
Electronic Journal of Differential Equations, Vol. 2013 (2013), No. 127, pp. 1–11.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

GROUND STATES FOR THE FRACTIONAL SCHRÖDINGER
EQUATION

BINHUA FENG

Abstract. In this article, we show the existence of ground state solutions for

the nonlinear Schrödinger equation with fractional Laplacian

(−∆)αu+ V (x)u = λ|u|pu in RN for α ∈ (0, 1).

We use the concentration compactness principle in fractional Sobolev spaces
Hα for α ∈ (0, 1). Our results generalize the corresponding results in the case

α = 1.

1. Introduction

This article is devoted to the study of existence of ground state solutions for the
fractional nonlinear Schrödinger equation

(−∆)αu+ V (x)u = λ|u|pu in RN ,

u ∈ Hα(RN ), u 6= 0,
(1.1)

where 0 < α < 1, 0 < p < 2N
N−2α , N ≥ 2, λ > 0 and V is a positive continu-

ous function. The fractional Laplacian can be characterized as F((−∆)αu)(ξ) =
|ξ|2αF(u)(ξ), where F is the Fourier transform.

Equation (1.1) arises in the study of the fractional Schrödinger equation

iψt + (−∆)αψ + (V (x) + ω)ψ = λ|ψ|pψ, (1.2)

when looking for standing waves solutions that have the form ψ(x, t) = eiωtu(x),
where ω ∈ R and u ∈ Hα, u 6= 0. This equation is a fundamental equation
of fractional quantum mechanics; see, e.g., [11, 12, 13]. The fractional quantum
mechanics has been discovered as a result of expanding the Feynman path integral,
from the Brownian-like to the Lévy-like quantum mechanical paths. In recent
years, more and more attention has been focusing on the study of the fractional
Schrödinger equation (1.2) from a pure mathematical point of view, see [6, 9, 10,
16, 17, 19] and the references therein.

As is known, for α = 1 the Lévy motion becomes Brownian motion and the
fractional Schrödinger equation becomes the standard Schrödinger equation

iψt + ∆ψ + (V (x) + ω)ψ = λ|ψ|pψ. (1.3)
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The corresponding elliptic equation reads

−∆u+ V (x)u = λ|u|pu. (1.4)

There exist a considerable amount of results in the physics and mathematics lit-
erature for those classical Schrödinger equations. In particular, the standing wave
solutions have been investigated by many authors. We only refer to [1, 14, 15, 20, 3].

Recently, fractional nonlinear Schrödinger equation (1.1) has begun to receive
increasing attention; for example, see [4, 5, 7, 8]. In [7], by using mountain pass
lemma, the authors derived the existence of positive solutions to nonlinear fractional
Schrödinger equation

(−∆)αu+ u = f(x, u). (1.5)

In particular, they used a comparison argument to overcome the difficulty that
the Palais-Smale sequences might lose compactness in the whole space RN . They
also analyzed regularity, decay, and symmetry properties of these solutions. Those
results heavily rely on the representation formula

u = K ∗ f =
∫

RN
K(x− ξ)f(ξ)dξ,

for solutions of the equation

(−∆)αu+ u = f in RN ,

where K is the Bessel kernel

K = F−1
( 1

1 + |ξ|2α
)
.

However, there is not a similar representation formula for equation (1.1) with gen-
eral potential V . In [5], following the argument of [1], the existence and sym-
metry results for bound state solutions to (1.1) with V ≡ 1 have been obtained
by applying symmetric decreasing rearrangement. However, this method fails
to work for equation (1.1) except that potential V is a spherically symmetric
function. The existence of bound state solutions to (1.1) with unbounded po-
tential have been derived by Lagrange multiplier method and Nehari’s manifold
approach in [4]. It is worth noticing that under the assumption that potential
V (x) → ∞ as |x| → ∞, the embedding H ↪→ Lq(RN ) is compact, where H =
{u ∈ L2;

∫
RN |ξ|

2α|û(ξ)|2dξ +
∫

RN V (x)|u(x)|2dx < ∞} and 2 ≤ q < 2N
N−2α . How-

ever, when potential V is a bounded function, it is well known that the embedding
H ↪→ Lq(RN ) is not compact. Therefore, how to overcome lack of compactness
in variational problem, which is of particular interest, is one of main technique
challenges in this paper.

Motivated by the above discussion, the goal of the current paper is to consider
the existence of ground states to (1.1) with a bounded potential V . Equation (1.1)
involves the fractional Laplacian (−∆)α, 0 < α < 1, which is a nonlocal operator.
A general approach to deal with this problem is to transform (1.1) into a local
problem via the Dirichlet-Neumann map, see [2, 18]. That is, for u ∈ Hα, one
considers the problem

−div(y1−2α∇v) = 0 in RN+1
+ ,

v(x, 0) = u on RN ,
(1.6)
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from where the fractional Laplacian is obtained by

(−∆)αu(x) = −bα lim
y→0+

y1−2αvy,

where bα is an appropriate constant.
In this article, we prefer to investigate equation (1.1) directly in Hα(RN ). This

enables us to prove the existence of solutions to (1.1) by an analogue argument as
the case α = 1. It is well known that concentration compactness principle due to
Lions is a powerful tool which is designed to pass to limit in variational problem
with lack of compactness. Recently, a version of concentration compactness of Lions
was used in [7] to treat fractional nonlinear Schrödinger equation (1.5). Thus, there
is no doubt that the method can be adapted and applied to deal with our problem.

Firstly, we consider the case where V is a constant. Without loss of generality,
we may assume λ = 1 and consider the following minimization problem:

− c = inf{E(u); u ∈M}, (1.7)

where the constricted set is

M := {u ∈ Hα;
∫

RN
|u(x)|2dx = µ},

and energy is

E(u) =
1
2

∫
RN
|ξ|2α|û(ξ)|2dξ − 1

p+ 2

∫
RN
|u(x)|p+2dx.

Any minimizer u ∈ Hα of (1.7) has to satisfy the corresponding Euler-Lagrange
equation

(−∆)αu+ ωu = |u|pu, (1.8)

with some Lagrange multiplier ω > 0. Notice that the existence of bound state
solutions of (1.8) have been obtained in [5], by using concentration compactness
principle in fractional Sobolev spaces, we obtain the existence of ground state so-
lutions to (1.8). More precisely, our result is as follows:

Theorem 1.1. Let 0 < p < 4α/N , N ≥ 2, and µ > 0. Then, the minimizing
problem (1.7) has a positive ground state solution u ∈ Hα, and it satisfies (1.8) for
some ω > 0. Moreover, every minimizing sequence (un)n>0 of (1.7) is relatively
compact in Hα up to translations; i.e., there exist a subsequence (unk)k>0 and
(yk)k>0 ⊂ RN such that unk(· − yk) → u in Hα as k → ∞. In particular, u is a
solution of (1.7).

Next, let us consider general situation. Let V : RN 7→ R be a continuous function
V > 0 and assume that

lim
|x|→∞

V (x) = V∞ > 0. (1.9)

Note that solutions of (1.1) correspond to critical points of the functional

E1(u) =
1
2

∫
RN
|ξ|2α|û(ξ)|2dξ +

1
2

∫
RN

V (x)|u(x)|2dx (1.10)

on Hα, restricted to the unit sphere

M1 = {u ∈ Hα;
∫

RN
|u(x)|p+2dx = 1}
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in Lp+2. In addition, if V (x) = V∞, then E1 is invariant under translations

u 7→ ux0 = u(x− x0).

In general, for any u ∈ Hα, after a substitution of variables

E1(ux0) =
1
2

∫
RN
|ξ|2α|û|2dξ +

1
2

∫
RN

V (x+ x0)|u|2dx

→ 1
2

∫
RN
|ξ|2α|û|2dξ +

1
2

∫
RN

V∞|u|2dx

as |x0| → ∞. Hence, we call

E∞1 (u) :=
1
2

∫
RN
|ξ|2α|û|2dξ +

1
2

∫
RN

V∞|u|2dx.

the functional at infinity associated with E1.

Theorem 1.2. Let 0 < p < 4α/(N − 2α), N ≥ 2 and V satisfy (1.9). Assume

c = inf
u∈M1

E1(u) < inf
u∈M1

E∞1 (u) := c∞. (1.11)

Then, there exists a positive solution u ∈ Hα of (1.1) for some λ > 0. More-
over, condition (1.11) is necessary and sufficient for the relative compactness of all
minimizing sequences for E1 in M1.

Notation. Throughout this paper, C > 0 will stand for a constant that may be
different from line to line when it does not cause any confusion. Since we deal with
RN , we often use the abbreviations Lr = Lr(RN ), Hα = Hα(RN ).

2. Preliminaries

In this section, we state and prove some preliminary results that will be used
later. First, we recall some definitions about the fractional Laplacian operator. For
any α ∈ (0, 1), the fractional Sobolev space Hα is defined by

Hα =
{
u ∈ L2;

∫
RN

(1 + |ξ|2α)|û(ξ)|2dξ <∞
}
,

endowed with the norm

‖u‖Hα =
{∫

RN
|u|2dx+

∫∫
RN×RN

|u(x)− u(y)|2

|x− y|N+2α
dx dy

}1/2
,

where the symbolˆstands for Fourier transform and the term

[u]Hα = ‖(−∆)
α
2 u‖L2 :=

{∫∫
RN×RN

|u(x)− u(y)|2

|x− y|N+2α
dx dy

}1/2

is the so-called Gagliardo semi-norm of u. Therefore, we often use the explicit
formula

〈(−∆)αu, u〉 :=
∫∫

RN×RN

|u(x)− u(y)|2

|x− y|N+2α
dx dy.

Next, we recall the definition of weak solutions u ∈ Hα to (1.1).

Definition 2.1. We say that u ∈ Hα is a weak solution of (1.1) if∫
RN
|ξ|2αûϕ̂dξ +

∫
RN

V (x)uϕdx =
∫

RN
|u|puϕdx,

for any ϕ ∈ C∞c (RN ).
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Following the argument of [14, Theorem 7.13], we can obtain the following lemma
which can be used to derive the existence of positive solution to (1.1).

Lemma 2.2. Let f, g are two real-valued functions in Hα with f 6= 0. Then〈
(−∆)α

√
f2 + g2,

√
f2 + g2

〉
≤ 〈(−∆)αf, f〉+ 〈(−∆)αg, g〉.

Equality holds if and only if f has a definite sign and g(x) = Cf(x) for a.e x ∈ RN
for some constant C.

By the similar proof as [14, Theorem 7.16], we have the following lemma:

Lemma 2.3. Let ψ be a bounded function in C∞(RN ) with bounded derivatives
and f ∈ Hα. Then the pointwise product of ψ and f ,

(ψ · f)(x) = ψ(x)f(x),

is also a function in Hα and

‖ψf‖Hα ≤ C(‖ψ‖L∞ + ‖∇ψ‖L∞)‖f‖Hα .

Finally, we extend the concentration compactness principle in H1 to fractional
Sobolev spaces Hα. The proof follows the argument of [3, Proposition 1.7.6], but
we need to operate some modifications due to the non-locality of the fractional
operators (−∆)α.

Lemma 2.4. Let N ≥ 2. Suppose (un)n>0 ⊂ Hα and satisfy∫
RN
|un(x)|2dx = µ > 0, (2.1)

sup
n>0
‖un‖Hα <∞. (2.2)

Then there exists a subsequence (unk)k>0, for which one of the following properties
holds.

(i) Compactness: There exists a sequence (yk)k>0 in RN such that, for any
ε > 0, there exists 0 < r <∞ with∫

|x−yk|≤r
|unk(x)|2dx ≥ µ− ε. (2.3)

(ii) Vanishing: For all r <∞, it follows that

lim
k→∞

sup
y∈RN

∫
|x−y|≤r

|unk(x)|2dx = 0.

(iii) Dichotomy: There exist a constant β ∈ (0, µ) and two bounded sequences
(vk)k>0, (wk)k>0 ⊂ Hα such that

supp vk ∩ suppwk = ∅, (2.4)

|vk|+ |wk| ≤ |unk |, (2.5)

‖vk‖2L2 → β, ‖wk‖2L2 → (µ− β) as k →∞, (2.6)

‖unk − vk − wk‖Lp → 0 for 2 ≤ p < 2N
N − 2α

, (2.7)

lim inf
k→∞

{
〈(−∆)αunk , unk〉 − 〈(−∆)αvk, vk〉 − 〈(−∆)αwk, wk〉

}
≥ 0. (2.8)



6 B. FENG EJDE-2013/127

Proof. We proceed along the lines of [3, Proposition 1.7.6]. Let (un)n>0 ⊂ Hα

satisfy (2.1) and (2.2). We define the sequence, (Qn)n>0, of Lévy concentration
functions by

Qn(r) := sup
y∈RN

∫
|x−y|<r

|un(x)|2dx, for all r ≥ 0. (2.9)

By a similar argument as that of [3, Proposition 1.7.6], there exists a subsequence,
(Qnk)k>0, such that

Qnk(r)→ Q(r) as k →∞ for all r ≥ 0,

where Q(r) is a nonnegative, nondecreasing function. Clearly, we see that

β := lim
r→∞

Q(r) ∈ [0, µ]. (2.10)

If β = 0, then the vanishing property is a direct consequence of the definition of
Qn(r). If β = µ, then compactness holds, see [3] for details.

Assume that β ∈ (0, µ) holds. We fix φ, ϕ ∈ C∞(RN ) such that 0 ≤ φ, ϕ ≤ 1
and

φ(x) ≡ 1 for 0 ≤ |x| ≤ 1, φ(x) ≡ 0 for |x| ≥ 2,

ϕ(x) ≡ 0 for 0 ≤ |x| ≤ 2, ϕ(x) ≡ 1 for |x| ≥ 3.

We set vk = φkunk and wk = ϕkunk , where

φk(x) = φ(
x− yk
rk

), ϕk(x) = ϕ(
x− yk
rk

).

Therefore, properties (2.4) and (2.5) are immediate. By using Lemma 2.3, we find
that (vk)k>0 and (wk)k>0 are two bounded sequences Hα. Following the argu-
ment of [3, Proposition 1.7.6], we can obtain (2.6). (2.7) follows by interpolation
inequality. Finally, we show (2.8). One easily verifies that

|vk(x)− vk(y)|2 = |φk(x)unk(x)− φk(y)unk(y)|2

≤ 1
2
|φk(x)− φk(y)|2(|unk(x)|2 + |unk(y)|2)

+
1
2

(|φk(x)|2 + |φk(y)|2)|unk(x)− unk(y)|2.

(2.11)

Similarly,

|wk(x)− wk(y)|2 ≤ 1
2
|ϕk(x)− ϕk(y)|2(|unk(x)|2 + |unk(y)|2)

+
1
2

(|ϕk(x)|2 + |ϕk(y)|2)|unk(x)− unk(y)|2.
(2.12)

Combining (2.11) and (2.12), we derive

〈(−∆)αunk , unk〉 − 〈(−∆)αvk, vk〉 − 〈(−∆)αwk, wk〉

=
1
2

∫∫
RN×RN

|unk(x)− unk(y)|2 − |vk(x)− vk(y)|2 − |wk(x)− wk(y)|2

|x− y|N+2α
dx dy

≥ −
∫∫

RN×RN

|ϕk(x)− ϕk(y)|2|unk(x)|2 + |φk(x)− φk(y)|2|unk(x)|2

|x− y|N+2α
dx dy.

(2.13)
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Therefore, to prove (2.8), it suffices to show that the last term in (2.13) converges
to zero as k approaches infinity. Indeed, note the fact that suppφk ∩ suppϕk = ∅,
by mean value theorem, we can estimate as follows:∫∫

RN×RN

|φk(x)− φk(y)|2|unk(x)|2

|x− y|N+2α
dx dy

≤
∫
|x−y|≤rk

|φk(x)− φk(y)|2|unk(x)|2

|x− y|N+2α
dx dy

+
∫
|x−y|>rk

|φk(x)− φk(y)|2|unk(x)|2

|x− y|N+2α
dx dy

≤ 1
r2
k

∫
|x−y|≤rk

|unk(x)|2

|x− y|N+2α−2
dx dy

+
1
rαk

∫
|x−y|>rk

|φk(x)− φk(y)|2|unk(x)|2

|x− y|N+α
dx dy

≤ 1
r2
k

∫
RN
|unk(x)|2dx

∫
|z|≤rk

|z|−(N+2α−2)dz

+
C

rαk

∫
RN
|unk(x)|2dx

∫
|x−y|>rk

1
|x− y|N+α

dy

≤ C(r−2α
k + r−αk )

∫
RN
|unk(x)|2dx→ 0 as k →∞.

Similarly,∫∫
RN×RN

|ϕk(x)− ϕk(y)|2|unk(x)|2

|x− y|N+2α
dx dy ≤ C(r−2α

k + r−αk )
∫

RN
|unk(x)|2dx

which converges to zero as k →∞. This completes the proof. �

3. Proof of main results

Proof of Theorem 1.1. We proceed in three steps.
Step 1. 0 < c < ∞. It is clear that M 6= ∅. Let u ∈ M and γ > 0, set
uγ = γN/2u(γx). It is straightforward to check that uγ ∈M and

E(uγ) =
γ2α

2

∫
RN
|ξ|2α|û|2dξ − γ

Np
2

p+ 2

∫
RN
|u|p+2dx.

Since Np < 4α, we derive E(uγ) < 0 for γ small, and so c > 0.
On the other hand, we deduce from an interpolation inequality, the embedding

theorem ‖u‖
L

2N
N−2α

≤ C‖(−∆)α/2u‖L2 and the Young inequality with ε that

E(u) ≥ 1
2

∫
RN
|ξ|2α|û|2dξ − C

(∫
RN
|ξ|2α|û|2dξ

)Np
4α ‖u‖p+2−Np2α

L2

≥ 1− ε
2

∫
RN
|ξ|2α|û|2dξ −K

(3.1)

for some 0 < K <∞. This implies c <∞.
Step 2. Estimates on the minimizing sequence (un)n>0 of (1.7). Due to un ∈ M ,
(un)n>0 is bounded in L2. It follows from (3.1) that (un)n>0 is bounded in Hα.
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Furthermore, thanks to c > 0, we obtain E(un) ≤ −c/2 for n sufficiently large. We
consequently derive that ∫

RN
|un|p+2dx ≥ p+ 2

2
c. (3.2)

Step 3. Conclusion. Let (un)n>0 be a minimizing sequence of (1.7). Note that
by scaling we may assume µ = 1. In view of Lemma 2.2, (|un|)n>0 is also a
minimizing sequence of (1.7). So, without loss of generality, we may suppose that un
is nonnegative. Let us now apply Lemma 2.4 to the minimizing sequence (un)n>0.

Firstly, we claim vanishing cannot occur. Indeed, if not, applying [7, Lemma
2.2], we have uk → 0 in Lp+2, which is a contradiction with (3.2).

Next, we show dichotomy cannot occur. If not, there exist a constant β ∈ (0, 1),
two sequences (vk)k>0 and (wk)k>0 introduced in Lemma 2.4. It follows from (2.7)
and (2.8) that

lim inf
k→∞

(E(uk)− E(vk)− E(wk)) ≥ 0.

Hence,
lim sup
k→∞

(E(vk) + E(wk)) ≤ −c. (3.3)

On the other hand, given u ∈ Hα and a > 0, we have

E(u) =
1
a2
E(au) +

ap − 1
p+ 2

∫
RN
|u|p+2dx.

Applying the above inequality with vk and ak = 1/‖vk‖L2 , due to akvk ∈ M , we
obtain

E(vk) ≥ −c
a2
k

+
apk − 1
p+ 2

∫
RN
|vk|p+2dx. (3.4)

Similarly,

E(wk) ≥ −c
b2k

+
bpk − 1
p+ 2

∫
RN
|wk|p+2dx, (3.5)

where bk = 1/‖wk‖L2 . Therefore, collecting (3.4) and (3.5), we see that

E(vk) + E(wk) ≥ −c(a−2
k + b−2

k ) +
apk − 1
p+ 2

∫
RN
|vk|p+2dx+

bpk − 1
p+ 2

∫
RN
|wk|p+2dx.

Note that a−2
k → β and b−2

k → 1− β by (2.6). It follows from 0 < β < 1 that

θ := min{β−p/2, (1− β)−p/2} > 1.

Therefore, we deduce from (2.7) and (3.2) that

lim inf
k→∞

(E(vk) + E(wk)) ≥ −c+
θ − 1
p+ 2

lim inf
k→∞

∫
RN
|uk|p+2dx ≥ −c+

θ − 1
2

> −c,

which contradicts (3.3).
Finally, since we have ruled out both vanishing and dichotomy, then we conclude

that indeed compactness occur. Applying Lemma 2.4, we deduce that for some
sequence (yk) ⊂ RN and some u ∈ Hα, such that unk(· − yk) → u in L2 and in
Lp+2. Together with the weak lower semicontinuity of the Hα norm, this implies

E(u) ≤ lim
k→∞

E(unk) = −c.
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In view of definition of c, we have E(u) = −c. In particular, E(unk) → E(u) and
it holds that

1
2

∫
RN
|ξ|2α|ûnk |2dξ →

1
2

∫
RN
|ξ|2α|û|2dξ as k →∞,

which implies unk(· − yk)→ u in Hα. This completes the proof. �

Proof of Theorem 1.2. Firstly, we show that (1.11) is necessary for the relative
compactness of all minimizing sequences for E1 in M1. Indeed, if c ≥ c∞, let
(un)n>0 be a minimizing sequence for E∞1 . Then (ũn)n>0, defined by ũn = un(·+
xn), is also a minimizing sequence for E∞1 . One easily verifies that

|E1(ũn)− E∞1 (ũn)| = 1
2

∫
RN

(V (x)− V∞)|ũn|2dx→ 0 as |xn| → ∞.

This implies (ũn) is a minimizing sequence for E1.
On the other hand, it is straightforward to check that

ũn → 0 in Lploc as |xn| → ∞.
Thus, (ũn)n>0 cannot be relatively compact, which is a contradiction with the fact
‖ũn‖Lp = 1.

We now show that condition (1.11) is sufficient. Let (un)n>0 be a minimizing
sequence for E1 in M1 such that

E1(un)→ c as n→∞.
By Lemma 2.2, we may assume un is nonnegative and un ⇀ u weakly in Lp+2. In
view of assumption of V , V is positive on RN . Hence we have

‖un‖2Hα ≤ C1E1(un) ≤ C <∞, (3.6)

and we may assume that un ⇀ u weakly in Hα and pointwise almost everywhere.
Denote un = vn + u. Applying Bresiz-Lieb lemma, we have∣∣∣ ∫

RN
|un|p+2dx−

∫
RN
|vn|p+2dx−

∫
RN
|u|p+2dx

∣∣∣→ 0 as n→∞.

Therefore, ∫
RN
|vn|p+2dx+

∫
RN
|u|p+2dx→ 1 as n→∞.

It follows that

E1(un) =
1
2

∫∫
RN×RN

|un(x)− un(y)|2

|x− y|N+2α
dx dy +

1
2

∫
RN

V (x)|un|2dx

=
1
2

∫
RN
|ξ|2α|v̂n|2dξ +

1
2

∫
RN
|ξ|2α|û|2dξ

+
∫∫

RN×RN

(vn(x)− vn(y))(u(x)− u(y))
|x− y|N+2α

dx dy

+
1
2

∫
RN

V (x)(|u|2 + 2uvn + |vn|2)dx

= E1(vn) + E1(u) + 〈(−∆)αvn, u〉+
∫

RN
V (x)uvndx.

(3.7)

We deduce from vn ⇀ 0 in Hα that

〈(−∆)αvn, u〉+
∫

RN
V (x)uvn dx→ 0. (3.8)
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Moreover, for any ε > 0, let

Ωε = {x ∈ RN ; |V (x)− V∞| ≥ ε}.
In view of the definition of V , Ωε is a bounded compact subset in RN , we obtain∫

RN
(V (x)− V∞)|vn|2dx ≤ V∞

∫
Ωε

|vn|2dx+ ε

∫
RN
|vn|2dx

≤ Cε+ o(1),
(3.9)

where o(1) denotes error terms such that o(1)→ 0 as n→∞. Collecting (3.7)-(3.9),
we have

E1(un) = E1(u) + E1(vn) + o(1) = E1(u) + E∞1 (vn) + o(1). (3.10)

By homogeneity, and setting β =
∫

RN |u|
p+2dx, if β > 0

E1(u) = β2/(p+2)E1(β−1/(p+2)u) ≥ β2/(p+2)c (3.11)

if 0 ≤ β < 1

E∞1 (vn) = (1− β)2/(p+2)E∞1 ((1− β)−1/(p+2)u) ≥ (1− β)2/(p+2)c∞ + o(1). (3.12)

Therefore, we deduce (3.10)-(3.12) that for all β ∈ [0, 1]

c = E1(un) + ◦(1) = E1(u) + E∞1 (vn) + o(1)

≥ β2/(p+2)c+ (1− β)2/(p+2)c∞ + o(1),

which, together with (1.11), implies β ∈ {0, 1}. If β = 0, then

c ≥ c∞ + o(1).

Thus β = 1; that is, un → u in Lp+2 and u ∈M1. By convexity of E1,

E1(u) ≤ lim inf
n→∞

E1(un) = c,

and u minimizes E1 in M1. Hence, E1(un) → E1(u). Combining this, (3.6) and
(3.10), we have

‖un − u‖2Hα ≤ C1E1(un − u) = C1(E1(un)− E1(u)) + o(1).

This implies un → u in Hα as n → ∞. The existence of solution to (1.1) follows
by Lagrange multiplier methods for some λ > 0. �
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