ β componentwise
(i.e., αi ≤ βi, 1 ≤ i ≤ m) in Ω× (0, T ). Then (3.5) admits a solution u such that
α ≤ u ≤ β in Ω× (0, T ).

3.1. The method of upper and lower solutions. In this section we present a
proof of our main result, Theorem 3.2. To this end, we first solve an analogous
problem in a bounded domain and then extend the solution to the unbounded
domain Ω × (0, T ). We note that we need this extension since in general option
problems are solved on (S1, . . . , Sd, t) ∈ (0,∞)d × [0, T ]. Please also note that the
theory may be used just as well for perpetual options (when T = ∞).

Lemma 3.3. Let U be a smooth and bounded subset of Ω. Then, there exists a
unique collection of functions ϕU = {ϕU,i, 1 ≤ i ≤ m} with ϕU,i ∈ C2+δ,1+δ/2(U ×
[0, T ]) such that

LiϕU,i −
∂ϕU,i

∂t
= 0, (x, t) ∈ U × (0, T ),

ϕU,i(x, 0) = ui,0(x), x ∈ U,

ϕU,i(x, t) = hi(x, t), (x, t) ∈ ∂U × [0, T ],

(3.8)
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for i = 1, . . . ,m. Moreover, if α and β are respectively a lower and an upper
solution of this reduced problem (3.8) with α ≤ β in U × (0, T ), then

α(x, t) ≤ ϕU (x, t) ≤ β(x, t), (x, t) ∈ U × [0, T ]. (3.9)

Proof. Note that the homogeneous system (3.8) is decoupled. Thus, solving the
system means solving the individual PDE’s. Applying Florescu and Mariani [4,
Lemma 2.1] to each of the m component equations, we obtain the expected result.

�

The next result is crucial and it is the lemma that makes the transition from
simple PDE’s to a complex system of PIDE’s on a bounded domain.

Lemma 3.4. Let U ∈ Rd be a smooth and bounded domain. Let 0 < T̃ < T . Let
ϕU be defined as in Lemma 3.3. Assume α and β are respectively a lower and an
upper solution of the initial problem (3.5) on the bounded domain U × [0, T̃ ] with
α ≤ β. Then the problem

Liui −
∂ui

∂t
= Gi(t, ui)−

∑
j 6=i

qijuj in U × (0, T̃ )

ui(x, 0) = ui,0(x) on U × {0}

ui(x, t) = ϕU,i(x, t) on ∂U × (0, T̃ )

(3.10)

for i = 1, . . . ,m, admits at least one solution u such that α(x, t) ≤ u(x, t) ≤ β(x, t)
for x ∈ U , 0 ≤ t ≤ T̃ .

Proof. Suppose first that for each 1 ≤ i ≤ m, Gi is non-increasing with respect
to ui. Let V = U × (0, T̃ ). In this proof we use the following result provided by
the existence and uniqueness of the solution for homogeneous PDE’s (Lemma 3.3)
and the extension to non-homogeneous PDE’s (this is a standard extension, see for
example [8]):

Given a collection of m functions with wi ∈ W 2,1
p (V ), the problem

Livi −
∂vi

∂t
= Gi(t, wi)−

∑
j 6=i

qijwj in U × (0, T̃ )

vi(x, 0) = ui,0(x) on U × {0}

vi(x, t) = ϕU,i(x, t) on ∂U × (0, T̃ )

(3.11)

for i = 1, . . . ,m, has a unique solution v = {vi, 1 ≤ i ≤ m} with vi ∈ W 2,1
p (V ).

The idea in the proof of the lemma is to construct a convergent sequence of
functions and show that the limit is a solution to the general system (3.10).

To this end we use an inductive construction starting with u0 = α and construct-
ing a sequence of solutions {un, n = 0, 1, 2, . . . } such that un+1 = {un+1

i , 1 ≤ i ≤ m}
is the unique solution of the problem

Liu
n+1
i − ∂un+1

i

∂t
= Gi(t, un

i )−
∑
j 6=i

qiju
n
j in U × (0, T̃ )

un+1
i (x, 0) = ui,0(x) on U × {0}

un+1
i (x, t) = ϕU,i(x, t) on ∂U × (0, T̃ )

(3.12)

for i = 1, . . . ,m.
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We claim that componentwise,

α ≤ un ≤ un+1 ≤ β in U × [0, T̃ ], ∀n ∈ N. (3.13)

Using the maximum principle we can show that u1 ≥ α, (i.e., u1
i ≥ αi, for all

1 ≤ i ≤ m). If we assume this is not true, there would exist an index 1 ≤ i0 ≤ m and
a point (x0, t0) ∈ U × [0, T̃ ] such that u1

i0
(x0, t0) < αi0(x0, t0). Since u1

i0
|∂U×[0,T̃ ] ≥

αi0 |∂U×[0,T̃ ], we deduce that (x0, t0) ∈ U × (0, T̃ ) (interior of the domain) and
furthermore we may assume that (x0, t0) is a maximum point of αi0 − u1

i0
since

both functions are smooth. Since the point is a maximum, it follows that ∇(αi0 −
u1

i0
)(x0, t0) = 0, 4(αi0 − u1

i0
)(x0, t0) < 0 and

∂(αi0−u1
i0

)

∂t (x0, t0) = 0. Since Li0 is
strictly elliptic (by the conditions imposed on its coefficients), we have

Li0(αi0 − u1
i0)(x0, t0) < 0. (3.14)

On the other hand, in view of the definition (3.7) for the lower solution α and the
way u1 is constructed in (3.12), we have

Li0u
1
i0(x0, t0)−

∂u1
i0

∂t
(x0, t0) = Gi0(t, αi0)(x0, t0)−

∑
j 6=i0

qi0jαj(x0, t0)

≤ Li0αi0(x0, t0)−
∂αi0

∂t
(x0, t0),

(3.15)

resulting in Li0(αi0 − u1
i0

)(x0, t0) ≥ 0, a contradiction with (3.14). Therefore, we
must have u1 ≥ α.

Next, since for each 1 ≤ i ≤ m, Gi is non-increasing with respect to ui, and
qij ≥ 0 whenever i 6= j, we have for each 1 ≤ i ≤ m that

Liu
1
i −

∂u1
i

∂t
= Gi(t, αi)−

∑
j 6=i

qijαj ≥ Gi(t, βi)−
∑
j 6=i

qijβj ≥ Liβi −
∂βi

∂t
. (3.16)

Again, by the maximum principle we obtain that u1 ≤ β. The proof of this is
identical with one above. If the inequality did not hold there would exist an index
1 ≤ i0 ≤ m and a point (x0, t0) ∈ U×[0, T̃ ] such that u1

i0
(x0, t0) > βi0(x0, t0). Since

u1
i0
|∂U×[0,T̃ ] ≤ βi0 |∂U×[0,T̃ ], we deduce that (x0, t0) ∈ U × (0, T̃ ) and furthermore

we may assume that (x0, t0) is a maximum point of u1
i0
− βi0 . It follows that

∇(u1
i0
− βi0)(x0, t0) = 0, 4(u1

i0
− βi0)(x0, t0) < 0 and

∂(u1
i0
−βi0 )

∂t (x0, t0) = 0. Since
Li0 is strictly elliptic, we have

Li0(u
1
i0 − βi0)(x0, t0) < 0. (3.17)

On the other hand, (3.16) implies that at the maximum point (x0, t0), Li0(u
1
i0
−

βi0)(x0, t0) ≥ 0, a contradiction with (3.17).
In the general induction step, given α ≤ un−1 ≤ un ≤ β, we can use a similar

argument to show that α ≤ un ≤ un+1 ≤ β. First, we claim that un ≤ un+1. If
this is not true, there exists an index 1 ≤ i0 ≤ m and a point (x0, t0) ∈ U × (0, T̃ )
such that

Li0(u
n
i0 − un+1

i0
)(x0, t0) < 0. (3.18)

On the other hand, from the way the sequence is defined in (3.12) and the fact that,
Gi is non-increasing with respect to ui for each 1 ≤ i ≤ m and qij ≥ 0 for i 6= j, we
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have

Liu
n+1
i − ∂un+1

i

∂t
= Gi(t, un

i )−
∑
j 6=i

qiju
n
j ≤ Gi(t, un−1

i )−
∑
j 6=i

qiju
n−1
j = Liu

n
i −

∂un
i

∂t
.

(3.19)
It follows that at the maximum point (x0, t0), Li0(u

n
i0
− un+1

i0
)(x0, t0) ≥ 0, a con-

tradiction with (3.18). In a similar way, we can show that un+1 ≤ β.
We now define:

u(x, t) = lim
n→∞

un(x, t), (3.20)

or componentwise,

ui(x, t) = lim
n→∞

un
i (x, t), ∀(x, t) ∈ U × [0, T̃ ], i = 1, . . . m. (3.21)

Since un ≤ β and β ∈ Lp(V ), by the Lebesgue’s dominated convergence theorem,
we obtain that {un

i }∞n=1 is a convergent sequence, therefore a Cauchy sequence in
the complete space Lp(V ) for each i = 1, . . . m. Using the results in [8, Chapter 7],
the W 2,1

p -norm of the difference un
i − um

i can be controlled by its Lp-norm and the
Lp-norm of its image under the operator Li − ∂

∂t . Using these results, there exists
a constant C > 0 such that

‖un
i − um

i ‖W 2,1
p (V )

= ‖D2(un
i − um

i )‖Lp(V ) + ‖(un
i − um

i )t‖Lp(V )

≤ C
(
‖Li(un

i − um
i )− ∂(un

i − um
i )

∂t
‖Lp(V ) + ‖un

i − um
i ‖Lp(V )

)
.

(3.22)

By construction,

Li(un
i −um

i )−∂(un
i − um

i )
∂t

= Gi(·, un−1
i )−Gi(·, um−1

i )−
∑
j 6=i

qij(un−1
j −um−1

j ). (3.23)

Since Gi is a completely continuous operator, there is a constant C1 > 0 such that,

‖Gi(·, un−1
i )− Gi(·, um−1

i )−
∑
j 6=i

qij(un−1
j − um−1

j )‖Lp(V )

≤ C1

m∑
j=1

‖un−1
j − um−1

j ‖Lp(V ).

(3.24)

Combining (3.22), (3.23), (3.24), it follows that {un
i }∞n=1 is a Cauchy sequence

in W 2,1
p (V ) for each i = 1, . . . m. Hence un

i → ui in the W 2,1
p -norm, and thus

u = {ui, 1 ≤ i ≤ m} is a strong solution of the problem (3.10).
Now suppose the condition on Gi(t, ui) is that for each 1 ≤ i ≤ m, there exists a

continuous and increasing function fi such that Gi(t, ui)− fi(ui) is non-increasing
with respect to ui. Starting with ũ0 = 0, we define recursively a sequence {ũn, n =
0, 1, . . . } such that ũn+1 = {ũn+1

i ∈ W 2,1
p (V ), 1 ≤ i ≤ m} is the unique solution of

the problem

Liũ
n+1
i − ∂ũn+1

i

∂t
− fi(ũn+1

i ) = Gi(t, ũn
i )− fi(ũn

i )−
∑
j 6=i

qij ũ
n
j in U × (0, T̃ )

ũn+1
i (x, 0) = ui,0(x) on U × {0}

ũn+1
i (x, t) = ϕU,i(x, t) on ∂U × (0, T̃ )

(3.25)
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for i = 1, . . . ,m. The same arguments as before may be repeated almost verbatim
to show that

0 ≤ ũn ≤ ũn+1 ≤ β in U × [0, T̃ ], ∀n ∈ N. (3.26)

This will imply that, {ũn
i }∞n=1 is a Cauchy sequence in W 2,1

p (V ) for each i = 1, . . . m.
If we denote with ũi = limn→∞ ũn

i . Then ũ = {ũi, 1 ≤ i ≤ m} is a strong solution
of problem (3.10). Note that the function f is continuous and thus the solution of
the modified problem (3.25) also solves the original system. �

Finally, all that remains is to extend the solution to the original unbounded
domain.

Proof of Theorem 3.2. We first approximate the unbounded domain Ω by a non-
decreasing sequence (ΩN )N∈N of bounded smooth sub-domains of Ω, which can
be chosen in such a way that ∂Ω is also the union of the non-decreasing sequence
∂ΩN ∩ ∂Ω.

In view of Lemma 3.4, we define uN = {uN
i , 1 ≤ i ≤ m} as a solution of the

problem

Liui −
∂ui

∂t
= Gi(t, ui)−

∑
j 6=i

qijuj in ΩN × (0, T − 1
N

)

ui(x, 0) = ui,0(x) on ΩN × {0}

ui(x, t) = hi(x, t) on ∂ΩN × (0, T − 1
N

)

(3.27)

for i = 1, . . . ,m, such that 0 = α ≤ uN ≤ β in ΩN × (0, T − 1
N ). Define VN =

ΩN × (0, T − 1
N ) and choose p > d. For M > N , we have:

‖D2(uM
i )‖Lp(VN ) + ‖(uM

i )t‖Lp(VN )

≤ C1

(
‖Liu

M
i − ∂uM

i

∂t
‖Lp(VN ) + ‖uM

i ‖Lp(VN )

)
≤ C1

(
‖Gi(t, uM

i )−
∑
j 6=i

qiju
M
j ‖Lp(VN ) + ‖β‖Lp(VN )

)
≤ C,

(3.28)

for some constant C depending only on N .
By Morrey embedding theorem, W 2,1

p (VN ) ↪→ C(V N ) (see e. g. [1]), there exists
a subsequence that converges uniformly on V N .

Now, we apply the well known Cantor diagonal argument: for N = 1, we extract
a subsequence of uM

i |Ω1×[0,T−1] (still denoted {uM
i } for notational simplicity) that

converges uniformly to some function ui1 over Ω1 × [0, T − 1]. Next, we extract
a subsequence of uM

i |Ω2×[0,T− 1
2 ] for M ≥ 2 (still denoted {uM

i }) that converges

uniformly to some function ui2 over Ω2× [0, T− 1
2 ], and so on. As the families {ΩN}

and {∂ΩN ∩∂Ω} are non-decreasing, it is clear that uiN (x, 0) = uiN (x) for x ∈ ΩN ,
and that uiN (x, t) = h(x, t) for x ∈ ∂Ω ∩ ∂ΩN and t ∈ (0, T − 1

N ). Moreover, as
ui(N+1) is constructed as the limit of a subsequence of uM

i |ΩN+1×[0,T− 1
N+1 ], which

converges uniformly to some function uiN over ΩN × [0, T − 1
N ], it follows that

ui(N+1)|ΩN×[0,T− 1
N ] = uiN for every N .

Thus, the diagonal subsequence (still denoted {uM
i }) converges uniformly over

compact subsets of Ω × (0, T ) to the function ui defined as ui = uiN over ΩN ×
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[0, T − 1
N ]. For V = U × (0, T̃ ), U ⊂ Ω and T̃ < T , taking M,N ≥ NV for some

NV large enough we have that

‖uM
i − uN

i ‖W 2,1
p (V )

= ‖D2(uM
i − uN

i )‖Lp(V ) + ‖(uM
i − uN

i )t‖Lp(V )

≤ C
(
‖Li(uM

i − uN
i )− ∂(uM

i − uN
i )

∂t
‖Lp(V ) + ‖uM

i − uN
i ‖Lp(V )

)
.

(3.29)

By construction,

Li(uM
i − uN

i )− ∂(uM
i − uN

i )
∂t

= Gi(·, uM−1
i )− Gi(·, uN−1

i )−
∑
j 6=i

qij(uM−1
j − uN−1

j ).

(3.30)
As in the proof of Lemma 3.4, since Gi is continuous, α ≤ uN ≤ β, using the
Lebesgue’s dominated convergence theorem, it follows that {uN

i } is a Cauchy se-
quence in W 2,1

p (V ) for each i = 1, . . . m. Hence uN
i → ui in the W 2,1

p (V )-norm, and
then u = {ui, 1 ≤ i ≤ m} is a strong solution in V . It follows that u satisfies the
equation on Ω× (0, T ). Furthermore, it is clear that ui(x, 0) = ui,0(x). For M > N
we have that uM

i (x, t) = uN
i (x, t) = hi(x, t) for x ∈ ∂ΩN ∩ ∂Ω, t ∈ (0, T − 1

N ). It
then follows that u satisfies the boundary conditions ui(x, t) = hi(x, t), 1 ≤ i ≤ m
on ∂Ω× [0, T ). This completes the proof. �

4. Conclusion

In this paper we provided an existence proof of the solution of a system of PIDE’s
coupled in a very specific way. This coupling type arises in regime-switching models
when the assets are all changing their stochastic dynamics according to the same
continuous-time Markov chain αt with intensity matrix Q = (qij)m×m. The proof of
our main result, Theorem 3.2, uses a construction that may be used in a numerical
scheme implementing a PDE solver.

Theorem 3.2 is directly applicable to our motivating system (2.4), noticing that in
this case Gi(t, u) = −λi

∫
ui(Sy, t)g(y)dy is a non-increasing continuous operator in

ui and that α = {αi(S, t) = 0, 1 ≤ i ≤ m} is a lower solution of the option problem
since the boundary conditions ui,0 and hi are nonnegative functions (represent the
monetary value of the option on the boundaries). The upper solution also exists in
these cases but its specific form depends on the jump distribution g(y) and needs
to be derived in each case. Note that the construction in Theorem 3.2 does not use
the upper solution at all but its existence guarantees the convergence of the final
solution. For specific examples of upper solutions as depending on the distribution
g(y) we refer to [4] and [5].

We want to add a remark about the general nature of Theorem 3.2. The result
is applicable whenever the jump-diffusion process and the regime switching may
be thought of as Markovian. In particular, a simple generalization is to make the
distribution of jumps dependent on the state of the regime as in gαt(·). This is
directly solvable with the theory presented. As mentioned in the paper, options
written on a basket of stocks which all follow different jump-diffusions but they
are all dependent on the same regime switching process αt also solve a system of
PIDE’s of the type analyzed in Theorem 3.2. Finally, the case when the assets are
characterized using different switching regimes (correlated) is an example of a more
complex case worthy of further investigation.
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