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PROPERTIES OF AN EQUATION FOR NEURAL FIELDS IN A
BOUNDED DOMAIN

SEVERINO HORÁCIO DA SILVA

Abstract. In this work we study the global dynamics of an evolution equation
for neural fields, where the flow generated by this equation in the phase space
L2(S1), is C1. Furthermore we exhibit a continuous Lyapunov functional and
use it for proving that this flow has the gradient property.

1. Introduction

We consider the non local evolution equation
∂u(x, t)

∂t
= −u(x, t) + J ∗ (f ◦ u)(x, t) + h, h > 0, (1.1)

where u(x, t) is a real-valued function on , J ∈ C1(R) is a non negative even function
supported in the interval [−1, 1], f is a non negative nondecreasing function and h
is a positive constant. The symbol ∗ above denotes convolution product; that is,
(J ∗ v)(x) =

∫
R J(x− y)v(y)dy.

Equation (1.1) was derived by Wilson and Cowan [26] for modeling neuronal
activity, and arise through a limiting argument from a discrete synaptically-coupled
network of excitatory and inhibitory neurons, [8]. Here the function u(x, t) denotes
the mean membrane potential of a patch of tissue located at position x ∈ (−∞,∞)
at time t ≥ 0. The connection function J(x) determines the coupling between the
elements at position x and position y. The function f(u) gives the neural firing
rate, or average rate at which spikes are generated, corresponding to an activity
level u. The parameter h denotes a constant external stimulus applied uniformly
to the entire neural field. Let S(x, t) = f(u(x, t)) be the firing rate of a neuron at
position x at time t, we say that the neurons at a point x is active if S(x, t) > 0.

In the literature, there are several works dedicated to the analysis of this model;
see [1, 5, 7, 9, 15, 16, 17, 21, 22, 23, 24]. Most of these works concern with the
existence and stability of characteristic solutions, such as localized excitation [1,
15, 17, 21] or traveling front [5, 7, 9]. Although there are some works on the global
dynamics of this model [16, 22, 23, 24], it has not been fully analyzed; for example,
existence of one continuous Lyapunov functional defined in the whole phase space,

2000 Mathematics Subject Classification. 45J05, 45M05, 37B25.
Key words and phrases. Well-posedness; smooth orbit; gradient flow.
c©2012 Texas State University - San Marcos.
Submitted March 28, 2011. Published March 16, 2012.
Partially supported by grants Casadinho 620150/2008 and INCTMat 5733523/2008-8
from CNPq-Brazil.

1



2 S. H. DA SILVA EJDE-2012/42

property of smoothness of the flow and lower simicontinuity of global attractors are
not known.

We consider additional conditions on f and J which will be used as hypotheses
in our results.

(H1) f ∈ C1(R) and f ′ locally Lipschitz and for some positive constant k1,

0 < f ′(r) < k1, ∀ r ∈ R . (1.2)

(H2) f is a nondecreassing function taking value between 0 and Smax > 0 and
satisfying, for 0 ≤ s ≤ Smax,∣∣ ∫ s

0

f−1(r)dr
∣∣ < L < ∞.

(H3) J ∈ C1(R) and satisfies k1‖J‖L1 < 1.

From (H1) it follows that

|f(x)− f(y)| ≤ k1|x− y|, ∀x, y ∈ R, (1.3)

and, in particular, there exists constant k2 ≥ 0 such that

|f(x)| ≤ k1|x|+ k2. (1.4)

This article is organized as follows. In Section 2, following the techniques in
[3, 18, 19], we repeated the process in [24] to formulate the Cauchy problem for
(1.1) in L2(S1), and to check that, in this space under hypothesis (H1), the Cauchy
problem for (1.1) is well posed with globally defined solutions. In Section 3, under
hypothesis (H1) we prove that the flow generated by (1.1), in L2(S1), is of class C1.
For this, we apply one classic result from [20]. In Section 4 motivated by energy
functionals from [2, 10, 11, 14, 16, 27], under hypotheses (H1) and (H2), we exhibit a
continuous Lyapunov functional for the flow of (1.1), and use it to prove that, under
hypotheses (H1)–(H3), the flow is gradient in the sense of [12]. Finally, in Section
5, we illustrate our results with a concrete example, where f(x) = (1 + e−x)−1 and
J(x) = e−1/(1−x2), if |x| < 1 and J(x) = 0 if |x| ≥ 1.

2. Well posedness in L2(S1)

In this section we use the same the technique as in [3, 18, 19] to obtain the
formulation given in [24]. We repeat this technique, only to facilitate the readers
work.

The Cauchy problem for (1.1) is well posed in the space of continuous bounded
functions, Cb(R), with the supremum norm, since the function given by the right
hand side of (1.1) is uniformly Lipschitz in this space. It is an easy consequence of
the uniqueness theorem that the subspace P2τ of 2τ periodic functions is invariant.

We considerer here equation (1.1) restricted to P2τ , τ > 1. As we will see below,
this leads naturally to the consideration of a flow in L2(S1), where S1 denotes the
unit sphere.

Now, if τ > 1 is a given positive number, we define Jτ as the 2τ periodic
extension of the restriction of J to interval [−τ, τ ]. It is then easy to show that, if
u ∈ P2τ , then

(J ∗ u)(x) =
∫ τ

−τ

Jτ (x− y)u(y)dy. (2.1)
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In view of (2.1), equation (1.1), restricted to P2τ , with τ > 1, can be written as

∂m(x, t)
∂t

= −m(x, t) +
∫ τ

−τ

Jτ (x− y)f(m(y, t))dy + h.

Define ϕ : R → S1 by
ϕ(x) = eiπx/τ

and, for u ∈ P2τ , v : S1 → R by

v(ϕ(x)) = u(x).

In particular, we write J̃(ϕ(x)) = Jτ (x). Then we have the following result:

Proposition 2.1 ([24]). The function u(x, t) is a 2τ periodic solution of (1.1) if
and only if v(w, t) = u(ϕ−1(w), t) is a solution of

∂m(w, t)
∂t

= −m(w, t) + J̃ ∗ (f ◦m)(w, t) + h (2.2)

where, (∗) denotes convolution in S1; that is,

(J̃ ∗m)(w) =
∫

S1
J̃(w · z−1)m(z)dz

and dz = τ
π dθ, where dθ denote integration with respect to arc length.

From now on we will write J instead of J̃ for simplicity.

Remark 2.2. Using the triangle inequality, Young’s inequality and (1.3), it follows
that the function F given by right hand side of (2.2),

F (u) = −u + J ∗ (f ◦ u) + h,

is uniformly Lipschitz in L2(S1). Hence (see [4] and [6]) the Cauchy problem for
(2.2) is well posed in this space. More precisely, we have that (2.2) has a unique
solution for any initial condition in L2(S1), which is globally defined.

3. Smoothness of the orbits

In this section, we prove that (2.2) generates one flow C1 with respect to initial
conditions.

Proposition 3.1. Assume that (H1) holds. Then the function

F (u) = −u + J ∗ (f ◦ u) + h

is continuously Fréchet differentiable in L2(S1) with derivative given by

F ′(u)v = −v + J ∗ (f ′(u))v.

Proof. By a simple computation, using (H1), it follows that the Gateaux’s derivative
of F is given by

DF (u)v = −v + J ∗ (f ′(u)v).
Now, note that for each u ∈ L2(S1), due to linearity of the convolution, DF (u) is
a linear operator. Furthermore,

‖DF (u)v‖L2 ≤ ‖v‖L2 + ‖J ∗ f ′(u)v‖L2 ≤ ‖v‖L2 + ‖J‖L1‖f ′(u)v‖L2 .

But, using (1.2), we have
‖f ′(u)v‖L2 ≤ k1‖v‖L2 .
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Hence
‖DF (u)v‖L2 ≤ (1 + k1‖J‖L1)‖v‖L2 .

Furthermore, DF is a continuous operator. In fact, given v ∈ L2(S1), we have

‖DF (u1)v −DF (u2)v‖L2 = ‖J ∗ [(f ′ ◦ u1)v]− J ∗ [(f ′ ◦ u2)]v‖L2 .

Since

|(J ∗ f ′(u1)v)(w)− (J ∗ f ′(u2)v)(w)|
= |J ∗ [f ′(u1)v − f ′(u2)v](w)|

≤
∫

S1
|J(wz−1)[f ′(u1(z))− f ′(u2(z))]v(z)|dz

≤ ‖J‖∞
∫

S1
|f ′(u1(z))− f ′(u2(z))||v(z)|dz.

Using Hölder’s inequality [4], we obtain

‖DF (u1)v −DF (u2)v‖L2

≤ ‖J‖∞
( ∫

S1
|f ′(u1(z))− f ′(u2(z))|2dz

)1/2( ∫
S1
|v(z)|2dz

)1/2

= ‖J‖∞‖f ′ ◦ u1 − f ′ ◦ u2‖L2‖v‖L2 .

Thus

‖DF (u1)v −DF (u2)v‖2
L2 ≤

√
2τ‖J‖2

∞‖f ′ ◦ u1 − f ′ ◦ u2‖2
L2‖v‖2

L2 .

Keeping u1 ∈ L2(S1) fixed and letting u2 → u1 in L2(S1) it follows that u2(w) →
u1(w) almost everywhere in S1. From (H1) follows that, there exists M > 0 such
that

|f ′(u2(w))− f ′(u1(w))| ≤ M |u2(w)− u1(w)|, almost everywhere.

Then

‖f ′ ◦ u1 − f ′ ◦ u2‖2
L2 =

∫
S1
|f ′(u1(w))− f ′(u2(w))|2dw

≤
∫

S1
M2|u1(w)− u2(w)|2dw

= M2‖u2 − u1‖2
L2 .

Hence
‖DF (u1)v −DF (u2)v‖2

L2 ≤
√

2τ‖J‖2
∞M2‖u1 − u2‖2

L2‖v‖2
L2 .

Therefore, from Proposition 3.2 below it follows that F is Fréchet differentiable
with continuous derivative in L2(S1). �

Proposition 3.2 ([20]). Let X and Y be normed linear spaces, F : X → Y a map
and suppose that the Gateaux derivative of F , DF : X → L(X, Y ) exists and is
continuous at x ∈ X. Then the Fréchet derivative F ′ of F exists and is continuous
at x.

Remark 3.3. If u(w, t) is a solution of (2.2) with initial condition u0 then by the
variation of constants formula

u(w, t) = e−tu0 +
∫ t

0

e−(t−s)[J ∗ (f ◦ u)(w, s) + h]ds.
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Since the right-hand side of (2.2) is a C1 function, the flow generated by (2.2),
which is given by T (t)u0 = u(w, t) is C1 with respect to initial conditions (see [13]).

4. Gradient property

In this section, we exhibit a continuous Lyapunov functional for the flow of (2.2),
which is well defined in the whole space L2(S1), and as used it to prove that this
flow has the gradient property, in the sense of [12].

We recall that a Cr-semigroup, T (t), is gradient if each bounded positive orbit is
precompact and there exists a continuous Lyapunov Functional for T (t) (see [12]).

Remark 4.1. As shown in [24], under hypotheses (H1) and (H3), there exists a
global attractor, A, for the flow T (t) generated by (2.2), in L2(S1), which is given

by ω-limit set of the ball of radius 2
√

2τ(k2‖J‖L1+h)

1−k1‖J‖L1
. This implies that, for any

u0 ∈ L2(S1), the positive orbit by u0

γ+(u0) = {T (t)u0, t ≥ 0}
is precompact.

Motivated by energy functionals from [2, 11], [14, 16, 27] (see also [10] for similar
functional), we define the functional F : L2(S1) → R by

F (u) =
∫

S1

[
− 1

2
S(w)

∫
S1

J(wz−1)S(z)dz +
∫ S(w)

0

f−1(r)dr − hS(w)
]
dw, (4.1)

where S(w) = f(u(w)).

Remark 4.2. From hypotheses (H1) and (H2), follows that the functional given
in (4.1) is defined in the whole space L2(S1) and it is lower bounded.

Theorem 4.3. Assume (H1) holds. Then the functional given in (4.1) is continu-
ous in the topology of L2(S1).

Proof. Let (un) be a sequence converging to u in the norm of L2(S1). We can
extract a subsequence unk

, such that, unk
(w) → u(w) a.e. in S1. Now, from (H1),

it follows that f is continuous, then Snk
(w) = f(unk

(w)) → f(u(w)) = S(u(w))
a.e. Thus

lim
k→∞

∫ Snk
(w)

0

f−1(r)dr =
∫ S(w)

0

f−1(r)dr.

And from Lebesgue’s Dominated Convergence Theorem follows that

lim
k→∞

∫
S1

J(wz−1)Snk
(z)dz =

∫
S1

J(wz−1)S(z)dz,

lim
k→∞

∫
S1

hSnk
(w)dw =

∫
S1

hS(w)dw,

lim
k→∞

∫
S1

[
− 1

2
Snk

(w)
∫

S1
J(wz−1)Snk

(z)dz
]

=
∫

S1

[
− 1

2
S(w)

∫
S1

J(wz−1)S(z)dz
]
,

Thus F (unk
) converges to F (u), as k →∞. Therefore F (un) is a sequence such that

every subsequence has a subsequence that converges to F (u). Hence F (un) → F (u),
as n →∞. �
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Theorem 4.4. Suppose that (H1)-(H2) hold. Let u(·, t) be a solutions of (2.2).
Then F (u(·, t)) is differentiable with respect to t and

dF

dt
= −

∫
S1

[−u(w, t) + J ∗ (f ◦ u)(w, t) + h]2f ′(u(w, t))dw ≤ 0.

Proof. Let

ϕ(w, s) = −1
2
S(w, s)

∫
S1

J(wz−1)S(z, s)dz +
∫ S(w,s)

0

f−1(r)dr − hS(w, s) .

From (H1) and (H2) it follows that ‖∂ϕ(·,s)
∂s ‖L1 < ∞, for all s ∈ R+. Hence, deriving

under the integration sign, we obtain

d

dt
F (u(·, t))

=
∫

S1
[−1

2
∂S(w, t)

∂t

∫
S1

J(wz−1)S(z, t)dz − 1
2
S(w, t)

∫
S1

J(wz−1)
∂S(z, t)

∂t
dz

+ f−1(S(w, t)))
∂S(w, t)

∂t
− h

∂S(w, t)
∂t

]dw

= −1
2

∫
S1

∫
S1

J(wz−1)S(z, t)
∂S(w, t)

∂t
dzdw

− 1
2

∫
S1

∫
S1

J(wz−1)S(w, t)
∂S(z, t)

∂t
dzdw +

∫
S1

[u(w, t)− h]
∂S(w, t)

∂t
dw.

Since

1
2

∫
S1

∫
S1

J(wz−1)S(z, t)
∂S(w, t)

∂t
dzdw =

1
2

∫
S1

∫
S1

J(wz−1)S(w, t)
∂S(z, t)

∂t
dzdw,

it follows that
d

dt
F (u(·, t))

= −
∫

S1

∫
S1

J(wz−1)S(z, t)
∂S(w, t)

∂t
dzdw +

∫
S1

[u(w, t)− h]
∂S(w, t)

∂t
dw

= −
∫

S1
[−u(w, t) +

∫
S1

J(wz−1)S(z, t)dz + h]
∂S(w, t)

∂t
dw

= −
∫

S1
[−u(w, t) + J ∗ (f ◦ u)(w, t) + h]

∂f(u(w, t))
∂t

dw

= −
∫

S1
[−u(w, t) + J ∗ (f ◦ u)(w, t) + h]f ′(u(w, t))

∂u(w, t)
∂t

dw

= −
∫

S1
[−u(w, t) + J ∗ (f ◦ u)(w, t) + h]2f ′(u(w, t))dw.

Using (H1) the result follows. �

Remark 4.5. From Theorem 4.4 it follows that, if F (T (t)u) = F (u) for t ∈ R,
then u is an equilibrium point for T (t).

Proposition 4.6. Assume (H1)-(H3). Then the flow generated by equation (2.2)
is gradient.
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Proof. The precompacity of the orbits follows from Remark 4.1. From Remark 4.2,
Theorem 4.3, Theorem 4.4 and Remark 4.5 follows that the functional given in (4.1)
is a continuous Lyapunov functional. �

Remark 4.7. As a consequence of the Proposition 4.6, we have that the global
attractor given in [24] coincides with the unstable set of the equilibria [12, Theorem
3.8.5]; that is,

A = Wu(E),

where E = {u ∈ L2(S1) : u(w) = J ∗ (f ◦ u)(w) + h}.

5. A concrete example

In this section we illustrate the results of previous sections to the particular case
of (1.1) where f and J are given by f(x) = (1 + e−x)−1 and J(x) = e−1/(1−x2), if
|x| < 1 and J(x) = 0 if |x| ≥ 1. Considering Jτ as the 2τ periodic extension of the
restriction of J to interval [−τ, τ ], τ > 1, we can rewrite (1.1), in the space P2τ , as

∂u(x, t)
∂t

= −u(x, t) +
∫ τ

−τ

e
−1

1−(x−y)2 (1 + e−u(y))−1dy + h. (5.1)

Defining ϕ : R → S1 by ϕ(x) = ei π
τ x and, for u ∈ P2τ , v : S1 → R by v(ϕ(x)) = u(x)

and writing J̃(ϕ(x)) = Jτ (x), follows from Proposition 2.1 that equation (5.1) is
equivalent to

∂u(w, t)
∂t

= −u(w, t) +
∫

S1
J̃(wz−1)(1 + e−u(z))−1dz + h, (5.2)

and dz = τ
π dθ, where dθ denotes integration with respect to arc length.

The functions f and J satisfy (H1)–(H3) with k1 = Smax = 1, L = ln 2 and
k2 = 1

2 in (1.4). In fact,
(I) Note that f ′(x) = (1 + e−x)−2e−x > 0. Then, since 1 < (1 + e−x)2 ≤ 4, for

all x ∈ R, it follows that
1
4
≤ (1 + e−x)−2 < 1.

Furthermore, since f ′′(x) = 2(1+e−x)−3e−2x−(1+e−x)−2e−x, we have |f ′′(x)| < 3,
∀ x ∈ R. Hence f ′ is locally Lipschitz.

(II) It is easy see that 0 < |(1 + e−x)−1| < 1 and f−1(x) = − ln( 1−x
x ). Thus by

a direct computation we obtain that, for 0 ≤ s ≤ 1,∣∣ ∫ s

0

− ln(
1− x

x
)dx

∣∣ ≤ ln 2.

(III) Since 0 ≤ J(x) ≤ e−1 follows that, for k1 = 1,

k1‖J‖L1 =
∫ 1

−1

e
− 1

1−x2 dx ≤ 1
e

∫ 1

−1

dx =
2
e

< 1.

Moreover, from (I) it follows that

|f(x)− f(y)| = |(1 + e−x)−1 − (1 + e−y)−1| ≤ |x− y|.

In particular, since f(0) = 1/2, we have

|f(x)| ≤ |x|+ 1
2
, ∀x ∈ R.
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Therefore all results of Sections 3 and 4 (in particular Propositions 3.1 and 4.6) are
valid for the flow generated by equation (5.2).
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