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A WAVELET REGULARIZATION METHOD FOR AN INVERSE
HEAT CONDUCTION PROBLEM WITH CONVECTION TERM

WEI CHENG, YING-QI ZHANG, CHU-LI FU

Abstract. In this article, we consider an inverse heat conduction problem

with convection, which is ill-posed; i.e., the solution does not depend con-

tinuously on the given data. A special projection dual least squares method
generated by the family of Shannon wavelets is applied to formulate an ap-

proximate solution. Also an optimal-order estimate for the error between the

approximate solution and exact solution is obtained.

1. Introduction

In many industrial applications it is needed to determine the temperature on
the surface of a body, where the surface is inaccessible for measurements [2]. In
this case, it is necessary to determine the surface temperature from a measured
temperature history at a fixed location inside the body. This is called an inverse
heat conduction problem (IHCP) and has been an interesting subject recently. The
standard problem is to determine the temperature u in the sideways heat equation

ut = uxx, x > 0, t > 0,

u(x, 0) = 0, x ≥ 0,

u(1, t) = g(t), t ≥ 0,

u(x, t) remains bounded as x→∞,

(1.1)

which has been considered by many authors; see [3, 5, 6, 10, 12, 13, 14] and the
references therein.

In this article we consider a non-standard inverse heat conduction problem: A
heat conduction problem with convection term in a quarter plane which appears in
some applied subjects [1, 8, 15, 16],

ut + ux = uxx, x > 0, t > 0,

u(x, 0) = 0, x ≥ 0,

u(1, t) = g(t), t ≥ 0,

u(x, t) remains bounded as x→∞,

(1.2)
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where the convection term ux relates to a fluid going through the body [1]. We want
the temperature distribution in the interval [0, 1) for problem (1.2). This problem
is ill-posed problem in the sense that small perturbations in the data may cause
dramatically large errors in the solution. Details can be seen in [8].

Xiong and his colleagues investigated (1.2) by the central difference method in
[15, 16]. Regińska [11] solved (1.1) in the interval [0, 1) by applying the wavelet dual
least squares method, which is based on the family of Meyer wavelets. This regu-
larization method has also been used for solving an unknown source identification
problem by Dou and Fu [4]. In this paper, we solve (1.2) in the interval [0, 1) by
determining the temperature distribution using a wavelet dual least squares method
generated by the family of Shannon wavelets.

To the best of our knowledge, so far most theoretical results concerning the error
estimates of regularization methods in the literature are of Hölder type; i.e., the
approximate solution ν and the exact solution u satisfy

‖u(x, ·)− ν(x, ·)‖ ≤ 2E1−xδx

where E is an a priori bound on u(0, t). However, from the inequality mentioned
above we know that when x→ 0+ the accuracy of the regularized solution becomes
progressively lower. At x = 0, it merely implies that the error is bounded by 2E; i.e.,
the convergence of the regularized solution at x = 0 is not proved. In this paper, we
apply the wavelet dual least squares method to stabilize the problem (1.2). Taking
suitable regularization parameter, we not only obtain the Hölder continuity with
p = 0 in (1.3) for 0 < x < 1, but also get a logarithmic Hölder convergence error
estimate with p > 0 for 0 ≤ x < 1, especially gain the logarithmic type convergence
estimate on the boundary x = 0. In a sense, this is an improvement of known result
in [6], and as our aim here is to obtain only stability estimate.

As we consider (1.2) in L2(R) with respect to variable t, we extend u(x, ·),
g(·) := u(1, ·), f(·) := u(0, ·), and other functions of variable t appearing in the
paper to be zero for t < 0. By a solution of (1.2) we understand a function u(x, t)
satisfying (1.2) in the classical sense; and for every fixed x ∈ [0, 1), the functions
u(x, ·) belongs to L2(R). Throughout the paper, we assume that for the exact g,
the solution u exists and satisfies an a-priori bound

‖f(·)‖p := ‖u(0, ·)‖p ≤ E, p ≥ 0, (1.3)

where ‖f(·)‖p is defined by

‖f(·)‖p :=
(∫ ∞
−∞

(1 + ξ2)p|f̂(ξ)|2dξ
)1/2

.

Since g is measured by the thermocouple, there will be measurement errors, and
we would actually have as data some function gδ ∈ L2(R), for which

‖gδ(·)− g(·)‖ ≤ δ, (1.4)

where the constant δ > 0 represents a bound on the measurement error, and ‖ · ‖
denotes the L2(R) norm and

ĥ(ξ) =
1√
2π

∫ ∞
−∞

e−iξth(t) dt

is the Fourier transform of function h(t). For the uniqueness of solution, we require
that ‖u(x, ·)‖ be bounded [7], which implied that u(x, ·)|x→∞ is bounded. The
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solution of problem (1.2) is given by its Fourier transform [8, 15]:

û(x, ξ) = e(1−x)θ(ξ) ĝ(ξ), (1.5)

where

θ(ξ) =
√
iξ + 1/4− 1/2

= (1/2)
[

4
√

1 + 16ξ2(cos(β/2) + i sin(β/2))− 1
]
, ξ ∈ R,

(1.6)

β = arg(1 + 4iξ), tanβ = 4ξ, −π/2 < β < π/2 ξ ∈ R, (1.7)

cos(β/2) =

√√
1 + 16ξ2 + 1

√
2 4
√

1 + 16ξ2
, ξ ∈ R, (1.8)

sin(β/2) = σ

√√
1 + 16ξ2 − 1

√
2 4
√

1 + 16ξ2
, ξ ∈ R, σ = sign(ξ). (1.9)

It is easy to verify from (1.5) and (1.7) that

f̂(ξ) = eθ(ξ)ĝ(ξ), ξ ∈ R. (1.10)

The following lemma will be used in our proofs.

Lemma 1.1 ([8]). Let θ(ξ) be given by (1.6), then there holds

e−x
√
|ξ|/2 ≤ |e−xθ(ξ)| ≤

√
ee−x

√
|ξ|/2, 0 ≤ x ≤ 1, ξ ∈ R. (1.11)

To formulate problem (1.2) for x ∈ [0, 1) in terms of an operator equation in the
space X = L2(R), we define an operator Kx : u(x, ·) 7→ g(·), i.e.,

∀u(x, ·) ∈ X, Kxu(x, t) = g(t), 0 ≤ x < 1. (1.12)

From (1.5), we obtain

̂Kxu(x, ξ) = e−(1−x)θ(ξ)û(x, ξ) = ĝ(ξ) 0 ≤ x < 1. (1.13)

Denote ̂Kxu(x, ξ) := K̂xû(x, ξ), and we can see that K̂x : L2(R) 7→ L2(R) is a
multiplication operator,

K̂xû(x, ξ) = e−(1−x)θ(ξ)û(x, ξ). (1.14)

Lemma 1.2. Let K∗x be the adjoint to Kx, then K∗x corresponds to the following
problem where the left-hand side ut of problem (1.2) is replaced by −Ut, says

−Ut + Ux = Uxx, x >, t > 0,

U(x, 0) = 0, x ≥ 0,

U(1, t) = g(t), t ≥ 0,

U(x, t)remains bounded as x→∞,

(1.15)

and
K̂∗x = e−(1−x)θ(ξ). (1.16)

Proof. By (1.14) and the relations

〈Kxu, υ〉 = 〈K̂xû, υ̂〉 = 〈û, K̂x

∗
υ̂〉 = 〈u,K∗xυ〉 = 〈û, K̂∗xυ̂〉,

we have the adjoint operator K∗x of Kx in frequency domain is

K̂∗x = K̂x

∗
= e−(1−x)θ(ξ).
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On the other hand, Problem (1.15) can be formulated, in frequency space, as follows:

−iξÛ + Ûx = Uxx, x >, ξ ∈ R,

Û(x, 0) = 0, x ≥ 0,

Û(1, ξ) = g(ξ), ξ ∈ R,

Û(x, ξ) remains bounded as x→∞.

(1.17)

Problem (1.2) can be formulated, in the frequency space as

iξû+ ûx = uxx, x >, ξ ∈ R,
û(x, 0) = 0, x ≥ 0,

û(1, ξ) = g(ξ), ξ ∈ R,
û(x, ξ) remains bounded as x→∞

(1.18)

Taking the conjugate operator for problem (1.18), we realize that Û(x, ξ) = û(x, ξ).
Then, with (1.5), we conclude that

Û(x, ξ) = û(x, ξ) = e(1−x)θ(ξ)ĝ(ξ);

i.e.,

ĝ(ξ) = e−(1−x)θ(ξ) Û(x, ξ) = K̂∗xÛ(x, ξ) := K̂∗xU. (1.19)

This completes the proof. �

2. Wavelet dual least squares method

In this section we stabilize the non-standard inverse heat conduction problem
(1.2) in the interval 0 ≤ x < 1 under condition (1.3) by a wavelet dual least squares
method.

2.1. Dual least squares method. For an operator equation Ku = g, K : X =
L2(R) 7→ X = L2(R), a general projection method is generated by two subspace
families {Vj} and {Yj} of X and the approximate solution uj ∈ Vj is defined to be
the solution of the problem

〈Kuj , y〉 = 〈g, y〉, ∀ y ∈ Yj , (2.1)

where 〈·, ·〉 denotes the inner product in X. If Vj ⊂ R(K∗) and subspaces Yj are
chosen in such a way that

K∗Yj = Vj .

Then we obtain a special case of projection method known as the dual least squares
method. If {ψλ}λ∈Ĩj is an orthogonal basis of Vj and yλ is the solution of the
equation

K∗yλ = kλψλ, ‖yλ‖ = 1, (2.2)

the approximate solution is explicitly given by the expression

uj =
∑
λ∈Ĩj

〈g, yλ〉
1
kλ
ψλ. (2.3)
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2.2. Shannon wavelets. The Shannon scaling function is φ = sin(πt)
πt and its

Fourier transform is

φ̂(ξ) =

{
1, |ξ| ≤ π,
0, otherwise.

(2.4)

The corresponding wavelet function ψ is given by its Fourier transform

ψ̂(ξ) =

{
e−i

ξ
2 , π ≤ |ξ| ≤ 2π,

0, otherwise.
(2.5)

Let us list some notation: φj,k(t) := 2j/2φ(2jt − k), ψj,k(t) := 2j/2ψ(2jt − k),
j, k ∈ Z, Ψ−1,k := φ0,k and Ψl,k := ψl,k for l ≥ 0, the index set

Ĩ = {{j, k} : j, k ∈ Z} ⊂ Z2,

ĨJ = {{j, k} : j = −1, 0, . . . , J − 1; k ∈ Z} ⊂ Z2.
(2.6)

Due to the equality VJ = VJ−1⊕WJ−1 = VJ−2⊕WJ−2⊕WJ−1 = . . . = V0⊕W1⊕
. . .⊕WJ−1, we can define the subspaces

VJ = span{Ψλ}λ∈ĨJ . (2.7)

We define an orthogonal projection PJ : L2(R)→ VJ :

PJϕ =
∑
λ∈ĨJ

〈ϕ,Ψλ〉Ψλ, ∀ϕ ∈ L2(R), (2.8)

according to (2.3) we easily conclude uJ = PJu. From the point of view of an
application to the problem (1.2), the important property of Shannon wavelets is
the compactness of their support in the frequency space. Indeed, since

ψ̂j,k(ξ) = 2−j/2e−i2
−jkξψ̂(2−jξ), φ̂j,k(ξ) = 2−j/2e−i2

−jkξφ̂(2−jξ), (2.9)

it follows that for any k ∈ Z.

supp(ψ̂j,k) = {ξ : π2j ≤ |ξ| ≤ π2j+1}, supp(φ̂j,k) = {ξ : |ξ| ≤ π2j}. (2.10)

From (2.8), PJ can be seen as a low pass filter. The frequencies with greater than
π2J+1 are filtered away.

Theorem 2.1. If u(x, t) is the solution of (1.2) satisfying the condition ‖u(0, ·)‖p ≤
E, then for any fixed x ∈ [0, 1),

‖u(x, ·)− PJu(x, ·)‖ ≤
√
e (2J+1)−p e−x

√
1
2π2JE. (2.11)

Proof. From (2.8), we have

u(x, ·) =
∑
λ

〈u(x, ·),Ψλ〉Ψλ,

PJu(x, ·) =
∑
λ∈ĨJ

〈u(x, ·),Ψλ〉Ψλ.

Due to Parseval relation and (1.5) (1.10) (1.11) (1.3), we obtain

‖u(x, ·)− PJu(x, ·)‖

= ‖û(x, ·)− P̂Ju(x, ·)‖

= ‖
∑
λ∈Ĩ

〈û, Ψ̂λ〉Ψ̂λ −
∑
λ∈ĨJ

〈û, Ψ̂λ〉Ψ̂λ‖
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= ‖
∑

λ∈Ĩj≥J+1

〈û, Ψ̂λ〉Ψ̂λ‖

= ‖
∑

λ∈Ĩj≥J+1

〈e(1−x)θ(ξ) ĝ(·), Ψ̂λ〉Ψ̂λ‖

= ‖
∑

λ∈Ĩj≥J+1

〈e−xθ(ξ) f̂(·), Ψ̂λ〉Ψ̂λ‖

≤ sup
π2J≤|ξ|≤π2J+1

[
|ξ|−p|e−xθ(ξ)|

]∥∥ ∑
λ∈Ĩj≥J+1

〈(1 + (·)2)p/2f̂(·), Ψ̂λ〉Ψ̂λ

∥∥
≤ sup
π2J≤|ξ|≤π2J+1

√
e|ξ|−pe−x

√
|ξ|/2E

≤
√
e(2J+1)−pe−x

√
π2J/2E.

The proof is complete. �

2.3. Subspaces Yj. In this section, we present some properties of the subspaces
Yj . According to K∗Yj = Vj , the subspaces Yj are spanned by ρλ, λ ∈ ĨJ , where

K∗ρλ = Ψλ, kλ = ‖ρλ‖−1, yλ =
ρλ
‖ρλ‖

= kλρλ. (2.12)

The value ρλ can be determined by solving the parabolic equation (see Lemma 1.2)

−Ut + Ux = Uxx, x >, t > 0,

U(x, 0) = 0, x ≥ 0,

U(1, t) = Ψj,k(t), t ≥ 0,

U(x, t) remains bounded as x→∞.

(2.13)

Because supp ψ̂j,k is compact, the solution exists for any t ∈ (0,∞). Similarly the
solution of the adjoint equation is unique. So for a given Ψλ, ρλ can be uniquely
determined according to (2.13), and

ρ̂λ = e(1−x)θ(ξ)Ψ̂λ(ξ) ⇔ ŷλ = e(1−x)θ(ξ)kλΨ̂λ(ξ), λ = {j, k}. (2.14)

The approximate solution for noisy data gδ is explicitly given by

PJu
δ(x, t) = uδJ =

∑
λ∈ĨJ

〈uδ, Ψλ〉Ψλ =
∑
λ∈ĨJ

〈gδ, yλ〉
1
kλ

Ψλ. (2.15)

We call it the wavelet dual least squares approximation solution of problem (1.2)
in the interval 0 ≤ x < 1.

3. Error estimates

In this section we estimating the error ‖PJuδ − PJu‖.

Theorem 3.1. If gδ is noisy data satisfying ‖g(·)− gδ(·)‖ ≤ δ, then for any fixed
x ∈ [0, 1),

‖PJuδ − PJu‖ ≤ c4e(r−r1)
√
π2J/2δ. (3.1)
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Proof. From (2.14), we obtain ŷλ = e(1−x)θ(ξ) kλΨ̂λ. Note that PJuδ given by
(2.15), PJu given by (2.3) and (1.11), for 0 ≤ x < 1, we have

‖PJuδ(x, ·)− PJu(x, ·)‖ = ‖
∑
λ∈ĨJ

〈gδ − g, yλ〉
1
kλ

Ψλ‖

= ‖
∑
λ∈ĨJ

〈ĝδ − ĝ, ŷλ〉
1
kλ

Ψ̂λ‖

= ‖
∑
λ∈ĨJ

〈ĝδ − ĝ, e(1−x)θ(ξ) kλΨ̂λ〉
1
kλ

Ψ̂λ‖

≤ sup
π2J−1≤|ξ|≤π2J

|e(1−x)θ(ξ)| ·
∥∥ ∑
λ∈ĨJ

〈ĝδ − ĝ, Ψ̂λ〉Ψ̂λ

∥∥
≤ sup
π2J−1≤|ξ|≤π2J

∣∣e(1−x)θ(ξ)∣∣ · ‖P̂J(ĝδ − ĝ)‖

≤ sup
π2J−1≤|ξ|≤π2J

∣∣e(1−x)θ(ξ)∣∣ · δ
≤ sup
π2J−1≤|ξ|≤π2J

e(1−x)
√
|ξ|/2δ

≤ e(1−x)
√
π2J/2δ.

This completes the proof. �

We now give the following result which is the main conclusion of this article.

Theorem 3.2. Let u be the exact solution of (1.2) and let PJuδ be given by (2.15).
Let the measured data gδ(t), satisfy the condition (1.4) at x = 1, and the a priori
condition (1.3) hold. If we select the regularization parameter

J = log2

[ 2
π

(
ln
(E
δ

(ln
E

δ
)−2p

))2]
, (3.2)

then for any fixed x ∈ [0, 1),

‖u(x, ·)− PJuδ(x, ·)‖ ≤ E1−xδx
(

ln
E

δ

)−2p(1−x)(√
e+ 1 + o(1)

)
as δ → 0. (3.3)

Proof. Combining Theorem 3.1 with Theorem 2.1, and noting the choice (3.2) of
J , we have

|u(x, ·)− PJuδ(x, ·)‖

≤
√
e(2J+1)−p e−x

√
1
2π2JE + e(1−x)

√
π2J/2δ

≤ E
√
e
(

ln
(E
δ

(
ln
E

δ

)−2p))−2p(E
δ

(
ln
E

δ

)−2p
)−x

+ δ
(E
δ

(
ln
E

δ

)−2p
)1−x

≤ E1−xδx
(

ln
E

δ

)−2p(1−x)
{ √

e(ln E
δ )2p(

ln
(
E
δ

(
ln E

δ

)−2p))2p + 1
}
.
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Note that
ln E

δ

ln
(
E
δ

(
ln E

δ

)−2p
) =

ln E
δ

ln E
δ − 2p ln

(
ln E

δ

) → 1 as δ → 0;

therefore, for δ → 0,

‖u(x, ·)− PJuδ(x, ·)‖ ≤ E1−xδx
(

ln
E

δ

)−2p(1−x) (
√
e+ 1 + o(1)).

The proof is complete. �

Remark 3.3. (i) When p = 0 and 0 < x < 1, estimate (3.3) is a Hölder stability
estimate given by

‖u(x, ·)− PJuδ(x, ·)‖ ≤ (
√
e+ 1)E1−xδx. (3.4)

(ii) When p > 0 and 0 ≤ x < 1, estimate (3.3) is a logarithmical Hölder stability
estimate.

(iii) When p > 0 and x = 0, estimate (3.3) becomes

‖u(0, ·)−PJuδ(0, ·)‖uδ(x, ·)‖ ≤ E
(

ln
E

δ

)−2p(
√
e+ 1 + o(1))→ 0 as δ → 0. (3.5)

We can see this estimate is a logarithmical stability estimate similar to the conver-
gence estimate in [9].

Remark 3.4. In general, the a-priori bound E is unknown in practice. In this
case, with

J = log2

[ 2
π

(
ln
(1
δ

(ln
1
δ

)−2p
))2]

, (3.6)

we have

‖u(x, ·)− PJuδ(x, ·)‖ ≤ δx
(

ln
1
δ

)−2p (1−x)(
√
eE + 1 + o(1))textasδ → 0,

where E is only a bounded positive constant and it is not necessary known, exactly.
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