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EXISTENCE OF EXPONENTIAL ATTRACTORS FOR THE
PLATE EQUATIONS WITH STRONG DAMPING

QIAOZHEN MA, YUN YANG, XIAOLIANG ZHANG

Abstract. We show the existence of (H2
0 (Ω)×L2(Ω), H2

0 (Ω)×H2
0 (Ω))-global

attractors for plate equations with critical nonlinearity when g ∈ H−2(Ω).

Furthermore we prove that for each fixed T > 0, there is an (H2
0 (Ω) ×

L2(Ω), H2
0 (Ω) × H2

0 (Ω))T -exponential attractor for all g ∈ L2(Ω), which at-

tracts any H2
0 (Ω)×L2(Ω)-bounded set under the stronger H2(Ω)×H2(Ω)-norm

for all t ≥ T .

1. Introduction

We consider the long-time behavior of the solutions for the following equation
on a bounded domain Ω ⊂ R5 with smooth boundary ∂Ω:

utt + ∆2ut + ∆2u+ f(u) = g(x), x ∈ Ω,

u
∣∣
∂Ω

=
∂u

∂ν

∣∣
∂Ω

= 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(1.1)

where g ∈ H−2(Ω), f ∈ C1(R), f(0) = 0 and satisfies the following conditions:

|f ′(s)| ≤ C(1 + |s|8), ∀s ∈ R, (1.2)

lim inf
|s|→∞

f(s)
s

> −λ2
1, (1.3)

where λ1 is the first eigenvalue of ∆2 on H2
0 (Ω).

Problem (1.1) stems from the elastic equation established by Woinowsky-Krieger
[10]. The asymptotic behavior and the existence of global solutions of the linear
plate equations were studied by Ball [1, 2] in 1973. The asymptotic behavior of the
plate equations with linear damping and nonlinear damping have been extensively
studied, see for example [3, 4, 11, 12, 13]. The existence of the global attractors of
the autonomous plate equations with critical exponent on the unbounded domain
was investigated by several authors in [4, 5, 11]. In [12, 13], the authors discussed
the existence of compact attractors for the autonomous and non-autonomous plate
equations in a bounded domain, respectively. For the best of our knowledge, the
existence of bi-space global attractor and exponential attractor of (1.1) has not been
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published. Therefore, it is necessary to continue researching. As we know, existence
and regularity of global attractors of the wave equations with strong damping have
been studied in [6, 7, 14, 15, 16]. The authors in [14] proved the existence of global
attractors for the wave equation when the nonlinearity is critical and g ∈ L2(Ω).
Then in [16], they showed the existence of a global attractor when nonlinearity
is critical and g ∈ H−1(Ω); moreover, they showed the existence of exponential
attractor for g ∈ L2(Ω). In this article, we borrow the ideas and methods in
[14, 16] to prove existence of bi-space global attractor for g ∈ H−2(Ω) and bi-space
T-exponential attractor for g ∈ L2(Ω). For other results of attractors about the
dynamical systems, please refer the reader to [8, 9, 15] and the references therein.

2. Preliminaries

Let A = ∆2 with domain D(A) = H2
0 (Ω)∩H4(Ω). Consider the family of Hilbert

spaces D(As/2), s ∈ R with inner products and norms

(·, ·)D(As/2) = (As/2·, As/2·), ‖ · ‖D(As/2) = ‖As/2 · ‖,

where (·, ·) and ‖ · ‖ mean the L2(Ω) inner product and norm respectively. For
convenience, we denote Hs = D(A(1+s)/2) × D(As/2), ∀s ∈ R, whose norm is
‖ · ‖s. In particular, H0 = H2

0 (Ω)× L2(Ω) and V = H2
0 (Ω)×H2

0 (Ω). Note that

D(As/2) ↪→ D(Ar/2), for s > r;

D(As/2) ↪→ L10/(5−4s)(Ω), for s ∈ [0,
5
4

).
(2.1)

Given s > r > q, for any ε > 0, there exists Cε = Cε(s, r, q) such that

‖Ar/2u‖ ≤ ε‖As/2u‖+ Cε‖A
q
2 u‖, for any u ∈ D(As/2). (2.2)

For the nonlinear function f , we know that f allows the decomposition

f = f0 + f1, (2.3)

where f0, f1 ∈ C(R) and satisfy

|f0(u)| ≤ C(|u|+ |u|9) for all u ∈ R, (2.4)

f0(u)u ≥ 0 for all u ∈ R, (2.5)

|f1(u)| ≤ C(1 + |u|γ) for all u ∈ R, γ < 9, (2.6)

lim inf
|u|→∞

f1(u)
u

> −λ2
1, (2.7)

where C is a positive constant. Denote

σ = min{1
8
,

9− γ
4
}. (2.8)

Under the above assumptions, equation (1.1) has an unique weak solution satisfying

u ∈ C([0, T ], H2
0 (Ω)), ut ∈ C([0, T ], L2(Ω)) ∩ L2([0, T ], H2

0 (Ω)).

We also need the following properties.

Lemma 2.1 ([16]). Let T be a Hölder mapping from (X , ‖ · ‖1) to (X , ‖ · ‖2) with
constant L and Hölder exponent γ ∈ (0, 1]; that is,

‖T x1 −T x2‖2 ≤ L ‖x1 − x2‖γ1 , ∀x1, x2 ∈X ,

Then for any E ⊂X , the following estimates hold:
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(i) dimF (T E , ‖ · ‖2) ≤ 1
γ dimF (E , ‖ · ‖1);

(ii) if, further, {S(t)}t≥0 is a semigroup on X , satisfies S(t)X ⊂ X for all
t ≥ 0, then

dist‖·‖2(T S(t)X ,T E) ≤ 2L distγ‖·‖1(S(t)X , E), ∀t ≥ 0, (2.9)

where dist‖·‖i(·, ·) is the Hausdorff semidistance of two sets with respect to
‖ · ‖i, i = 1, 2.

3. Global attractors and regularity for g in H−2(Ω)

Since the injection i : L2(Ω) ↪→ H−2(Ω) is dense, we know that for every g ∈
H−2(Ω) and any η > 0, there is a gη ∈ L2(Ω) which depends on g and η such that

‖g − gη‖H−2 < η. (3.1)

We decompose the solution u(t) of (1.1) corresponding to initial data (u0, u1) as
u(t) = vη(t) + wη(t), where vη(t)andwη(t) satisfy the following two equations

vηtt + ∆2vηt + ∆2vη + f0(vη) = g − gη,
(vη(0), vηt (0)) = (u0, u1), vη|∂Ω = 0

(3.2)

and
wηtt + ∆2wηt + ∆2wη + f(u)− f0(vη) = gη,

(wη(0), wηt (0)) = (0, 0), wη|∂Ω = 0.
(3.3)

We first recall some results for the bounded dissipative case.

Lemma 3.1. Let f satisfy (1.2) and (1.3), g ∈ H−2(Ω) and {S(t)}t≥0 be the
semigroup generated by the weak solution of (1.1) in the natural energy space H0.
Then {S(t)}t≥0 has a bounded absorbing set B0 in H0; that is, for any bounded
subset B ⊂ H0, there exists T = T (B0) such that

S(t)B ⊂ B0, ∀t ≥ T. (3.4)

The proof of the above lemma and the following corollary are similar to those in
[14, 16], so we omit them.

Corollary 3.2. Under the assumptions of Lemma 3.1, for a given R > 0, there
exists K0 = K0(R) and Λ0 = Λ0(R), for ‖z0‖0 ≤ R, the corresponding solution
S(t)z0 = (u(t), ut(t)) satisfy

‖S(t)z0‖0 ≤ K0, ∀t ∈ R+;∫ +∞

0

‖∆ut(y)‖2dy ≤ Λ0.

Next, we obtain the existence of the global attractors, so we need the following
asymptotic compactness result.

Lemma 3.3. For any ε > 0, there is a η = η(ε, g) such that the solutions of (3.2)
satisfy

‖vηt ‖2 + ‖∆vη‖2 ≤ Q0(‖z0‖0)e−Ct + ε, ∀t ≥ 0, (3.5)

where the constant C only depends on ‖z0‖0 and ‖g − gη‖H−2 , Q0(·) is a nonde-
creasing function on [0,∞).



4 Q. MA, Y. YANG, X. ZHANG EJDE-2013/114

Proof. Multiplying (3.2) by (vηt + δvη) and integrating over Ω, we have
1
2
d

dt

(
‖vηt + δvη‖2 + (1 + δ)‖∆vη‖2 + 2

∫
Ω

F (vη)
)

+
δ

2
‖∆vη‖2

+
1
2
‖∆vηt ‖2 +

(λ1

2
− δ − δ2

2

)
‖vηt ‖2 +

δ(λ1 − δ)
2

‖vη‖2

≤ 4‖g − gη‖2H−2 +
1
4
‖∆vηt ‖2 +

δ2

4
‖∆vη‖2,

(3.6)

where F (vη) =
∫ vη

0
f0(s)ds.

Let δ be small enough, then from (3.6) we have the estimate
d

dt

(
‖vηt + δvη‖2 + (1 + δ)‖∆vη|2 + 2

∫
Ω

F (vη)
)

+ Cδ(‖∆vηt ‖2 + ‖∆vη‖2) ≤ 4‖g − gη‖2H−2 .

(3.7)

Multiplying (3.2) by vηt we can deduce that (similar to Lemma 3.1)

‖vηt ‖2 + ‖∆vη‖2 ≤ Q′(‖z0‖0, ‖g − gη‖H−2) := M0, ∀t ≥ 0. (3.8)

On the other hand, this inequality and (2.4) yield∫
Ω

F (vη)dx ≤ C
∫

Ω

(|vη(t)|2 + |vη(t)|10)dx (3.9)

which combining with (3.8) imply∫
Ω

F (vη)dx ≤ CM0

∫
Ω

|∆vη|2dx. (3.10)

Hence, from (3.7) and (3.10), taking Cδ,M0 small enough, we have
d

dt

(
‖vηt + δvη‖2 + (1 + δ)‖∆vη‖2 + 2

∫
Ω

F (vη)dx
)

+ Cδ,M (‖vηt + δvη‖2 + (1 + δ)‖∆vη‖2 + 2
∫

Ω

F (vη)dx)

≤ 4‖g − gη‖2H−2 .

(3.11)

Applying Gronwall lemma, we obtain

‖vηt + δvη‖2 + (1 + δ)‖∆vη‖2 + 2
∫

Ω

F (vη)dx ≤ Q0(‖z0‖0)e−Cδ,M t +
‖g − gη‖2H−2

4Cδ,M0

.

Therefore, we can complete our proof by taking η2 ≤ 4Cδ,M0ε in (3.1). �

Lemma 3.4. For any T > 0 and η > 0, there is a positive constant M1 = M1(T, η)
which depends on (T, η), such that the solutions of (3.3) satisfy

‖wη(T )‖21+σ + ‖wηt (T )‖2σ ≤M1, (3.12)

where σ = min{ 1
8 ,

9−γ
4 }.

Proof. According to Corollary 3.2 and Lemma 3.3,

‖∆u‖+ ‖∆vη‖ ≤M2, t ≥ 0. (3.13)

Multiplying (3.3) by Aσwηt , we have
1
2
d

dt
(‖Aσ

2wηt ‖2 + ‖A
σ+1
2 wη‖2) + ‖A

σ+1
2 wηt ‖2

= −(f(u)− f0(vη), Aσwηt ) + (gη, Aσw
η
t ).

(3.14)
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Recall that the nonlinear term f(u) satisfies

|(f(u)− f0(vη), Aσwηt )| ≤ |(f(u)− f(vη), Aσwηt )|+ |(f1(vη), Aσwηt )|.
From (1.2), (3.13) and using the Hölder inequality, we have

|(f(u)− f(vη), Aσwηt )| ≤ C
∫

Ω

(1 + |u|8 + |vη|8)|wη||Aσwηt |

≤ C(1 + ‖u‖8L10 + ‖vη‖8L10)‖wη‖
L

10
1−4σ
‖Aσwηt ‖

L
10

1+4σ

≤ C(1 + ‖∆u‖8 + ‖∆vη‖8)‖A
σ+1
2 wη‖‖A

σ+1
2 wηt ‖

≤ CM2‖A
σ+1
2 wη‖2 +

1
3
‖A

σ+1
2 wηt ‖2;

In addition, noticing that γ
9−4σ ≤ 1, we obtain

|(f1(vη), Aσwηt | ≤ C(1 + ‖vη‖γ
L

10γ
9−4σ

)‖Aσwηt ‖
L

10
1+4σ

≤ C(1 + ‖∆vη‖γ)‖A
σ+1
2 wηt ‖

≤ CM2 +
1
3
‖A

σ+1
2 wηt ‖2;

Finally, for σ < 1, we obtain

|(gη, Aσwηt )| ≤ C‖gη‖2 +
1
3
‖A

σ+1
2 wηt ‖2. (3.15)

Combining (3.14) and (3.15), it follows that

d

dt
(‖Aσ

2wηt ‖2 + ‖A
σ+1
2 wη‖2) ≤ CM2(‖Aσ

2wηt ‖2 + ‖A
σ+1
2 wη‖2) + C ′M2

.

Thus, we can complete our proof by applying Gronwall lemma. �

Using Lemmas 3.3 and 3.4, we have the following lemma.

Lemma 3.5. Let f satisfy (1.2) and (1.3), g ∈ H−2(Ω) and {S(t)}t≥0 be the
semigroup generated by the weak solution of (1.1) in the natural energy space H0.
Then {S(t)}t≥0 is asymptotically smooth in H0.

To prove that the global attractors AH0 in H0 are bounded in V, we need the
following lemma.

Lemma 3.6. Under conditions of Lemma 3.5, and (1.2), (1.3), for every t > 0,
the following estimate holds:

min{1, t}‖∆ut‖2 + min{1, t2}‖utt‖2 ≤ Q1(‖z0‖0 + ‖g‖H−2),

where Q1(·) is a nondecreasing function on [0,∞), and (u(t), ut(t)) is the solution
corresponding to the initial data z0 ∈ H0.

The results in the above lemma, are obtained suing the same derivation process
as in [14, 16]. Combining Lemmas 3.1, 3.5 and 3.6, according to the abstract
conclusion in [9, 14, 16], we have the following theorem.

Theorem 3.7. Under the assumptions of Lemma 3.5, {S(t)}t≥0 has a global at-
tractor AH0 in H0, and AH0 is bounded in V.

Next, we prove that AH0 is a (H0,V)-global attractor. First, By Theorem 3.7
and Lemma 3.6, we have the following statement.
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Lemma 3.8. Let f satisfy (1.2) and (1.3), g ∈ H−2(Ω), then the semigroup
{S(t)}t≥0 possesses (H0,V)-bounded absorbing set, that is, there exists BV ⊂ V
such that, for any bounded set B ⊂ H0, there exists T1 = T1(B), there holds

S(t)B ⊂ BV , ∀t ≥ T1.

Therefore, to obtain the existence of (H0,V)-global attractor, we only need prove
{S(t)}t≥0 is (H0,V)-asymptotic compactness and continuity.

Let B̄1 = ∪t≥TBV S(t)BV , where TBV = max{T1, 1}, T1 is from Lemma 3.8.
Then B̄1 is bounded absorbing set, and positive invariant. At the same time, due
to Lemma 3.6 and uniqueness of the solution, for any initial value (u0, u1) ∈ B̄1,
we have the estimate

‖utt‖2 ≤ C‖BV‖,‖g‖H−2 , ∀t ≥ 0.

Lemma 3.9. Suppose that zn0 = (un0 , u
n
1 ) ∈ B̄1, n = 1, 2, . . . is convergent sequence

about H-norm, then for any t ≥ 0, S(t)zn0 is convergent sequence about V-norm in
B̄1.

Proof. Suppose that (ui(t), uit(t))(i = 1, 2) is the solution for the initial value
(ui0, u

i
1) ∈ B̄1, let z(t) = u1(t)− u2(t). Then z satisfy

ztt + ∆2zt + ∆2z + f(u1)− f(u2) = 0, (3.16)

the corresponding initial condition (z(0), zt(0)) = (u1
0, u

1
1)− (u2

0, u
2
1)boundary value

conditions z|∂Ω = 0.
Multiplying (3.16) by zt, we have

‖∆zt‖2 = −(ztt, zt)− (∆2z, zt)− (f(u1)− f(u2), zt).

Due to

| − (ztt, zt)− (∆2z, zt)| ≤ ‖ztt‖‖zt‖+ ‖∆z‖2 +
1
4
‖∆zt‖2,

and

| − (f(u1)− f(u2), zt)| ≤ C
∫

Ω

|f ′(u1 + θ(u1 − u2))||z||zt| ≤ CM‖∆z‖2 +
1
4
‖∆zt‖2,

we get
‖∆zt‖2 ≤ CM (‖zt‖+ ‖∆z‖2),

where CM only depends on ‖B̄1‖0. By means of the continuity of semigroup S(t)
about H0-norm and the arbitrariness of (ui0, u

i
1), we can easily obtain the results of

Lemma 3.9 hold. �

So, according to Theorem 3.7 and Lemma 3.9, we have (H0,V)-asymptotic com-
pactness.

Lemma 3.10. Under the assumptions of Lemma 3.5, {S(t)}t≥0 is (H0,V)-asymptotic
compact.

Now we have the existence of (H0,V)-Global Attractors:

Theorem 3.11. Let f satisfy (1.2), (1.3), g ∈ H−2(Ω) and {S(t)}t≥0 be the semi-
group generated by the weak solution of (1.1) in the natural energy space H0. Then
{S(t)}t≥0 has a (H0,V)-global attractor A ; that is, A is compact, invariant in V,
and attracts every bounded (in H0) subset of H0 under the V-norm.
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4. Exponential attractor for g in L2(Ω)

In this section, we consider a slightly stronger (H0,V)-exponential attraction for
{S(t)}t≥0. Borrowing the main idea and methods in [14, 16] we prove the following
main results.

Theorem 4.1. Let g ∈ L2(Ω) and f satisfy (1.2), (1.3). Then there exists a set
E which is compact in V and bounded in D(A) × H2

0 (Ω), satisfying the following
conditions:

(i) E is positive invariant; i.e., S(t)E ⊂ E, for all t ≥ 0;
(ii) dimF (E ,V) <∞; i.e., E has finite fractal dimension in V;

(iii) there exists an increasing function Q̃ : R+ → R+ and α > 0 such that for
any subset B ⊂ H0 with supz0∈B ‖z0‖H0 ≤ R there holds

distV(S(t)B, E) ≤ Q̃(R)
1√
t
e−αt, for all t > 0.

Remark 4.2. From the proof of Theorem 4.1 given below, we can require in
Theorem 4.1 that E be bounded in D(A)×D(A).

We first state a crucial result about the asymptotic regularity of the solutions of
(1.1) with g ∈ L2(Ω), which can be found in [16].

Theorem 4.3 ([14, 16]). Let f satisfy (1.2) and (1.3), g ∈ L2(Ω), B0 be a bounded
absorbing set of {S(t)}t≥0 in the natural energy space H2

0 (Ω) × L2(Ω). Then the
global attractor AH0 is bounded in D(A) × D(A). Moreover, there exists positive
constants M (which depends only on the H2

0 × L2-bounds of B0) and v (which is
independent of B0 but may depend on the coefficients in (1.1)), and a set B1, closed
and bounded in D(A)×D(A), such that

distH(S(t)B0,B1) ≤Me−νt, ∀t ≥ 0, (4.1)

where distH denotes the usual Hausdorff semidistance in H0.

As a results, based on the regularity and exponential attraction results, Theorem
4.3, we can repeat the process in [6, 16] to prove the existence of the exponential
attractor in H0 for the critical case. That is,

Proposition 4.4. Let g ∈ L2(Ω) and f satisfy (1.2) and (1.3). Then the semigroup
{S(t)}t≥0 has an exponential attractor E0 in H0; that is,

(i) E0 is positive invariant; i.e., S(t)E0 ⊂ E0, for all t ≥ 0;
(ii) dimF (E0,H0) <∞; i.e., E0 has finite fractal dimension in H0;
(iii) There exists an increasing function J : R+ → R+ and µ0 such that for

any subset B ⊂ H0 with supz0∈B ‖z0‖H0 ≤ R there holds

distH0(S(t)B, E0) ≤J (R)e−µ0t, ∀t > 0.

As in [6, 16], we have the following Lipschitz continuity in H0.

Lemma 4.5. For any bounded subset B ⊂ H0 and each fixed T > 0, there exists a
positive constant MT,B which depends only on T and ‖B‖H0 such tat

‖S(T )z0 − S(T )z1‖H0 ≤MT,B‖z0 − z1‖H0 , ∀z0, z1 ∈ B. (4.2)

and, S(t) maps the bounded set of H0 into a bounded set of H0, that is, there exists
an increasing function Q1 : R+ → R+ such that, for any subset B ⊂ H0,

‖S(t)B‖H0 ≤ Q1(‖B‖H0), ∀t ≥ 0. (4.3)
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Thanks to Lemma 3.6, we can deduce the following Hölder continuity.

Lemma 4.6. For any bounded subset B ⊂ H0 and each fixed T > 0, the mapping
S(T ) : (∪t≥0S(t)B, ‖ · ‖H0) → (∪t≥TS(t)B, ‖ · ‖V) is 1

2 -Hölder continuous; that is,
there exists an increasing function QT (·) : [0,∞)→ [0,∞), which depends only on
T , such that

‖S(T )z0−S(T )z1‖V ≤ QT (‖B‖H0)‖z0−z1‖1/2H0
, for all z0, z1 ∈ ∪t≥0S(t)B. (4.4)

Proof. From Lemma 3.6 we know that ∪t≥TS(t)B is bounded in V for every T > 0.
For any zi = (ui0, u

i
1) ∈ H0(i = 1, 2), let (ui(t), uit(u)) = S(t)zi be the correspond-

ing solution of (1.1), and denote z(t) = u1(t)− u2(t), then z satisfies

ztt + ∆2zt + ∆2z + f(u1)− f(u2) = 0,

(z(0), zt(0)) = z1 − z2, z|∂Ω = 0.
(4.5)

Multiplying (4.5) by zt and integrating over Ω, we have

‖∆zt‖2 ≤ ‖ztt‖‖zt‖+ ‖∆zt‖‖∆z‖+
∫

Ω

|f(u1)− f(u2)||zt|.

From (1.2) and using the Hölder inequality, we have∫
Ω

|f(u1)− f(u2)||zt| ≤ C
∫

Ω

(1 + |u1|8 + |u2|8)|z||zt|

≤ CM‖z‖L10‖zt‖L10

≤ CM‖∆z‖‖∆zt‖,

where the constant CM depends only on the H0-bounds of B. The above inequality
with Lemma 4.5 and Lemma 3.6 imply

‖∆zt‖2 ≤ M̄1(‖z0 − z1‖H0 + ‖z0 − z1‖2H0
) ≤ M̄2‖z0 − z1‖H0 ,

where M̄1, M̄2 depend only on T and ‖B‖H0 ; Which, noticing (4.2) again, implies
(4.4). �

For convenience, we first iterate the following so-called T-exponential attractor.

Definition 4.7 ([16]). Let X,Y be two Banach spaces, Y ↪→ X and {S(t)}t≥0

be a semigroup on X. A set ET ⊂ Y is called a (X,Y )T -exponential attractor for
{S(t)}t≥0 if the following conditions hold:

(i) ET is compact in Y and positive invariant; that is, S(t)ET ⊂ ET , for every
t ≥ 0;

(ii) dimF (ET , Y ) <∞; that is ET has finite fractal dimension in Y ;
(iii) There exists an increasing function JT : R+ → R+ and k > 0 such that, for

any set B ⊂ Xwith supz0∈B ‖z0‖X ≤ R there holds

distY (S(t)B, ET ) ≤ JT (R)e−kt, for all t ≥ T.

Then, we have the existence of an (H0,V)T -exponential attractor.

Lemma 4.8. Let f satisfy (1.2) and (1.3), g ∈ L2(Ω). Then for each fixed T > 0,
{S(t)}t≥0 has an (H0,V)T -exponential attractor.
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Proof. For each fixed T > 0, we will verify S(T )E0 is an (H0,V)T -exponential
attractor, where E0 is the exponential attractor given in Proposition 4.4.

We verify that S(T )E0 satisfies all the conditions of Definition 4.7 corresponding
to spaces H0 and V as follows

(1) The positive invariance of S(T )E0 is obvious since E0 is positive invariant;
The compactness of S(T )E0 in V follows from the compactness of E0 in H0 and
continuity (Lemma 4.6) of S(T ).

(2) Applying property (i) of Lemma 2.1, the finiteness of dimF (S(T )E0,V) follows
from Lemma 4.6 and the finiteness of dimF (E0,H0).

(3) For any bounded subset B ⊂ H0, denote B̂ = B ∪E0. Then from Lemma 4.6
we have S(T ) : (∪t≥0S(t)B, ‖ · ‖H0)→ (∪t≥TS(t)B, ‖ · ‖V) is 1

2−Hölder continuous.
Hence, applying property (ii) of Lemma 2.1, the exponential attraction of S(T )E0
with respect to V-norm follows from the exponential attraction of E0 with respect
to H0-norm immediately. �

Proof of Theorem 4.1. For any fixed T0 ≥ 1, let ET0 be the (H0,V)T0-exponential
attractor obtained in Lemma 4.8. Then we claim that ET0 satisfies conditions (i)-
(iii) of Definition 4.7.

We need to verify only (iii). Let JT0(·) and k0 be the mapping and exponent
given in Definition 4.7 and Lemma 4.8 corresponding to T0. Note that there is a
t0 > 0 such that

e−
k0
2 t ≤ 1√

t
, for all t ≥ t0.

Then, to complete the proof, we can set α = k0
2 and

Q̃(·) = (JT0(·) +Q0(·+ ‖ET0‖H0) +Q1(·+ ‖ET0‖H0 + ‖g‖H−2))e(t0+T0)α,

where Q(·) is given in Lemma 3.6 and Q1(·) is given in (4.3). �
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