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EXISTENCE OF EXPONENTIAL ATTRACTORS FOR THE
PLATE EQUATIONS WITH STRONG DAMPING

QIAOZHEN MA, YUN YANG, XIAOLIANG ZHANG

ABSTRACT. We show the existence of (H2(Q) x L?(Q), H2(Q) x H2(2))-global
attractors for plate equations with critical nonlinearity when g € H*Q(Q).
Furthermore we prove that for each fixed 7' > 0, there is an (HZ2() x
LZ(Q),HS(Q) X Hg (Q))r-exponential attractor for all g € L?(Q), which at-
tracts any HZ () x L2 (2)-bounded set under the stronger H2(£2)x H?(£2)-norm
for all ¢t > T

1. INTRODUCTION

We consider the long-time behavior of the solutions for the following equation
on a bounded domain  C R% with smooth boundary 9€:

w + APuy + A%u+ f(u) = g(z), z€Q,

ou
“’asz = %‘asz =0, (1.1)

u(z,0) =up(z), w(x,0)=ui(z), =z€q,
where g € H=2(Q), f € C}(R), f(0) = 0 and satisfies the following conditions:

If'(s)] < C(1+s|®), VseR, (1.2)
1‘i$&f@ > —\2 (1.3)

where A is the first eigenvalue of A% on HZ ().

Problem stems from the elastic equation established by Woinowsky-Krieger
[I0]. The asymptotic behavior and the existence of global solutions of the linear
plate equations were studied by Ball [1} 2] in 1973. The asymptotic behavior of the
plate equations with linear damping and nonlinear damping have been extensively
studied, see for example [3] @, [TT], 12} [T3]. The existence of the global attractors of
the autonomous plate equations with critical exponent on the unbounded domain
was investigated by several authors in [4, [5 [IT]. In [I2| [I3], the authors discussed
the existence of compact attractors for the autonomous and non-autonomous plate
equations in a bounded domain, respectively. For the best of our knowledge, the
existence of bi-space global attractor and exponential attractor of has not been
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published. Therefore, it is necessary to continue researching. As we know, existence
and regularity of global attractors of the wave equations with strong damping have
been studied in [6] 7, 14 15, [16]. The authors in [T14] proved the existence of global
attractors for the wave equation when the nonlinearity is critical and g € L?(€2).
Then in [I6], they showed the existence of a global attractor when nonlinearity
is critical and g € H~1(£2); moreover, they showed the existence of exponential
attractor for g € L?(Q). In this article, we borrow the ideas and methods in
[T4 [16] to prove existence of bi-space global attractor for g € H~2(Q2) and bi-space
T-exponential attractor for g € L*(Q). For other results of attractors about the
dynamical systems, please refer the reader to [8, 9] [I5] and the references therein.

2. PRELIMINARIES

Let A = A? with domain D(A) = H3(Q)NH*(2). Consider the family of Hilbert
spaces D(A%/?), s € R with inner products and norms

('7 ')D(AS/Q) = (AS/2'7AS/2')a || ' ||D(AS/2) = ||"4S/2 ’ Ha

where (-,-) and || - || mean the L?(Q) inner product and norm respectively. For
convenience, we denote H, = D(A1+9)/2) x D(A%/?), Vs € R, whose norm is
|l |ls. In particular, Ho = H3(Q) x L?(2) and V = HZ(Q) x HZ(). Note that

D(A%/?) — D(A™?), for s >r;

D(A%/?) — LM/G-49)(Q) for s € [0, Z) 2.1)
Given s > r > ¢, for any € > 0, there exists C. = C¢(s,r,q) such that
| AT/ 20| < €| A%/ %ul| + C.||A% ), for any u € D(A%/?). (2.2)
For the nonlinear function f, we know that f allows the decomposition
f=rfo+ fi, (2.3)

where fo, f1 € C(R) and satisfy
|fo(w)| < C(Ju| + |ul®) for all u € R, (2.4)
fo(w)u >0 forall u € R,
|fi(w)] <C(1+Jul”) forallueR, v<9,

lim inf filw) > —\2, (2.7)

|lu| =00 U

where C' is a positive constant. Denote
.1 9—7y
= -, —% 2.8

o = min{3, =} (2.8)

Under the above assumptions, equation ([1.1]) has an unique weak solution satisfying
ue C([0,T),H3 (), uy € C([0,T],L*(Q)) N L3([0,T], HS()).

We also need the following properties.

Lemma 2.1 ([16]). Let T be a Hélder mapping from (2, |- ||1) to (2] - |l2) with
constant £ and Hélder exponent v € (0, 1]; that is,

||<7$1—<71‘2||2§$||$1—l‘2|"1y, Vxl,xgeﬁ”,
Then for any € C 2, the following estimates hold:
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(i) dimp(Z7E, |- |l2) < 2 dimp(E, |- [1);
(ii) if, further, {S(t)}i>0 is a semigroup on 2, satisfies S(t)Z" C X for all
t >0, then

disty. ,(7S(t) 2, TE) < 2% distﬂ.l‘l(S(t)%,E), Ve > 0, (2.9)

where disty., (-, ") is the Hausdorff semidistance of two sets with respect to
H : Hw t=1,2.

3. GLOBAL ATTRACTORS AND REGULARITY FOR g IN H~2({)

Since the injection i : L2(2) — H~2(Q) is dense, we know that for every g €

H~%(Q) and any n > 0, there is a g,, € L?(2) which depends on g and 7 such that

19 = gnlla—> <. (3.1)

We decompose the solution u(¢) of (L.1)) corresponding to initial data (ug,u1) as
u(t) = v"(t) + w(t), where v"(t)andw"(t) satisfy the following two equations

vp, + A% + A% + fo(v") = g — gy, (32)

(v"(0),v/(0)) = (uo,u1), v"[o0 =0 .

and
wi, + A%w] + A%w" + f(u) = fo(v") = gy,
(’U)TI(O),U}?(O)) = (Oa O)a wnlaﬂ =0.
We first recall some results for the bounded dissipative case.

Lemma 3.1. Let f satisfy ([1.2) and (L.3)), g € H=2(Q) and {S(t)}+>0 be the
semigroup generated by the weak solution of (L.1)) in the natural energy space Hy.

Then {S(t)}i>0 has a bounded absorbing set By in Hy; that is, for any bounded
subset B C Ho, there exists T = T(By) such that

S(t)B C By, Vt>T. (3.4)

(3.3)

The proof of the above lemma and the following corollary are similar to those in
[14, [16], so we omit them.

Corollary 3.2. Under the assumptions of Lemma for a given R > 0, there
exists Ko = Ko(R) and Ay = Ao(R), for ||zollo < R, the corresponding solution
S(t)zo = (u(t), ue(t)) satisfy

1S(t)z0ll0 < Ko, Vt € RY;

+oo
/ | Ay () |2y < Ao.
0

Next, we obtain the existence of the global attractors, so we need the following
asymptotic compactness result.

Lemma 3.3. For any € > 0, there is a n = n(e, g) such that the solutions of (3.2)
satisfy

oI + 1Av"[1* < Qo(llzollo)e™* +¢, ¥t >0, (3.5)

where the constant C' only depends on ||zollo and ||g — gnllp-2, Qo(-) s a nonde-
creasing function on [0,00).
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Proof. Multiplying (3.2) by (v + 6v") and integrating over 2, we have
1d §
335 (107 + 8072 + (L4 ) Av7 P 42 [ Pwm) + 3 Awr?
2 dt Q 2

A1

5(\ — 6)
A oM —9)

D (3.0)

1 112 &2 12
+ oA+ (S = 6= ) lfl +
2 2
2 1 112 6 7112
< dllg = gglif-2 + 7180717 + 1807,

where F(v") = fovn fo(s)ds.
Let ¢ be small enough, then from (3.6) we have the estimate

d
= (1o + 8012 + (1 + B)lj A2 + 2/ F(o"))
t Q

(3.7)
+ Cs([|Avf I + |Av"]?) < 4llg — gnll -
Multiplying (3.2)) by v,/ we can deduce that (similar to Lemma
[0 12+ [[Av"12 < @ ([l20llo, g — gnllzr—2) := Mo, ¥t >0. (3.8)
On the other hand, this inequality and (2.4)) yield
/F(U")dx < C/(|v”(t)\2+ " (8)[1)dz (3.9)
Q Q
which combining with (3.8]) imply
/F(v")dx < CMO/ |Av | dx. (3.10)
Q Q
Hence, from (3.7) and (3.10)), taking Cjs g, small enough, we have
d
G (e + a0+ @ o)l avP + 2 [ Fd)
Q
+ Coar (0l + 6072 + (1 + 6)]| Av|2 + 2/ F(u")dz) (3.11)
Q
<4llg - gnlF -
Applying Gronwall lemma, we obtain
2
o2+ 80717 + (1 + B0 +2 | F(o")de < Qullzglo)e ot 4 1 olnz,
Q 4057M0
Therefore, we can complete our proof by taking n? < 4Cj € in (3.1). O

Lemma 3.4. For any T > 0 and n > 0, there is a positive constant My = M, (T, n)
which depends on (T,n), such that the solutions of (3.3|) satisfy
lw(T) 4o + ] (D)5 < M, (3.12)

9—vy
)

Proof. According to Corollary [3.2] and Lemma

where ¢ = min{3,

[Aul| + |AV"|| < Mg, ¢ > 0. (3.13)
Multiplying (3.3) by A%w;, we have
1d o o+l o+1
5%(||A2w?||2+||f4 =w?) + |47 wf? (3.14)

= —(f(u) = fo0"), A7wi) + (g4, A7wi)).
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Recall that the nonlinear term f(u) satisfies
|(f(w) = fo(v"), A%w{!)| < |(f(u) — f(u7), A%wi)| + [(f1 ("), A7w)].
From (1.2)), (3.13]) and using the Hélder inequality, we have
[(f(u) = f(u7), A%wi)| < C/Q(l + ul® + [0"[%) [ A7w |

< CA A+ llullgoo + 0 Zo)llw™ ) g [ATw ] g

< C(1+ || Aul® + | A8 A%F w? | A%F w]|

otl 1 otl
< o, [ A w2 + A" |
In addition, noticing that -1~ <1, we obtain

|(f1(07), A7wil] < CA+[["]7 1o, JATwH| | 20
L9940

i+4o

o+1

S C+ (A M)A= w!|

o+1

1
< sy + 5147 ]2

Finally, for o < 1, we obtain

o 1 ofl
[(gn, A7) < Cllgy|I” + A wi|” (3.15)
Combining (3.14]) and (3.15)), it follows that

o+1 o+1

d o agrs o g2
Zr(AZ ]+ A7 0" ?) < Ca (AR w] | + [ A7 w"?) + Chy,.
Thus, we can complete our proof by applying Gronwall lemma. O
Using Lemmas [3.3] and [3.4] we have the following lemma.

Lemma 3.5. Let f satisfy (1.2) and (L.3), g € H=2(Q) and {S(t)}+>0 be the
semigroup generated by the weak solution of (1.1)) in the natural energy space Ho.
Then {S(t)}1>0 is asymptotically smooth in Hy.

To prove that the global attractors .7y, in Hy are bounded in V, we need the
following lemma.

Lemma 3.6. Under conditions of Lemma[3.5, and (1.2), (1.3), for every t > 0,

the following estimate holds:
min{1, t}[| Au||* + min{1, 2} [Juee[|* < Q(l|z0llo + gl ar-2),

where Q1(+) is a nondecreasing function on [0,00), and (u(t),u(t)) is the solution
corresponding to the initial data zg € Ho.

The results in the above lemma, are obtained suing the same derivation process

as in [I4, 16]. Combining Lemmas and according to the abstract

conclusion in [9, [T4] T6], we have the following theorem.

Theorem 3.7. Under the assumptions of Lemma {S(t)}+>0 has a global at-
tractor oy, in Ho, and oy, is bounded in V.

Next, we prove that %y, is a (Hop, V)-global attractor. First, By Theorem (3.7
and Lemma [3.6] we have the following statement.
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Lemma 3.8. Let f satisfy (1.2) and (1.3), g € H2(Q), then the semigroup
{S(t)}+>0 possesses (Ho,V)-bounded absorbing set, that is, there exists By C V
such that, for any bounded set B C Hy, there exists Ty = T1(B), there holds

S(t)BCBv, vt > Ti.

Therefore, to obtain the existence of (Hy, V)-global attractor, we only need prove
{S(t)}+>0 is (Ho, V)-asymptotic compactness and continuity.

Let By = UtZTBvS(t)BV, where T, = max{7y,1}, 77 is from Lemma
Then B, is bounded absorbing set, and positive invariant. At the same time, due
to Lemma and uniqueness of the solution, for any initial value (ug,u;) € By,
we have the estimate

2
lueell” < Cyimy g vt > 0.

H—2’

Lemma 3.9. Suppose that 2§ = (ull,ut) € By,n =1,2,... is convergent sequence
about H-norm, then for any t > 0, S(t)zg is convergent sequence about V-norm in
B;.
Proof. Suppose that (u’(t),uj(t))(i = 1,2) is the solution for the initial value
(ub,ul) € By, let z(t) = ul(t) — u?(t). Then z satisfy

2+ A%z + A%z + f(ul) = f(u®) =0, (3.16)
the corresponding initial condition (2(0), 2,(0)) = (u, ul) — (u3, u?)boundary value
conditions z|aq = 0.

Multiplying (3.16) by z:, we have
1Az]* = = (20, 2¢) — (A%2,20) — (f(u') = f(u?), 20).
Due to )
| = (e, 21) = (A%2,20)] < Jlzullllze]l + 18217 + 11Dz,

and
= () = )| <€ [ 1+ 0t = )|zl < Corll A2 + 1Az

we get
18ze]1* < Car(llzell + | Az]J),
where C)s only depends on || By|lp. By means of the continuity of semigroup S(t)

about Ho-norm and the arbitrariness of (ug, u}), we can easily obtain the results of
Lemma [3.9] hold. (]

So, according to Theorem [3.7 and Lemma[3.9] we have (Ho, V)-asymptotic com-
pactness.

Lemma 3.10. Under the assumptions of Lemmal[3.5, {S(t)}1>0 is (Ho, V)-asymptotic
compact.

Now we have the existence of (Hp, V)-Global Attractors:

Theorem 3.11. Let f satisfy (L.2)), (L.3), g € H=*(Q) and {S(t)}+>0 be the semi-
group generated by the weak solution of (L.1)) in the natural energy space Ho. Then
{S(t)}+>0 has a (Ho,V)-global attractor o7 ; that is, & is compact, invariant in V,
and attracts every bounded (in Hoy) subset of Ho under the V-norm.
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4. EXPONENTIAL ATTRACTOR FOR g IN L2({2)

In this section, we consider a slightly stronger (Hy, VV)-exponential attraction for
{S(#)}+>0. Borrowing the main idea and methods in [I4 I6] we prove the following
main results.

Theorem 4.1. Let g € L*(Q) and f satisfy , . Then there exists a set
& which is compact in V and bounded in D(A) x H3(Q), satisfying the following
conditions:
(i) & is positive invariant; i.e., S(t)€ C &, for all t > 0;
(ii)) dimp(&,V) < oo; i.e., € has finite fractal dimension in V;
(iil) there exists an increasing function Q:RT - Rt and a > 0 such that for
any subset B C Ho with sup, ¢p ||z0lln, < R there holds

~ 1
disty (S(t)B, &) < Q(R)%efat, for allt > 0.
Remark 4.2. From the proof of Theorem [41] given below, we can require in
Theorem that £ be bounded in D(A) x D(A).

We first state a crucial result about the asymptotic regularity of the solutions of
(1.1) with g € L?(€2), which can be found in [16].

Theorem 4.3 ([14,[16]). Let f satisfy ([1.2) and ([1.3)), g € L?(Q), By be a bounded
absorbing set of {S(t)}i>0 in the natural energy space H3(Q) x L?(Y). Then the
global attractor Ay, is bounded in D(A) x D(A). Moreover, there exists positive
constants M (which depends only on the HZ x L?-bounds of By) and v (which is
independent of By but may depend on the coefficients in (1.1)) ), and a set By, closed
and bounded in D(A) x D(A), such that

disty(S(t)Bo, B1) < Me ", Wt >0, (4.1)
where disty denotes the usual Hausdorff semidistance in Hy.

As a results, based on the regularity and exponential attraction results, Theorem
we can repeat the process in [6, [16] to prove the existence of the exponential
attractor in Hj for the critical case. That is,

Proposition 4.4. Let g € L?(Q) and f satisfy (1.2) and (1.3). Then the semigroup
{S(t)}+>0 has an exponential attractor & in Ho; that is,
(i) &o is positive invariant; i.e., S(t)Ey C &y, for all t > 0;
(ii) dimp (&, Ho) < 005 i.e., & has finite fractal dimension in Ho;
(iii) There exists an increasing function ¢ : R™ — R and po such that for
any subset B C Ho with sup, ¢p || 20|n, < R there holds
distys, (S(t)B, &) < Z(R)e "', Vvt > 0.
As in [0 [16], we have the following Lipschitz continuity in Hj.
Lemma 4.5. For any bounded subset B C Hy and each fized T' > 0, there exists a
positive constant Mr g which depends only on T and ||B||y, such tat
1S(T)z0 = S(T)z1llne < Mr,Bll20 — 21ll0, V20,21 € B. (4.2)
and, S(t) maps the bounded set of Hy into a bounded set of Hy, that is, there exists
an increasing function Q1 : RT — RT such that, for any subset B C Ho,

15(#)Bllro < Q1([Bllny), V= 0. (4.3)
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Thanks to Lemma [3.6] we can deduce the following Holder continuity.

Lemma 4.6. For any bounded subset B C Hy and each fized T > 0, the mapping
S(T) : (Ut=0St)B, || - [I1,) — (UesrS@)B, || - |lv) is i-Hélder continuous; that is,
there exists an increasing function Qr(+) : [0,00) — [0,00), which depends only on
T, such that

IS(T)20—S(T)21lly < Qr(IBllro)lz0—21ll00s  for all 29,21 € UizoS(t)B. (4.4)

Proof. From Lemma [3.6]we know that U;>7.5(t)B is bounded in V for every T > 0.
For any z' = (uf,ut) € Ho(i = 1,2), let (u;(t),u;,(u)) = S(t)z* be the correspond-
ing solution of (1.1)), and denote z(t) = w1 (t) — ua(t), then z satisfies

2+ A%z + A%z + f(ul) — f(u?) =0,
(Z(O),Zt(O)) = 21 — 22, Z‘@Q =0.

Multiplying (4.5) by z: and integrating over €2, we have

(4.5)

1Az < Hlzeellllzell + Azl Az] +/Q|f(ul) — f(ug)||z]-

From (1.2)) and using the Holder inequality, we have

/|f ) u2>||zt|<0/ (L4 Jur[® + fual®)l2l)

< Cullzllprollze] 1o
< Cul|Az][|[Azl],

where the constant C'j; depends only on the Hy-bounds of B. The above inequality
with Lemma and Lemma imply

[ Az]|* < My(]lz0 — 21l + ll20 — 21113y, ) < Mall20 — 21|70,

where Mj, My depend only on T and || B||+,; Which, noticing (4.2 again, implies
) 0

For convenience, we first iterate the following so-called T-exponential attractor.

Definition 4.7 ([I6]). Let X,Y be two Banach spaces, Y — X and {S(t)}:>0
be a semigroup on X. A set &7 C Y is called a (X,Y)r-exponential attractor for
{S(t)}+>0 if the following conditions hold:
(i) &r is compact in Y and positive invariant; that is, S(¢)Er C Er, for every
t > 0;
(ii) dimp(Er,Y) < oo; that is Er has finite fractal dimension in Y
(iii) There exists an increasing function Jr : Rt — RT and k£ > 0 such that, for
any set B C Xwithsup, g |20||x < R there holds

disty (S(t)B, Er) < Jr(R)e ", for all t > T.
Then, we have the existence of an (Hg, V)r-exponential attractor.

Lemma 4.8. Let f satisfy ([1.2) and (1.3), g € L?(Q). Then for each fized T > 0,
{S(t)}+>0 has an (Ho, V)r-exponential attractor.
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Proof. For each fixed T > 0, we will verify S(T)& is an (Hg, V)r-exponential
attractor, where & is the exponential attractor given in Proposition |4.4]

We verify that S(T)& satisfies all the conditions of Deﬁnition corresponding
to spaces Hy and V as follows

(1) The positive invariance of S(T")& is obvious since & is positive invariant;
The compactness of S(T)& in V follows from the compactness of & in Hy and
continuity (Lemma of S(T).

(2) Applying property (i) of Lemmal[2.1] the finiteness of dimp (S(T')€, V) follows
from Lemma and the finiteness of dimp(&y, Ho).

(3) For any bounded subset B € Hy, denote B = BUEy. Then from Lemma
we have S(T) : (Us>0S(t)B, |- #,) — (U= S(t)B, || -||v) is 3—Hélder continuous.
Hence, applying property (ii) of Lemma the exponential attraction of S(T")&
with respect to V-norm follows from the exponential attraction of & with respect
to Ho-norm immediately. O

Proof of Theorem[/.1. For any fixed Ty > 1, let Er, be the (Ho,V)r,-exponential
attractor obtained in Lemma Then we claim that Ep, satisfies conditions (i)-
(iii) of Definition

We need to verify only (iii). Let Jr,(-) and ko be the mapping and exponent
given in Definition [£.7] and Lemma corresponding to Ty. Note that there is a
to > 0 such that

e 2" < —, forallt>t.

Then, to complete the proof, we can set a = % and

Q) = U () + Qo + n ) + @1+ e ey + lgllir—))elto ™,
where Q(+) is given in Lemma [3.6|and Q1(-) is given in (£.3). O
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