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DECAY OF SOLUTIONS FOR A SYSTEM OF NONLINEAR
WAVE EQUATIONS

XIAO WEI

Abstract. This article concerns the decay of solutions of the semi-linear wave
equation

utt + δut − φ(x)4u = λu|u|β−1 x ∈ RN t ≥ 0

Introducing an appropriate Lyaponuv function, we find exponential decay for

certain initial data.

1. Introduction

In this article, we consider the initial boundary value problem

utt + δut − φ(x)4u = λu|u|β−1 x ∈ RN , t ≥ 0

u(x, 0) = u0(x), ut(x, 0) = u1(x) x ∈ RN
(1.1)

with initial conditions u0(x), u1(x) in appropriate function spaces and δ > 0. Mod-
els of this type are of interest in applications in various areas of mathematical
physics [3, 13, 22, 23], as well as in geophysics and ocean acoustics, where, for ex-
ample, the coefficient φ(x) represents the speed of sound at the point x ∈ RN (see
[14]). Throughout this article, we assume that the functions φ(x) and g : RN → R
satisfy the following conditions:

(G0) φ(x) > 0, for all x ∈ RN , (φ(x))−1 =: g(x) is C0,γ(RN )-smooth, for some
γ ∈ (0, 1) and g ∈ LN/2(RN ) ∩ L∞(RN ),

Examples of functions φ of this type can be found in [23, p. 632].
The questions of global existence, nonexistence and blow-up of solutions of the

Cauchy problem for nonlinear wave equations have been studied by many authors;
see for example [10, 15, 20]. In general, global existence happens, when the damping
terms dominate the source terms, while blow-up appears in the opposite situation
and under the assumption that the initial data is sufficiently large (for example
when the initial energy is assumed to be sufficiently negative). In [12] it is shown
that for sufficiently small initial data global existence can be obtained, even when
the influence of the source term is stronger than that of the damping term. In the
works [1, 2, 5, 6, 8, 9, 12, 16, 21] the spatial domain is assumed to be bounded. On
the other hand, in [19] the problem is considered in the whole of RN and the method
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of modified potential well is used to construct the global solutions. In [9, 12, 19]
the coefficient φ(x) = 1, which makes possible the treatment of the equations in
the classical Sobolev space setting. In [17, 18, 24] decay properties of solutions of
wave equations, involving weighted dissipative terms, are discussed. Cavalcanti [7]
considers the nonlinear evolution equation with source and damping terms on a
compact manifold.

The purpose of this article is to obtain decay estimate of solutions to the problem
(1.1). More precisely we show that we can always find initial data in the stable set
for which the solution of (1.1) decays exponentially. The key tool in the proof is an
idea of Zuazua [11, 24], which is based on the construction of a suitable Lyapunov
function.

Notation: For simplicity we use the symbols Lp and D1,2, for the spaces Lp(RN )
and D1,2(RN ), respectively, with 1 ≤ p ≤ ∞. We use ‖ · ‖p for the norm ‖ · ‖Lp(RN ).
Also differentiation with respect to time is denoted by a dot over the function. The
constants C and c are considered in a generic sense.

2. Asymptotic stability

In this section we introduce and prove our main result. For this purpose we use
the definition of the solution of problem (1.1) given by Karachalios and Stavrakakis
in [13]. For later use, we briefly mention here some facts, notation and results from
paper [13].

The space setting for the initial conditions and the solutions of the problem (1.1)
is the product space X0 = D1,2(RN ) × L2

g(RN ). The space D1,2(RN ) is defined
as the closure of C∞0 (RN ) functions with respect to the energy norm ‖u‖D1,2 =:∫

RN |∇u|
2 dx. It is well known that

D1,2(RN ) =
{
u ∈ L

2N
N−2 (RN ) : ∇u ∈ (L2(RN ))N

}
and that D1,2 is embedded continuously in L

2N
N−2 .i.e., there exists k > 0 such that

‖u‖ 2N
N−2
≤ k‖u‖D1,2 (2.1)

We shall frequently use the following generalized version of Poincaré inequality∫
RN
|∇u|2 dx ≥ α

∫
RN

gu2 dx (2.2)

for all u ∈ C∞0 and g ∈ LN/2, where α =: k−2‖g‖−1
N/2 (see [6, Lemma 2.1]). It

has been shown that D1,2(RN ) is a separable Hilbert space. The space L2
g(RN )

is defined to be the closure of u ∈ C∞0 (RN ) functions with respect to the inner
product

(u, v)L2
g(RN ) =:

∫
RN

guv dx (2.3)

Clearly, L2
g(RN ) is a separable Hilbert space.

We consider the potential well

W =:
{
u ∈ D1,2(RN ) : K(u) =: ‖u‖2D1,2 − λ‖u‖β+1

Lβ+1
g

> 0
}

Also consider the functional

J (u) =:
1
2
‖u‖2D1,2 −

λ

β + 1

∫
RN

g(x)|u(t)|β+1 dx. (2.4)
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The energy of the problem is defined as

E∗(u(t), ut(t)) = E∗(t) :=
1
2
‖ut(t)‖2L2

g
+ J (u). (2.5)

From equation (1.1), we have

E∗(t) = E∗(0)− δ
∫ t

0

‖ut(τ)‖2L2
g
dτ (2.6)

Under certain assumptions on the initial data, solutions exist globally in the
energy space X0. In addition to the principal condition (G0) in the introduction, we
shall use the following additional hypotheses for the function g and the nonlinearity
exponent β.

(G1) g ∈ L1(RN ) and 1 < β ≤ N
N−2 , for all N ≥ 3.

(G2) N ≥ 3 and N+2
N ≤ β ≤ N

N−2 .
(G3) N = 3, 4 and N+4

N ≤ β ≤ N
N−2 .

Let us note that since g ∈ LN/2(RN ) ∩ L∞(RN ) by hypothesis (G0), then any g
satisfying hypothesis (G1) belongs to all spaces Lp(RN ), for p ∈ [1,+∞).

A weak solution of (1.1) is a function u(x, t) such that
(i) u ∈ L2[0, T ;D1,2(RN )], ut ∈ L2[0, T ;L2

g(RN )], utt ∈ L2[0, T ;D−1,2(RN )],
(ii) for all v ∈ C∞0 ([0, T ]× RN ), u satisfies the generalized formula∫ T

0

(utt(τ), v(τ))L2
g
dτ + δ

∫ T

0

(ut(τ), v(τ))L2
g
dτ

+
∫ T

0

∫
RN
∇u(τ)∇v(τ) dxdτ − λ

∫ T

0

(f(u(τ)), v(τ))L2
g
dτ = 0,

(2.7)

where f(s) = |s|β−1s, and
(iii) u satisfies the initial conditions

u(x, 0) = u0(x) ∈ D1,2(RN ), ut(x, 0) = u1(x) ∈ L2
g(RN ).

The following two lemmas come from [13].

Lemma 2.1 ([13, Proposition 3.1]). Let g, β, N satisfy conditions (G0) or (G2).
Suppose that the constants δ > 0, λ <∞ and the initial conditions

u0 ∈ D1,2(RN ) and u1 ∈ L2
g(RN ). (2.8)

are given. Then for sufficiently small T > 0 the problem (1.1) admits a unique
(weak) solution such that

u ∈ C[0, T ;D1,2(RN )], ut ∈ C[0, T ;L2
g(RN )]. (2.9)

Lemma 2.2 ([13, Theorem 3.2]]). Let condition (G3) be satisfied and u0 ∈ W.
Assume that the initial data satisfy (2.8) and they are sufficiently small in the
sense

E∗(0) <
( 1
C0λµ

p1
0

)1/p2
(2.10)

where

p1 =
2(β + 1)−N(β − 1)

2
, p2 =

Nβ −N − 4
4

.

Then the (weak) solution of (1.1) is such that

u ∈ C[0,∞;D1,2(RN )], ut ∈ C[0,∞;L2
g(RN )]. (2.11)
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Theorem 2.3. If the assumption of Lemma 2.2 is satisfied, then there exist two
positive constants Ĉ and ξ, independent of t such that

0 < E∗(t) ≤ Ĉe−ξt for all t ≥ 0 (2.12)

Proof. From (2.4), we have

E∗(t) =
1
2
‖ut(t)‖2L2

g
+

β − 1
2(β + 1)

‖u‖2D1,2 +K(u).

Theorem 3.2 in [13] shows that for all t ≥ 0, u(t) ∈ W, so we have

0 < E∗(t) for all t ≥ 0. (2.13)

The proof of the other inequality relies on the construction of a Lyapunov function
by performing a suitable modification of the energy. To this end, for ε > 0, to be
chosen later, we define

L(t) = E∗(t) + ε

∫
guut dx (2.14)

It is straightforward to see that L(t) and E∗(t) are equivalent in the sense that there
exist two positive constants β1 and β2 depending on ε such that for t ≥ 0,

β1E∗(t) ≤ L(t) ≤ β2E∗(t) (2.15)

By taking the time derivative of the function L defined above in equation (2.14),
using problem (1.1), and performing several integration by parts, we obtain

dL(t)
dt

= −δ‖ut‖2L2
g

+ ε

∫
gu2

t dx+ ε

∫
guutt dx

= −δ‖ut‖2L2
g

+ ε‖ut‖2L2
g

+ ε

∫
guλu|u|β−1 dx− ε

∫
guδut dx+ ε

∫
guφ∆u dx

= −δ‖ut‖2L2
g

+ ε‖ut‖2L2
g

+ ελ‖u‖β+1

Lβ+1
g
− ε‖∇u‖22 − εδ

∫
guut dx

(2.16)
Using Young inequality and Sobolev inequality, for any γ > 0, we obtain∫

guut dx ≤
1

4γ

∫
gu2

t dx+ γ

∫
gu2 dx ≤ 1

4γ

∫
gu2

t dx+
γ

α
‖∇u‖22 (2.17)

where α is the Sobolev constant.
Using the result [13, (3.20) in Theorem 3.2], we have

‖u(t)‖β+1

Lβ+1
g
≤ C0µ

p1
0 E∗(0)p2‖∇u‖22

Consequently, inserting (2.17) into (2.16), we have

dL(t)
dt

≤ (ε+
εδ

4γ
− δ)‖ut‖2L2

g
+ (ελC0µ

p1
0 E∗(0)p2 − ε+

εδγ

α
)‖∇u‖22 (2.18)

By the condition E∗(0)p2C0λµ
p1
0 < 1, let us choose γ small enough such that

ε(λC0µ
p1
0 E∗(0)p2 − 1 +

δγ

α
) < 0 (2.19)

From this inequality we may find η > 0, which depends only on γ such that
dL(t)
dt

≤
(
ε(
δ

4γ
+ 1)− δ

)
‖ut‖2L2

g
− εη‖∇u‖22 (2.20)
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Consequently, using the definition of the energy (2.5), for any positive constant M
(we will choose the suitable M), we always obtain

dL(t)
dt

≤ −MεE∗(t) +
(
ε(
δ

4γ
+ 1 +

M

2
)− δ

)
‖ut‖2L2

g
+ ε(

M

2
− η)‖∇u‖22 (2.21)

Choose M < 2η, and ε small enough such that

ε(
δ

4γ
+ 1 +

M

2
)− δ < 0 (2.22)

inequality (2.21) becomes

dL(t)
dt

≤ −MεE∗(t) for all t ≥ 0 (2.23)

On the other hand, by (2.15), setting ξ = Mε
β2

, the last inequality becomes

dL(t)
dt

≤ −ξL(t) for all t ≥ 0 (2.24)

Integrating this differential inequality between 0 and t gives the following estimate
for the function L

L(t) ≤ Ce−ξt for all t ≥ 0 (2.25)
Consequently, by using (2.15) once again, we conclude

E(t) ≤ Ĉe−ξt all dt ≥ 0 (2.26)

This completes the proof. �
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