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EXISTENCE AND UNIQUENESS OF STATIONARY SOLUTIONS
TO BIOCONVECTIVE FLOW EQUATIONS

JOSÉ LUIZ BOLDRINI, MARKO ANTONIO ROJAS-MEDAR,
MARIA DRINA ROJAS-MEDAR

Abstract. We analyze a system of nonlinear partial differential equations
modeling the stationary flow induced by the upward swimming of certain mi-

croorganisms in a fluid. We consider the realistic case in which the effective

viscosity of the fluid depends on the concentration of such microorganisms.
Under certain conditions, we prove the existence and uniqueness of solutions

for such generalized bioconvective flow equations

1. Introduction

In this work we perform a mathematical analysis of the system of partial differ-
ential equations

−2 div(ν(m)D(u)) + u · ∇u +∇q = −m · χ+ f in Ω,
div u = 0 in Ω,

−θ∆m+ u · ∇m+ U
∂m

∂x3
= 0 in Ω,

(1.1)

subject to the boundary and total amount conditions

u = 0 on S,

u · n = 0 on Γ,

ν(m)[D(u)n− n · (D(u)n)n] = b1 on Γ,

θ
∂m

∂n
− Un3m = 0 on ∂Ω,∫

Ω

mdx = α.

(1.2)

This system is a mathematical model for the stationary flow induced by the
upward swimming of certain microorganisms in a fluid in the realistic situation
that the concentration of such microorganisms may affect the effective viscosity of
the fluid. The last condition in (1.2) fix the total mass of microorganism as α,
which is a given positive constant.
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The flow occurs in a set Ω ⊂ R3, which is assumed to be a bounded domain with
smooth boundary ∂Ω; S and Γ are disjoint open subsets of ∂Ω such that ∂Ω = S∪Γ,
and the superficial measure of S is strictly positive.

The unknowns in the problem are the fluid velocity u, its associated pressure p
and the concentration of microorganisms m. In the previous equations, the follow-
ing are given: the fluid viscosity function ν(·) > 0; the constant rate of diffusion
of microorganisms θ > 0; the constant vector χ = (0, 0, 1)t, meaning that the co-
ordinate system is placed such that the gravitational force acts along the vertical.
Other given data are the following: f , the external force field; U , the average up-
ward speed of swimming of the microorganisms; α, a positive constant given total
mass of microorganisms.

As usual, the symbols ∇,∆ and div denote respectively the gradient, Laplacian
and divergence operators; u·∇u denotes the convection operator, whose component
are i-th in cartesian coordinates is given by (u ·∇u)i =

∑3
j=1 ujui,xj

. Also, D(u) =
(∇u + (∇u)t)/2 is the symmetric part of the deformation rate tensor.

Bioconvective flows have been studied by many autors along the years; here we
just mention the book by Levandowsky, Childress, Hunter and Spiegel [5], and the
articles by Moribe [8] and Kan-On, Narukawa and Teramoto [4]; the interested
reader can consult also the references mentioned in these works. Next, we briefly
comment on previously published articles that are directly related to the present
one.

Kan-on, Narukawa and Teramoto in [4] analyzed the classical bioconvective equa-
tions (i.e., the case of constant fluid viscosity) with Dirichlet boundary conditions
for the fluid velocity. By using fixed point arguments, they proved the existence of
generalized solutions; with the help of classical regularity results, they also prove
the existence of strong solutions in the case that of small enough upward swimming
speed U .

On the other hand, Lorca and Boldrini in [6] obtained results on existence and
uniqueness of weak solutions for the generalized Boussinesq equations, which are
equations governing thermally driven flows in the case that the viscosity and ther-
mal conductivity coefficients may depend on the temperature. They also considered
Dirichlet boundary conditions for the velocity and used Galerkin approximations
and fixed point arguments, together with estimates for the ”pressure” associated
to a Helmholtz decomposition of a L2-field, to prove their results.

The present work generalizes the results of Kan-on, Narukawa and Teramoto
in [4] to the generalized bioconvective equations, that is, to the case where the
fluid viscosity may depend on the concentration of microorganisms. As in [4], we
prove results on existence of weak and strong solutions of problem when U is small;
we also give a result on uniqueness of weak solutions. For the proofs, we have
to adapt some of the techniques presented in Lorca and Boldrini [6] to the case
of our boundary conditions, including the estimates for the pressure associated to
a Helmholtz decomposition. We remark that one major difficulty to obtain more
regular solutions of our system of equations, as well as in the case of the generalized
Boussinesq equations, is to estimate the nonlinear terms; we are able to do this
with the help of the previously mentioned estimates for the pressure associated to
a Helmholtz decomposition.
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We finally observe that we are also analyzing the associated evolution problem;
the results of such analysis will appear elsewhere; we also remark that Climent-
Ezquerra et al. recently proved in [3] the existence of time reproductive solutions
for this same evolution problem.

2. Preliminaries

Let Ω ⊆ R3 be a bounded domain of class C3. We consider the Lebesgue spaces
Lp(Ω), 1 ≤ p ≤ ∞, with the usual norms |u|p; for simplicity, we just denote
| · |2 = | · | and the usual inner product in L2(Ω) by (·, ·). For m ≥ 0 and 1 ≤ p <∞,
we consider the usual Sobolev spaces Wm,p(Ω) = {u ∈ Lp(Ω);Dαu ∈ Lp(Ω),∀|α| ≤
m}, with the norm ‖u‖m,p = [

∑
|α|≤m ‖Dαu(t)‖pLp(Ω)]

1/p; when p = 2, we denote,

as usual, Wm,p(Ω) = Hm(Ω). Also, W 1− 1
p ,p(∂Ω) is the space of traces on ∂Ω of

functions in W 1,p(Ω), equipped with the norm |γ|
W

1− 1
p

,p(∂Ω)
= inf{‖v‖Wk,p(Ω); v ∈

W 1,p(Ω), v = γ on ∂Ω}; when p = 2, we denote W 1/2,2(∂Ω) = H1/2(∂Ω). For
details and properties of such spaces, see Adams [1].

We will also need the following classical results.

Lemma 2.1 (Poincaré-Friedrichs inequality). Let Σ ⊆ ∂Ω a portion of boundary
with strictly positive superficial measure; then there exists a positive constant CP
depending only on Ω and Σ such that |u| ≤ CP |∇u|, for all u ∈ H1(Ω) such that
u|Σ = 0.

Lemma 2.2. There exists a constant CΩ, depending only on Ω, such that |φ| ≤
CΩ|∇φ|, for all φ ∈ B = H1(Ω) ∩ Y .

To treat the unknown velocity, we will need the following functional spaces:
being S and Γ as described in the Introduction, we define the following functional
spaces

Ḣ(Ω) = {u ∈ (C∞(Ω))3 : u|S = 0, u · n|Γ = 0},

H(Ω) closure of Ḣ(Ω) with respect to norm ‖ · ‖H(Ω),

where

‖u‖H(Ω) =
[ ∫

Ω

∇u : ∇udx
]1/2

= [(∇u,∇u)]1/2 = |∇u|. (2.1)

Given u : Ω→ R3 with suitable regularity, the rate of strain tensor is defined as
D(u) = 1

2 (∇u + (∇u)t). Let us also define

(D(u), D(v)) =
∫

Ω

D(u) : D(v)dx =
∫

Ω

3∑
i,j=1

(
∂ui
∂xj

+
∂uj
∂xi

)(
∂vi
∂xj

+
∂vj
∂xi

)dx,

and thus, (D(u), D(u)) =
∫

Ω
D(u) : D(u)dx ≡ |D(u)|2.

We will also need the following results:

Lemma 2.3 (Korn inequality [10, p. 191]). There exists a positive constant c, such
that

‖u‖H(Ω) = |∇u| ≤ c|D(u)|, ∀u ∈ H(Ω).

As a consequence of this lemma, we have the following result.

Lemma 2.4. There exists a positive constant γ such that |u|2 ≤ γ|D(u)|2, for all
u ∈ H(Ω).
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The previous results imply that the norms |∇u| and |D(u)| are equivalent in
H(Ω). Next, we consider C∞0,σ(Ω) = {f ∈ (C∞0 (Ω))3 : div f = 0}, and then we take

X(Ω) = closure of C∞0,σ(Ω) in (L2(Ω))3.

It is well known [11] that

(L2(Ω))3 = X(Ω)⊕G(Ω),

with G(Ω) = {ϕ ∈ (L2(Ω))3, ϕ = ∇q, q ∈ H1(Ω)}.
We will also need the following functional spaces:

J̇(Ω) = {u ∈ Ḣ(Ω),div u = 0},

J0(Ω) = closure of J̇(Ω) in the norm (2.1).

Next, we consider the following applications:

B0 : J0(Ω)× J0(Ω)× J0(Ω)→ R,
B1 : J0(Ω)× (H1(Ω))3 × (H1(Ω))3 → R

given by

B0(u,v,w) = (u · ∇v,w) =
∫

Ω

N∑
i,j=1

uj(x)((∂vi)/(∂xj))(x)wi(x)dx,

B1(u, φ, ψ) = (u · ∇φ, ψ) =
∫

Ω

N∑
j=1

uj(x)((∂φ)/(∂xj))(x)ψ(x)dx.

(2.2)

They are well defined trilinear forms with the following properties:

B0(u,v,w) = −B0(u,w,v), B1(u, φ, ψ) = −B1(u, ψ, φ),

B0(u,v,v) = 0, B1(u, φ, φ) = 0.
(2.3)

Let P be the orthogonal projection from (L2(Ω))3 onto X(Ω). Then, we define
the operator A as the Friedrichs extension of the symmetric operator P∆, with
D(A) = {u ∈ J0(Ω) ∩ (H2(Ω))3;D(u)n− n · (D(u)n)n|Γ = 0}.

The proofs of the following results concerning this operator A can be found in
Rionero and Mulone [9, pp. 478-481].

Lemma 2.5. The Stokes operator A : X(Ω) → X(Ω) defined as the Friedrichs
extension of −P∆, with domain D(A) = {u ∈ J0(Ω) ∩ (H2(Ω))3;D(u)n − n ·
(D(u)n)n|Γ = 0}, is a selfadjoint, positive definite operator with compact inverse.

Thus (see Brezis [2]), A has a sequence {αi}∞i=1 of eigenvalues satisfying 0 <
α1 ≤ α2 ≤ . . . and limi→+∞ αi = +∞, whose associated eigenfunctions {wi}∞i=1

form a complete orthogonal system in X(Ω), J0(Ω) and D(A), with their natural
inner products.

The following result concerning the Helmholtz decomposition is analogous to the
one in Lemma 3.4 of Lorca and Boldrini [7]; its proof can be done similarly as in
[7].

Lemma 2.6. Let v ∈ J0(Ω)∩ (H2(Ω))3 and consider the Helmholtz decomposition
of −∆v:

−∆v = Av +∇q,
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where q ∈ H1(Ω) and
∫

Ω
qdx = 0. Then, there exists a positive constants C > 0

and, for any ε > 0, a associated positive constant Cε, such that

‖q‖1 ≤ C|Av| and |q| ≤ Cε|∇v|+ ε|Av|, ∀v ∈ D(A).

To treat the unknown microorganism concentration, we will need the following
functional spaces:
Y is the closed subspace of L2(Ω) consisting of functions that are orthogonal to

the constants; i.e.,

Y = {f ∈ L2(Ω) :
∫

Ω

f(x)dx = 0}.

We then define
B = H1(Ω) ∩ Y.

Next, let P be the orthogonal projection from L2(Ω) onto Y . As before, an
operator A1 can be defined as the Friedrichs extension of the symmetric operator
P (−θ∆), with domain D(A1) = {ϕ ∈ Y ∩ H2(Ω); θ ∂ϕ∂n − Un3ϕ = 0 on ∂Ω}. The
proofs of the following results, which are similar to the ones for the operator A, can
be found in Kan-On, Narukawa and Teramoto [4, pp. 150-152].

Lemma 2.7. The operator A1 : Y → Y , defined as the Friedrichs extension of
P (−θ∆), with domain D(A1) = {ϕ ∈ Y ∩ H2(Ω); θ ∂ϕ∂n − Un3ϕ = 0 on ∂Ω}, is a
selfadjoint, positive definite operator with compact inverse.

From the definition of A1, it follows that D(A1/2
1 ) = B and (θ−2UCP )1/2|∇ϕ| ≤

|A1/2
1 ϕ| ≤ (θ + 2UCP )1/2|∇ϕ| for all ϕ ∈ B, for this, see again Kan-On, Narukawa

and Teramoto [4, pp. 145],
Operator A1 has a sequence {βi}∞i=1 of eigenvalues satisfying 0 < β1 ≤ β2 ≤

. . . and limi→+∞ βi = +∞, and whose corresponding eigenfunctions {φi} form a
complete orthogonal system in Y , B and D(A1), with their natural inner products;
we assume that it is normalized in Y .

We will also use the following orthogonal projections: for each n, define

Pn : Y →Mn = span{φ1
, φ

2
, . . . , φ

n},

f → Pn(f) =
n∑
`=1

(f, φ
`
)φ
`
,

(2.4)

Standard computations with the fractional powers of A1, using the previous
results, give us the following:

|∇Pnϕ| ≤ |A1/2
1 ϕ| ≤ (θ + 2UCP )1/2|∇ϕ|, ∀ϕ ∈ B, (2.5)

(θ − 2UCP )1/2|∇(ϕ− Pnϕ)| ≤ |A1/2
1 (ϕ− Pnϕ)| ≤ 1

β
1/2
n+1

|A1ϕ|

≤ θ

β
1/2
n+1

|∆ϕ|, ∀ϕ ∈ D(A1).
(2.6)

We will need an inequality similar to the last one, but holding for a larger set
of functions. For this, we consider the following extension of the operator A1:
let Ã1 be the Friedrichs extension of the symmetric operator P (−θ∆), but now
with domain D(A1) = {ϕ ∈ H2(Ω); θ ∂ϕ∂n − Un3ϕ = 0 on ∂Ω}. By observing
that the subspace span{1} is the orthogonal complement of Y in L2(Ω), and in
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particular, L2(Ω) = span{1} ⊕ Y , we have that Ã1 = 0 ⊕ A1; we conclude that
Ã1 is a semipositive selfadjoint operator with eigenvalues {βi}∞i=0, where β0 = 0
and its associated eigenfunction is the constant function 1; the other eigenvalues
are exactly the same ones of A1, with the same eigenfunctions. As before, we
have that |Ã1/2

1 (ϕ − P̃nϕ)| ≤ 1

β
1/2
n+1

|Ã1ϕ| for all ϕ ∈ D(Ã1), where P̃n is now the

L2(Ω)-orthogonal projection on span{1} ⊕Mn. For n ≥ 1, by using the definitions
of fractional powers in terms of the eigenvalues and eigenfunctions, we see that
Ã

1/2
1 (ϕ− P̃nϕ) = A

1/2
1 (ϕ−Pnϕ). Finally, from the previous results, by proceeding

as before, we finally also obtain

(θ − 2UCP )1/2|∇(ϕ− Pnϕ)| ≤ θ

β
1/2
n+1

|∆ϕ|, ∀ϕ ∈ D(Ã1) (2.7)

3. Existence of weak solutions

To analyze our problem, it is convenient to introduce the following change of
variables

m = m− E,
where

E(x) = Cα exp
(U
θ
x3

)
,

and the constant Cα is chosen such that
∫

Ω
E(x)dx = α.

The idea behind this change of variable is the following: since −θ∆E+U ∂E
∂x3

= 0
and θ ∂E∂n − Un3E = 0, we have that E(·) is a particular solution of equation (1.1)
(iii) in the special case of no fluid motion, that is, when u ≡ 0; thus, our intension
to look for solutions in a neighborhood of this special microorganism distribution.

By writing Problem (1.1) - (1.2) in terms of variables u and m, we obtain

−2 div(ν(m+ E)D(u)) + u · ∇u +∇(q +
θ

U
E) = m · χ+ f ,

div u = 0,

−θ∆m+ u · ∇(m+ E) + U
∂m

∂x3
= 0 in Ω.

u = 0 on S,

u · n = 0 on Γ,

ν(m+ E)[D(u)n− u · (D(u)n)n] = b1 on Γ,

θ
∂m

∂n
− Un3m = 0 on ∂Ω,∫

Ω

mdx = 0.

(3.1)

Next, we give the definition of a weak solution of our problem.
Definition. Let f ∈ X(Ω); a pair of functions (u,m) ∈ J0(Ω) × B is called a
weak solution of (3.1) when the following two equalities are satisfied for all (v, φ) ∈
J0(Ω)×B:

2(ν(m+ E)D(u), D(v)) +B0(u,u,v) + (m · χ,v)− 2
∫

Γ

b1vdσ = (f ,v), (3.2)
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θ(∇m,∇φ) +B1(u,m+ E, φ)− U(m,
∂φ

∂x3
) = 0. (3.3)

This variational formulation is obtained, as usual, by working in a formal way.
To give an idea on how to do that, here we remark that it is obtained by using
the following computations done, by simplicity, on the original form of the first
equation. Assume that u,v ∈ Ḣ(Ω) and q ∈ C1; then we have∫

Ω

[−2 div(ν(m)D(u)) +∇q]vdx

= 2
∫

Ω

ν(m)D(u) : ∇vdx− 2
∫
∂Ω

ν(m)D(u)n · vdS +
∫
∂Ω

qn · vdS.

The third term is zero since v ∈ Ḣ(Ω) and thus v|S = 0 and v · n|Γ = 0. Next,
we can split ∇v in its symmetric and antisymmetric parts, and observe that the
symmetric part is exactly D(v); since D(u) is also a symmetric matrix, a standard
computation then gives that we can rewrite the first term as∫

Ω

ν(m)D(u) : ∇vdx =
∫

Ω

ν(m)D(u) : D(v)dx.

On the other hand, by using the tangential and normal components at each point
of the boundary, the second term becomes

− 2
∫
∂Ω

ν(m)D(u) · n vdS

= −2
∫
∂Ω

(ν(m)D(u)n) · n (v · n)dS

− 2
∫
∂Ω

[ν(m)D(u)n− (ν(m)D(u)n) · n)n] · (v − (v · n)n)dS

− 2
∫

Γ

ν(m)[D(u)n− n · (D(u)n)n] · vdS

= −2
∫

Γ

b1 · vdS

were we have used the fact that v ∈ Ḣ(Ω) and the boundary condition on Γ. Thus,∫
Ω

[−2 div(ν(m)D(u)) +∇q]vdx = 2(ν(m)D(u), D(v))− 2
∫

Γ

b1 · vdS.

Analogously, the second equation in the model (already with the previous change
of variable) can be formally treated as∫

Ω

−θ∆mφdx+
∫

Ω

U
∂m

∂x3
φdx

= θ

∫
Ω

∇m∇φdx−
∫
∂Ω

θ
∂m

∂n
φdS − U

∫
Ω

m
∂φ

∂x3
dx+

∫
∂Ω

Un3mφdS.

= θ

∫
Ω

∇m∇φdx− U
∫

Ω

m
∂φ

∂x3
dx .

Then we have the following result.

Theorem 3.1. Let ν be a continuous function satisfying

ν0 = inf{ν(m),m ∈ R} > 0, ν1 = sup{ν(m),m ∈ R} < +∞; (3.4)
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f ∈ X(Ω) and U
θ < (CP )−1, where CP is the Sobolev constant appearing in the

Poincarè-Friedrichs inequality. Then there exists a weak solution of Problem (3.1)
satisfying

|D(u)|2 + |∇m|2 ≤ C(|f |2 + ‖b1‖2H1/2(Γ) + |∇E|2),

with a constant C independent of f , b1 and E.

Proof. We consider the following Schauder bases formed by the eigenfunctions de-
scribed in the previous section: (wj)∞1 for J0(Ω) and (φ

j
)∞1 for B. For each n ∈ N,

we define Wn = span{wj , 1 ≤ j ≤ n} and Mn = span{φ`, 1 ≤ ` ≤ n} and consider
the Galerkin approximations

un =
n∑
j=1

cn,jwj ∈Wn. mn =
n∑
`=1

dn,`φ
` ∈Mn,

satisfying the following approximate problem

2(ν(mn + E)D(un), D(v)) +B0(un,un, v)

+ (mn · χ, v)− 2
∫

Γ

b1vdσ = (f , v),
(3.5)

θ(∇mn,∇φ) +B1(un,mn + E, φ)− U(mn,
∂φ

∂x3
) = 0, (3.6)

for all v ∈Wn and all φ ∈Mn.
Firstly, by assuming the existence of (un,mn) for all n ∈ N (such existence will

be proved later on), we will prove that they indeed converge, along subsequences,
to a solution of our problem. To do this, it will be necessary to obtain estimates
for the gradients of the unknowns.

We set v = un in (3.5) to obtain

2(ν(mn + E)D(un), D(un)) +B0(un,un,un)

+ (mn · χ,un)− 2
∫

Ω

b1undσ = (f ,un).
(3.7)

By observing that B0(un,un,un) = 0 (see (2.3)) and using Hölder inequality to-
gether with (3.4), its follows that

2ν0|D(un)|2 ≤ |(mn · χ,un) + (f ,un) + 2
∫

Ω

b1undσ|

≤ |mn| |un|+ |f | |un|+ 2c(Γ)
(∫

Γ

b2
1dσ
)1/2

|D(un)|.

By the Sobolev embeddings, Korn, Young and Poincarè-Friedrichs inequalities, we
then obtain

ν0|D(un)|2 ≤ 3
4ν0

(C2
pγ|∇mn|2 + γ|f |2 + 4c2(Γ)‖b1‖2H1/2(Γ)). (3.8)

Next, for each n we consider the orthogonal projection Pn defined in (2.4), denote
by |Ω| the Lebesgue measure of Ω, and take φ = mn + Pn(E − α/|Ω|) to get

θ|∇mn|2 + θ(∇mn,∇Pn(E − α/|Ω|)) +B1(un,mn + E,mn

+ Pn(E − α/|Ω|))− U(mn,
∂

∂x3
(mn + Pn(E − α/|Ω|))) = 0.

(3.9)
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Now, we observe that

B1(un,mn + E,mn + Pn(E − α/|Ω|))
= B1(un,mn + E − α/|Ω|,mn + Pn(E − α/|Ω|))
= B1(un,mn + Pn(E − α|/Ω|),mn + Pn(E − α/|Ω|))

+B1(un, E − α|/Ω| − Pn(E − α|/Ω|),mn)

+B1(un, E − α|Ω| − Pn(E − α|/Ω|), Pn(E − α/|Ω|)),

(3.10)

We also remark that, due to the fact that (1, φj) = 0 for all j ≥ 1, that the
gradients of a constant is zero, and that E ∈ D(Ã1), by using (2.7), we obtain

|∇(E − α/|Ω| − Pn(E − α/|Ω|))| = |∇(E − PnE)| ≤ θ

β
1/2
n+1(θ − 2UCP )1/2

|∆E|

(3.11)
Using (3.10) in (3.9), recalling that B1(un,mn + Pn(E − α|/Ω|),mn + Pn(E −
α/|Ω|)) = 0 (see (2.3) ), suitably using Hölder inequality and properties (2.5) and
(3.11) and the fact that z ≤ 1 + z2 for all real z, together with the hypothesis that
θ − UCP > 0, we obtain that

|∇mn|2 ≤ K1

( 1
βn+1

+
1

β
1/2
n+1

)
|∆E||D(un)|+K2|∇E|2, (3.12)

with positive constants K1 and K2 that do not depend on n.
By multiplying (3.12) by 3

2ν0
C2
p , adding the result to (3.8), for n ≥ N0 such that

3
2ν0

C2
pK1

( 1
βN0+1

+
1

β
1/2
N0+1

)
|∆E| < ν0

2
,

we have
|D(un)|2 + |∇mn|2 ≤ C(|f |2 + ‖b1‖2H1/2Γ) + |∇E|2). (3.13)

Therefore, the sequence {(un,mn)} is bounded in J0(Ω)×B.
Next, since J0(Ω) is compactly immersed in X(Ω), and B is compactly immersed

in Y , there are elements u ∈ J0(Ω),m ∈ B and a subsequence, which for simplicity
we still denote by {(un,mn)}), such that

un → u weakly in J0(Ω) and strongly in X(Ω),

mn → m weakly in B and strongly in Y,

D(un)→ D(u) weakly in (L2(Ω))9,

∇(mn)→ ∇(m) weakly in (L2(Ω))3.

These convergences are enough to allow us to take the limit as n → +∞ in (3.5)
and (3.6) to obtain

2(ν(m+ E)D(u), D(wj)) +B0(u,u,wj)

+(m · χ,wj)− 2
∫

Γ

b1 ·wjdσ = (f ,wj),

θ(∇m,∇φ`) +B1(u,m+ E, φ
`
)− U

(
m,

∂φ
`

∂x3

)
= 0,

(3.14)

for all j, ` ∈ N.
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In fact, it is well known [11] that with the previous convergences we obtain

B0(un,un,w)→ B0(u,u,w), ∀w ∈ J0(Ω),

B1(un,mn, φ)→ B1(u,m, φ), ∀φ ∈ B.
We also note that

(ν(mn + E)D(un), D(wj))→ (ν(m+ E)D(u), D(wj))

since

(ν(mn + E)D(un), D(wj)) = (D(un), ν(mn + E)D(wj)),

(D(u), ν(m+ E)D(wj)) = (ν(m+ E)D(u), D(wj)),

ν(mn + E)D(wj)→ ν(m+ E)D(wj)

strongly in (L2(Ω))9 due to the Lebesgue dominated convergence theorem.
Finally, as the {wj} and {φ`} are Schauder bases, respectively in J0(Ω) and B,

by using (3.14), we conclude that (u,m) satisfies (3.2), (3.3), and thus (u,m) is the
required weak solution.

3.1. Existence of approximate solutions. It remains to prove that, for each
n ∈ N, equations (3.5)-(3.6) have solutions. For this, we proceed similarly as in
Lorca and Boldrini [6].

Let Wn and Mn be as in the last section. Given any (z, ξ) ∈ Wn ×Mn, we
consider the unique solution (v,Ψ) ∈Wn ×Mn of the linearized equations

2(ν(ξ + E)D(v), D(wj)) +B0(z,v,wj)

+ (Ψ · χ,wj)− 2
∫

Γ

b1 ·wjdσ − (f ,wj) = 0,
(3.15)

θ(∇Ψ,∇φ`) +B1(z,Ψ + E, φ
`
)− U

(
Ψ,

∂φ
`

∂x3

)
= 0, (3.16)

for 1 ≤ j, ` ≤ n.
To prove that there is only one such solution (v,Ψ) ∈ Wn ×Mn, we observe

that (3.15), (3.16) constitute in fact a linear system with 2n equations for the 2n
coefficients of the expansions

v =
n∑
j=1

cjwj , Ψ =
n∑
`=1

d`φ
`
.

Thus, to show the existence and uniqueness of solutions of system (3.15), (3.16),
it is enough to prove that the only solution of its associated homogeneous linear
system, that is, the corresponding equations with b1 = 0 and f = 0, is the trivial
null solution. For this, let (v,Ψ) be any solution of the such homogeneous system,
and cj and d` its corresponding coefficients as in the previous expansions. Then,
by multiplying (3.15) by cj and (3.16) by d`, and adding in j and ` from 1 to n, we
obtain

2(ν(ξ + E)D(v), D(v)) +B0(z,v,v) + (Ψ · χ,v) = 0, (3.17)

θ|∇Ψ|2 +B1(z,Ψ,Ψ)− U
(

Ψ,
∂Ψ
∂x3

)
= 0. (3.18)

As B1(z,Ψ,Ψ) = 0, by using Hölder and Poincarè-Friedrichs inequalities, (3.18)
becomes (θ − UCP )|∇Ψ|2 ≤ 0. Thus, (θ − UCP ) > 0 implies |∇W |2 = 0; i.e., Ψ
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is constant; since
∫

Ω
Ψdx = 0, we conclude that Ψ = 0. Since B0(z,v,v) = 0 and

Ψ = 0, (3.17) gives 2ν0|D(u)|2 ≤ 0, which in turn implies that v = 0.
Thus, for each n we have a well defined operator

Tn : Wn ×Mn →Wn ×Mn, (3.19)

such that to each (z, ξ) ∈ Wn ×Mn associates T (z, ξ) = (v,Ψ), where (v,Ψ) ∈
Wn ×Mn is the unique solution of (3.15). Moreover, since Wn and Mn are finite
dimensional vector spaces, it is rather standard to prove that Tn is continuous for
any chosen norms.

Next, by proceeding exactly as before in the derivation of the estimates for
(un,mn), we obtain for system (3.15), (3.16) the same kind of estimate as the one
in (3.13); i. e.,

|D(v)|2 + |∇Ψ|2 ≤ C(|f |2 + ‖b1‖2H1/2(Γ) + |∇E|2) = R2
1,

with R1 independent of n and (z, ξ) ∈ Wn ×Mn. By denoting Fn = {(z, ξ) ∈
Wn×Mn; (|D(z)|2 + |∇ξ|2) ≤ R2

1}, and restricting the operator Tn to such Fn. we
have a continuous operator Tn : Fn → Fn acting from a finite dimensional closed
convex set convex Fn into itself. Brower fixed point theorem then gives us the
existence of at least one fixed point, (u,m), which is a solution of (3.5)-(3.6). This
completes the proof. �

4. Existence of strong solutions

Here we prove the existence of solutions that are more regular than the ones
obtained in the previous section. The main difficulty for this will be to obtain the
necessary higher order estimates for the nonlinear terms present in the equations.

Theorem 4.1. Assume that b1 = 0, f ∈ X(Ω) and ν is a C1-function satisfying
(3.4). Then, for a small enough U , there exists a strong solution of (3.1); that is,
there exists a pair of functions (u,m) ∈ (J0(Ω) ∩H2(Ω))× (Y ∩H2(Ω)) satisfying

P [−2 div(ν(m+ E)D(u)) + u · ∇u +m · χ− f ] = 0 in (L2(Ω))3,

P
[
− θ∆m+ u · ∇(m+ E) + U

∂m

∂x3

]
= 0 in L2(Ω).

Proof. We start by recalling that the L2(Ω)-norm of the Stokes operator A (respec-
tively the operator A1) applied to an element and the norm of J0(Ω) ∩ (H2(Ω))3

(respectively the norm of Y ∩H2(Ω) ) of the same element are equivalent.
Next, we repeat the construction used in the proof of Theorem 3.1 to show the

existence of approximations un and mn. In the present situation, however, under
the conditions of Theorem 4.1, we will show that each of the previous operators
Tn admits fixed points satisfying an estimate independent of n in a more regular
space.

Since all the estimates obtained in the previous section hold true with the same
proofs, we proceed with the derivation of furtherH2(Ω)-estimates for (v,Ψ) solution
of (3.15)- (3.16).

For this, we multiply (3.15) by αjcj , (3.16) by β`d` and add in j and ` from 1
to n to obtain

−2(div(ν(ξ + E)D(v)), Av) +B0(z,v, Av) + (m · χ,Av)− (f , Av) = 0, (4.1)
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θ(A1Ψ, A1Ψ) +B1(z,Ψ + E,A1Ψ) + U

(
∂

∂x3
Ψ, A1Ψ

)
= 0, (4.2)

again with B0 and B1 given by (2.2).
Using the identity 2 div(ν(ξ+E)D(v)) = ν(ξ+E)∆v+2ν′(ξ+E)∇(ξ+E)D(v)

in (4.1), we have

−(ν(ξ + E)∆v, Av) = −B0(z,v, Av)− (Ψ · χ,Av) + (f , Av)

+ (2ν′(ξ + E)∇(ξ + E)D(v), Av).
(4.3)

Next, from Helmholtz decomposition, we know that there exists q ∈ H1(Ω) such
that −∆v = Av +∇q, and we have the estimate

‖q‖1 ≤ c|∆v|. (4.4)

Therefore, (4.3) becomes

(ν(ξ + E)Av, Av) = −B0(z,v, Av)− (Ψ · χ,Av) + (f , Av)

+ 2(ν′(ξ + E)∇(ξ + E)D(v), Av)− (ν(ξ + E)∇q, Av).

Using Korn, Hölder and Poincarè-Friedrichs inequalities and Sobolev embeddings,
together with (3.4), we obtain

ν0|Av|2 ≤ C0|D(z)||Av|2 + CP |A1Ψ||Av|+ |f ||Av|
+ 2ν′1(|A1ξ|+ |∇E|4)|Av|2) + |(ν(ξ + E)∇q, Av)|

where ν′1 = sup{|ν′(r)|, r ∈ R}. Since Au ∈Wn, we observe that

(ν(ξ + E)∇q, Av) = −(q, div(ν(ξ + E)Av)) = −(q, (ν′(ξ + E)∇(ξ + E)Av)),

and thus

|(ν(ξ + E)∇q, Av)| ≤ ν′1|q|4|∇(ξ + E)|4|Av| ≤ cν′1(|A1ξ|+ |∇E|4)‖q‖1Av|. (4.5)

Combining (4.4)-(4.5), using Young and Poincarè-Friedrichs inequalities, its follows
that

ν0

2
|Av|2 ≤ C1(|Az|2 + |A1ξ|2 + |∇E|24) |Av|2 +

2C
2

P

ν0
|A1Ψ|2 +

2
ν0
|f |2. (4.6)

Similarly, by using Hölder, Korn and Friedrichs inequalities and Sobolev embed-
dings, from (4.2) we obtain

θ|A1Ψ|2 ≤ C2|Az|2(|A1Ψ|2 + |∇E|24) + UCP |A1Ψ|2. (4.7)

Multiplying (4.6) by δ = ν0

2C
2
P

(θ − UCP ) and adding the result to (4.7), we obtain

ν2
0

4C
2

P

(θ − UCP )|Av|2 +
1
2

(θ − UCP )|A1Ψ|2

≤ δ(C1(|Az|2 + |A1ξ|2 + |∇E|24)|Av|2 +
2
ν0
|f |2) + C2|Az|2(|A1Ψ|2 + |∇E|24).

Since U
θ < (CP )−1, there exists a positive constant C4 such that

|Av|2 + |A1Ψ|2 ≤ C4([|Az|2 + |A1ξ|2 + |∇E|24]|Av|2 + |f |2 + |Az|2(|A1Ψ|2 + |∇E|24)),

which implies

|Av|2 + |A1Ψ|2 ≤ C4(|Az|2 + |A1ξ|2 + |∇E|24)(|Av|2 + |A1Ψ|2 + |∇E|24) + C4|f |2.
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This expression can be rewritten for a positive constant C as

[1−C(|Az|2 + |A1ξ|2](|Av|2 + |A1Ψ|2) ≤ C(|Az|2 + |A1ξ|2)|∇E|24 +C|∇E|44 +C|f |2,
(4.8)

Next, we will use (4.8) to find R2 > 0 and suitable conditions that will guarantee
that when |Az|2 + |A1ξ|2 ≤ R2

2 we also have |Av|2 + |A1Ψ|2 ≤ R2
2. For this, let

R2
2 = 1/(4C) and then take U small enough such that |∇E|24 ≤ 1/(4C). Under

these choices, when |Az|2 + |A1ξ|2 ≤ R2
2, inequality (4.8) implies

(1/2)(|Av|2 + |A1Ψ|2) ≤ (1/4)R2
2 + (1/64C) +C|f |2 = (1/4)R2

2 + (1/16)R2
2 +C|f |2,

which is rewritten as (|Av|2 + |A1Ψ|2) ≤ (5/8)R2
2 + C|f |2. Hence, when |f | ≤

(3/8)R2
2 = 3/(32C), we obtain that (|Av|2 + |A1Ψ|2 ≤ R2

2, as required, and such
R2 is independent of n and (z, ξ).

Under these conditions, we can consider again the operators Tn, but now as
continuous operators Tn : Gn → Gn acting from a finite dimensional closed convex
set Gn = {(z, ξ) ∈Wn ×Mn; |Az|2 + |A1ξ|2 ≤ R2

2} in itself.
Now, proceeding again similarly as before, we can apply Brower fixed point

theorem for each of such operator Tn; this gives a sequence of approximate solutions
(un,mn) satisfying (3.5), (3.6), which are now uniformly bounded in H2(Ω) . By
taking the limit as n→ +∞ and proceeding exactly as before, we obtain a solution
of our original problem. This proves the theorem. �

Remarks. To each given solution of Problem (3.1), it is trivially associated a
solution of (1.1)-(1.2). Moreover, the regularities obtained for (u,m) also hold for
(u,m).

As in Temam [11], there exists a unique function q (the hydrostatic pressure) in
H1(Ω) ∩ L2

0(Ω), where L2
0(Ω) = {h ∈ L2(Ω); (h, 1) = 0}, which satisfies

−2 div(ν(m)D(u)) + u · ∇u +m · χ− f = −∇q.

Finally, the positivity of the concentration established by Kan-On, Narukawa
and Teramoto in [4] also holds true for our problem, with exactly the same proof.
That is, we have

Lemma 4.2 (Positivity of the concentration). Let (u, q,m) be a solution of (1.1)-
(1.2) given by Theorem 4.1. Then m(x) > 0 for all x ∈ Ω.

5. Uniqueness of the solution

Theorem 5.1. Assume that ν(·) is a Lipschitz continuous function and that (u,m)
is a weak solution of the Problem (3.1) such that (|D(u)|+ |A1m|+ |∇E|4)) is small
enough; then such solution is unique.

Note that as before, this last requirement on |∇E|4 can be attained for small
enough U .

Proof. Let (u1,m1), (u2,m2) be two weak solutions of (3.1), with m1 and m2 in
(H2(Ω) ∩ Y ) and both satisfying the stated smallness condition. By denoting z =
u1 − u2 and ϕ = m1 −m2, then we have that z ∈ J0, ϕ ∈ (H2(Ω) ∩ Y ) and the
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pair (z, ϕ) satisfies, for all w ∈ J0(Ω) and φ ∈ L2(Ω), the following equations:
2(ν(m1)D(z), D(w)) + 2((ν(m1)− ν(m2))D(u2), D(w))

+B0(z,u1,w) +B0(u2, z,w) + (ϕ · χ,w) = 0,

θ(∇ϕ,∇φ) +B1(z,m1 + E, φ) +B1(u2, ϕ, φ)− U
(
ϕ,

∂φ

∂x3

)
= 0.

(5.1)

By setting w = z and φ = −A1ϕ in (5.1), we obtain

2ν0|D(z)|2 ≤ |2((ν(m1)− ν(m2))D(u2), D(z)) +B0(z,u1, z) + (ϕ · χ, z)|
≤ 2C1|ϕ|∞|D(u2)| |D(z)|+ C0|D(z)| |D(u1)| |D(z)|

+ CPCP |A1ϕ| |D(z)|,
(5.2)

θ|A1ϕ|2 ≤
∣∣∣B1(z,m1 + E,A1ϕ) +B1(u2, ϕ,A1ϕ) + U

( ∂ϕ
∂x3

, A1ϕ
)∣∣∣

≤ C0|D(z)|(|A1m1|+ |∇E|4)|A1ϕ|+ C0|D(u2)| |A1ϕ|2 + UCP |A1ϕ|2,
where C1 is the Lipschitz constant of ν(·); that is, |ν(r)− ν(s)| ≤ C1|r − s|, for all
r, s ∈ R. Thus, by taking U small enough so that θ − UCP > 0, we obtain

|A1ϕ| ≤ [C0/(θ − UCP )](|D(z)|(|A1m1|+ |∇E|4) + |D(u2)| |A1ϕ|),
which, under the condition that (C0/(θ − UCP ))|D(u2)| < 1/2, gives

|A1ϕ| ≤ [C0/(θ − UCP )](|A1m1|+ |∇E|4)|D(z)|. (5.3)

Since |ϕ|∞ ≤ C|A1ϕ|, by combining (5.2) and (5.3), we obtain |D(z)| ≤ D3|D(z)|,
where

D3 =
C0

ν0(θ − UCP )

(
C1C(|A1m1|+ |∇E|4)|D(u2)|+ CPCP

2
(|A1m1|+ |∇E|4)

)
+
C0

2ν0
|D(u1)|.

When D3 < 1, we conclude that |D(z)| = 0 and, from (5.3), that |A1ϕ| = 0. Since
z ∈ J0(Ω) and ϕ ∈ H2(Ω) ∩ Y , its follows that z = 0, ϕ = 0 in Ω; consequently,
u1 = u2 and m1 = m2. �
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