\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 14, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/14\hfil Existence and multiplicity of solutions] {Existence and multiplicity of solutions for Dirichlet problems involving the p(x)-Laplace operator} \author[M. Avci \hfil EJDE-2013/14\hfilneg] {Mustafa Avci} % in alphabetical order \address{Mustafa Avci \newline Department of Mathematics, Faculty of Science, Dicle University, 21280-Diyarbakir, Turkey} \email{mavci@dicle.edu.tr} \thanks{Submitted November 11, 2011. Published January 14, 2013.} \subjclass[2000]{35D05, 35J60, 35J70, 58E05} \keywords{$p(x)$-Laplace operator; variable exponent Lebesgue-Sobolev spaces; \hfill\break\indent variational approach; Fountain theorem} \begin{abstract} In this article, we study superlinear Dirichlet problems involving the $p(x)$-Laplace operator without using the Ambrosetti-Rabinowitz's superquadraticity condition. Using a variant Fountain theorem, but not including Palais-Smale type assumptions, we prove the existence and multiplicity of the solutions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} %\newtheorem{corollary}[theorem]{Corollary} %\newtheorem{definition}[theorem]{Definition} %\newtheorem{example}[theorem]{Example} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} We study the existence of infinitely many solutions for the Dirichlet boundary problems \begin{equation} \begin{gathered} -\Delta _{p(x)}u+| u|^{p(x) -2}u=f(x,u) \quad \text{in } \Omega ,\\ u=0\quad \text{on } \partial \Omega , \end{gathered}\label{P0} \end{equation} and \begin{equation} \begin{gathered} -\Delta _{p(x) }u=f(x,u) \quad \text{in } \Omega ,\\ u=0\quad \text{on } \partial \Omega , \end{gathered} \label{E0} \end{equation} where $\Omega $ is a bounded smooth domain of $\mathbb{R}^{N}$, $p\in C(\overline{\Omega }) $ such that $10$ and $\tau >p^{+}$ such that \[ 0<\tau F(x,s) \leq f(x,s) s,\quad |s| \geq M,\; x\in \Omega , \] where $f$ is the nonlinear term in the equation with $F(x,t)=\int_0^{t}f(x,s)ds$ for $x\in \Omega $ and $t\in\mathbb{R}$. \end{itemize} There are many articles dealing with superlinear Dirichlet problems involving $p(x)$-Laplacian, in which (AR) is the main assumption to get the existence and multiplicity of solutions \cite{Fan3,Fan4}. However, there are many functions which are superlinear but not satisfy (AR). It is well known that the main aim of using (AR) is to ensure the boundedness of the Palais-Smale type sequences of the corresponding functional. In the present paper we do not use (AR) and we know that without (AR) it becomes a very difficult task to get the boundedness. So, using a weaker assumption (G1) (see main results) instead of (AR), and some variant Fountain theorem, i.e., Theorem \ref{thm5}, we overcome these difficulties. \section{Abstract framework and preliminary results} We state some basic properties of the variable exponent Lebesgue-Sobolev spaces $L^{p(x) }(\Omega ) $ and $W^{1,p(x)}(\Omega ) $, where $\Omega \subset\mathbb{R}^{N}$ is a bounded domain (for more details, see \cite{Edmunds,Fan1,Fan2,Kovacik}). Set \[ C_{+}(\overline{\Omega }) =\{ p\in C(\overline{\Omega }): \inf p(x) >1,\forall x\in \overline{\Omega }\} . \] Let $p\in C_{+}(\overline{\Omega }) $ and denote \[ p^{-}:=\inf_{x\in \overline{\Omega }} p(x) \leq p(x) \leq p^{+}:=\sup_{x\in \overline{\Omega }} p(x) <\infty . \] For any $p\in C_{+}(\overline{\Omega }) $, we define the variable exponent Lebesgue space by \[ L^{p(x) }(\Omega ) =\{ u:\Omega \to\mathbb{R}\text{ is measurable, }\int_{\Omega }| u(x)| ^{p(x) }dx<\infty \} . \] Then $L^{p(x) }(\Omega ) $ endowed with the norm \[ | u| _{p(x) }=\inf \{ \mu>0:\int_{\Omega }| \frac{u(x) }{\mu } | ^{p(x) }dx\leq 1\} , \] becomes a Banach space. The modular of the $L^{p(x) }(\Omega ) $ space, which is the mapping $\rho :L^{p(x) }(\Omega ) \to \mathbb{R}$ defined by \[ \rho (u) =\int_{\Omega }| u(x)| ^{p(x) }dx,\quad \forall u\in L^{p(x) }(\Omega ) . \] \begin{proposition}[\cite{Fan1,Kovacik}] \label{prop1} If $u,u_n\in L^{p(x)}(\Omega )$ ($n=1,2,\dots$), then we have \begin{itemize} \item[(i)] $|u|_{p(x) }<1$ $(=1,>1)$ if and only if $\rho (u) <1$ $(=1,>1)$; \item[(ii)] $|u|_{p(x) }>1$ implies $|u|_{p(x)}^{p^{-}}\leq \rho (u) \leq |u|_{p(x) }^{p^{+}}$, $|u|_{p(x) }<1$ implies $|u|_{p(x) }^{p^{+}}\leq \rho (u) \leq |u|_{p(x) }^{p^{-}}$; \item[(iii)] $\lim_{n\to \infty }|u_n|_{p(x) }=0$ if and only if $\lim_{n\to \infty }\rho (u_n)=0$; $\lim_{n\to \infty }|u_n|_{p(x)}=\infty$ if and only if $\lim_{n\to \infty }\rho(u_n)=\infty$. \end{itemize} \end{proposition} \begin{proposition}[\cite{Fan1,Kovacik}] \label{prop2} If $u,u_n\in L^{p(x) }(\Omega ) $ ($n=1,2,\dots$), then the following statements are equivalent: \begin{itemize} \item[(i)] $\lim_{n\to \infty }|u_n-u|_{p(x) }=0$; \item[(ii)] $\lim_{n\to \infty }\rho (u_n-u)=0$; \item[(iii)] $u_n\to u$ in measure in $\Omega$ and $\lim_{n\to \infty}\rho (u_n)=\rho (u)$. \end{itemize} \end{proposition} The variable exponent Sobolev space $W^{1,p(x)}(\Omega) $ is defined by \[ W^{1,p(x)}(\Omega ) =\{u\in L^{p(x) }(\Omega) : |\nabla u|\in L^{p(x) }(\Omega ) \}, \] with the norm \[ \|u\|_{1,p(x) }=|u|_{p(x)}+|\nabla u|_{p(x)}, \] or equivalently \[ \|u\|_{1,p(x) }=\inf \big\{ \mu>0:\int_{\Omega }(| \frac{\nabla u(x) }{ \mu }| ^{p(x) }+| \frac{u(x) }{ \mu }| ^{p(x) }) dx\leq 1\big\} \] for all\ $u\in W^{1,p(x)}(\Omega ) $. The space $W_0^{1,p(x)}(\Omega ) $ is defined as the closure of $C_0^{\infty }(\Omega )$ in $W^{1,p(x)}(\Omega ) $ with respect to the norm $\|u\|_{1,p(x) }$. For $u\in W_0^{1,p(x)}(\Omega ) $, we define an equivalent norm \[ \|u\|=|\nabla u|_{p(x)}, \] since Poincar\'e inequality holds, i.e., there exists a positive constant $c$ such that \[ |u|_{p(x)}\leq c|\nabla u|_{p(x)}, \] for all $u\in W_0^{1,p(x)}(\Omega ) $, see \cite{Fan3}. \begin{proposition}[\cite{Fan1,Kovacik}] \label{prop3} If $1r_k>0. \end{gather*} Let us consider the $C^{1}$-functional $I_{\lambda }:E\to\mathbb{R}$ defined by \[ I_{\lambda }(u) :=A(u)-\lambda B(u),\quad \lambda \in [1,2] . \] Now we recall the following variant of the fountain theorem \cite[Theorem 2.1]{Zou}, which is the main tool in the proof of the main results of this article. We will use the following assumptions: \begin{itemize} \item[(F1)] $I_{\lambda }$ maps bounded sets to bounded sets uniformly for $\lambda \in [1,2] $. Moreover, $I_{\lambda }(-u)=I_{\lambda }(u)$ for all $(\lambda ,u)\in [1,2] \times E$; \item[(F2)] $B(u)\geq 0$ for all $u\in E$, and $A(u)\to \infty $ or $B(u)\to \infty $ as $\|u\|\to \infty, $ \item[(F3)] $B(u)\leq 0$ for all $u\in E$; $B(u)\to -\infty$ as $\|u\|\to \infty$. \end{itemize} \begin{theorem} \label{thm5} Assume the functional $I_{\lambda }$ satisfies {\rm (F1)}, and either {\rm(F2)} or {\rm (F3)}. For $k\geq 2$, let \begin{gather*} \Gamma _k:=\{ \psi \in C(B_k,E):\psi \text{ is odd, } \psi \big| _{\partial B_k} ={\rm id}\}, \\ c_k(\lambda ):=\inf_{\psi \in \Gamma _k}\max_{u\in B_k}I_{\lambda }(\gamma (u)),\\ b_k(\lambda ):=\inf_{u\in Z_k,\|u\|=r_k}I_{\lambda }(u),\\ a_k(\lambda ):=\max_{u\in Y_k,\|u\|=\rho _k}I_{\lambda}(u). \end{gather*} If $b_k(\lambda )>a_k(\lambda )$ for all $\lambda \in [1,2] $, then $c_k(\lambda )\geq b_k(\lambda )$ for all $\lambda \in [1,2] $. Moreover, for a.e $\lambda \in [1,2] $, there exists a sequence $\{ u_n^{k}(\lambda )\} _{n=1}^{\infty }$ such that $\sup_n\|u_n^{k}(\lambda )\|<\infty$, $ I_{\lambda }'(u_n^{k}(\lambda ))\to 0$ and $I_{\lambda }(u_n^{k}(\lambda ))\to c_k(\lambda )$ as $n\to \infty$. \end{theorem} \section{Main results} First, we study the Dirichlet boundary-value problem \begin{equation} \label{P} \begin{gathered} -\Delta _{p(x) }u+| u|^{p(x) -2}u=f(x,u) \quad \text{in } \Omega ,\\ u=0\quad \text{on } \partial \Omega , \end{gathered} \end{equation} where $\Omega $ is a bounded smooth domain of $\mathbb{R}^{N}$. We assume the following conditions: \begin{itemize} \item[(S1)] $f:\overline{\Omega }\times\mathbb{R}\to\mathbb{R}$ is a Carath\'eodory function and $| f(x,t)| \leq c(1+| t| ^{q(x) -1}) $ for a.e. $x\in \overline{\Omega }$ and all $t\in\mathbb{R}$, $f(x,t)t\geq 0$ for all $t>0$, where $p,q\in C_{+}(\overline{\Omega }) $ such that $p(x) 0$ uniformly for $x\in \overline{\Omega }$, where $p^{+}<\theta \leq q^{-}$; \item[(S3)] $\lim_{t\to 0}\frac{f(x,t)}{t^{p^{-}-1}}=0$ uniformly for $x\in \overline{\Omega }$, $\frac{f(x,u)}{u^{p^{-}-1}}$ is an increasing function of $t\in\mathbb{R}$ for all $x\in \overline{\Omega }$. \item[(S4)] $f(x,-t)=-f(x,t)$ for all $x\in \overline{\Omega }$, $t\in\mathbb{R}$. \item[(G1)] There exists a constant $\xi \geq 1$, such that for any $s\in [0,1] $, $t\in\mathbb{R}$, and for each $G_{\gamma }\in \mathcal{F} $, and all $\eta \in [p^{-},p^{+}] $, the inequality $\xi G_{\gamma }(x,t)\geq G_{\eta }(x,st) $ hold for a.e. $x\in \overline{\Omega }$, where \[ \mathcal{F} =\{ G_{\gamma }:G_{\gamma }(x,t) =f(x,t) t-\gamma F(x,t),\gamma \in [p^{-},p^{+}] \}. \] Note that when $p(x) \equiv p$ a constant, $\mathcal{F} =\{ f(x,t) t-pF(x,t)\} $ is consist of only one element. \end{itemize} \begin{remark} \label{rmk6} \rm It is not difficult to show that if $f(x,t) $ is increasing in $ t $, then (AR) implies (G1) when $t$ is large enough. However, in general, (AR) does not imply (G1); see \cite[Remark 3.3]{Zang}. \end{remark} \begin{theorem} \label{thm7} Assume that {\rm (S1)--(S4), (G1)} hold. Then problem \eqref{P} has infinitely many solutions $\{ u_k\} $ satisfying \[ J(u_k) =\int_{\Omega }\frac{1}{p(x) }(| \nabla u_k| ^{p(x) }+| u_k| ^{p(x) })dx-\int_{\Omega}F(x,u_k)dx\to \infty \quad \text{as } k\to \infty , \] where $J:W^{1,p(x)}(\Omega ) \to\mathbb{R}$ is the functional corresponding to problem \eqref{P} and $F(x,t)=\int_0^{t}f(x,s)ds$. \end{theorem} \begin{remark} \label{rmk8} \rm Condition (S1) implies that the functional $J$ is well defined and of class $C^{1}$. It is well known that the critical points of $J$ are weak solutions of \eqref{P}. Moreover, the derivative of $J$ is given by \[ \langle J'(u) ,\upsilon \rangle =\int_{\Omega }(| \nabla u| ^{p(x) -2}\nabla u\nabla \upsilon +| u| ^{p(x) -2}u\upsilon )dx-\int_{\Omega }f(x,u)\upsilon dx, \] for any $u,\upsilon \in W^{1,p(x)}(\Omega ) $. \end{remark} Second, we consider the Dirichlet boundary problem \begin{equation} \begin{gathered} -\Delta _{p(x) }u=f(x,u) \quad \text{in }\Omega ,\\ u=0\quad \text{on } \partial \Omega , \end{gathered} \label{E} \end{equation} where $\Omega $ is a bounded smooth domain of $\mathbb{R}^{N}$. We will use the following assumptions: \begin{itemize} \item[(E1)] $f:\overline{\Omega }\times\mathbb{R}\to\mathbb{R}$ is a Carath\'eodory function and $| f(x,t)| \leq c(1+| t| ^{q(x) -1})$ a.e. $x\in \overline{\Omega }$ and all $t\in\mathbb{R}$, where $p,q\in C_{+}(\overline{\Omega }) $ such that $p(x) \overline{b}_k>0$, and $\{ z_n\} _{n=1}^{\infty }\subset W^{1,p(x)}(\Omega ) $, such that \[ J_{\lambda }'(z_n)=0,\quad J_{\lambda }(z_n)\in [\overline{b}_k,\overline{c}_k] . \] \end{lemma} \begin{proof} It is easy to prove that, for some $\rho _k>0$ large enough, we have $a_k(\lambda ):=\max_{u\in Y_{k,}\|u\|=p_k}J_{\lambda }(u) \leq 0$ uniformly for $\lambda \in [1,2] $. Indeed, by the conditions (S1)--(S3), for any $\varepsilon >0$ there exists $C_{\varepsilon }>0$ such that $f(x,u)u\geq C_{\varepsilon}| u| ^{\theta }-\varepsilon | u|^{p^{-}}$. Further, on the finite dimensional subspace $Y_k$, we can find some constants $c>0$ such that \[ | u| _{\theta }\geq c\|u\|_{1,p(x) }, \quad | u| _{p^{-}}\leq c\| u\|_{1,p(x) },\quad \forall u\in Y_k. \] By Propositions \ref{prop1} and \ref{prop4}, we have \begin{align*} J_{\lambda }(u) &\leq \frac{1}{p^{-}}\int_{\Omega}(| \nabla u| ^{p(x) }+| u| ^{p(x) }) dx-\frac{\lambda C_{\varepsilon }}{ \theta }\int_{\Omega }| u| ^{\theta }dx+\frac{ \lambda \varepsilon }{p^{-}}\int_{\Omega }| u|^{p^{-}}dx \\ &\leq \frac{1}{p^{-}}\|u\|_{1,p(x) }^{p^{+}}- \frac{\lambda C_{\varepsilon }c^{\theta }}{\theta }\|u\| _{1,p(x) }^{\theta }+\frac{\lambda c^{p^{-}}}{p^{-}}\| u\|_{1,p(x) }^{p^{-}}\text{\ }. \end{align*} Since $\theta >p^{+}$, it follows that \[ a_k(\lambda ):=\max_{u\in Y_{k,}\|u\|_{1,p(x) } =\rho _k}J_{\lambda }(u) \to -\infty \quad \text{as }\|u\|_{1,p(x) }\to +\infty \] uniformly for $\lambda \in [1,2] $ and for all $u\in Y_k$. On the other hand, by conditions (S1) and (S3), for any $\varepsilon >0$ there exists $C_{\varepsilon }>0$ such that $| f(x,u)| \leq \varepsilon| u| ^{p^{-}-1}+C_{\varepsilon }| u|^{q(x) -1}$. Let \[ \beta _k:=\sup_{u\in Z_k,\|u\|_{1,p(x) }=1}| u| _{q(x) },\quad \vartheta _k:=\sup_{u\in Z_k,\|u\|_{1,p(x) }=1}| u| _{p^{-}}. \] Then $\beta _k\to 0$ and $\vartheta _k\to 0$ as $k\to \infty $ (see \cite{Fan4}). Therefore, when $u\in Z_k $ and $\|u\|_{1,p(x) }>1$, we have \begin{align*} J_{\lambda }(u) &\geq \frac{1}{p^{+}}\int_{\Omega}(| \nabla u| ^{p(x) }+|u| ^{p(x) }) dx -\lambda \varepsilon \int_{\Omega }| u| ^{p^{-}}dx -\lambda C_{\varepsilon }\int_{\Omega }| u| ^{q(x)}dx \\ &\geq \frac{1}{p^{+}}\|u\|_{1,p(x)}^{p^{-}}-c| u| _{p^{-}}^{p^{-}}-c| u| _{q(x) }^{q^{+}} \\ &\geq \frac{1}{p^{+}}\|u\|_{1,p(x)}^{p^{-}} -c\vartheta _k^{p^{-}}\|u\|_{1,p(x) }^{p^{-}} -c\beta _k^{q^{+}}\|u\|_{1,p(x) }^{q^{+}}, \end{align*} where $c=\max \{ 2\varepsilon ,2C_{\varepsilon }\} $. For sufficiently large $k$, we have $c\vartheta _k^{p^{-}}<\frac{1}{2p^{+}}$. Then, it follows \[ J_{\lambda }(u) \geq \frac{1}{2p^{+}}\|u\| _{1,p(x) }^{p^{-}}-c\beta _k^{q^{+}}\|u\|_{1,p(x) }^{q^{+}}. \] If we choose $r_k:=(2cq^{+}\beta _k^{q^{+}}) ^{\frac{1}{ p^{-}-q^{+}}}$, then for $u\in Z_k$ with $\|u\|_{1,p(x) }=r_k$, we obtain \begin{align*} J_{\lambda }(u) &\geq \frac{1}{2p^{+}}(2cq^{+}\beta_k^{q^{+}}) ^{\frac{p^{-}}{p^{-}-q^{+}}} -c\beta _k^{q^{+}}(2cq^{+}\beta _k^{q^{+}}) ^{\frac{q^{+}}{p^{-}-q^{+}}} \\ &\geq \frac{q^{+}-p^{+}}{2p^{+}q^{+}}(2cq^{+}\beta _k^{q^{+}}) ^{\frac{p^{-}}{p^{-}-q^{+}}}:=\overline{b}_k, \end{align*} which implies \[ b_k(\lambda ):=\inf_{u\in Z_k,\|u\|_{1,p(x) }=r_k} J_{\lambda }(u) \to \infty \quad \text{as }k\to \infty \] uniformly for $\lambda $. So, by Theorem \ref{thm5}, for a.e. $\lambda \in [1,2] $, there exists a sequence $\{ u_n^{k}(\lambda )\} _{n=1}^{\infty }$ such that \begin{gather*} \sup_n \|u_n^{k}(\lambda )\|_{1,p(x) }<\infty ,\quad J_{\lambda }'(u_n^{k}(\lambda ))\to 0,\\ J_{\lambda }(u_n^{k}(\lambda )) \to c_k(\lambda )\geq b_k(\lambda )\geq \overline{b}_k\quad \text{as }n\to \infty . \end{gather*} Moreover, since $c_k(\lambda )\leq \sup_{u\in B_k}J_{\lambda }(u):=\overline{c}_k$ and $W^{1,p(x)}(\Omega ) $ is embedded compactly to $L^{q(x) }(\Omega ) $, and thanks to the standard arguments, $\{ u_n^{k}(\lambda )\} _{n=1}^{\infty} $ has a convergent subsequence. Hence, there exists $z^{k}(\lambda )$ such that $J_{\lambda }'(z^{k}(\lambda )) =0$ and $J_{\lambda }(z^{k}(\lambda )) \in [\overline{b}_k,\overline{c}_k] $. Consequently, we can find $\lambda _n\to 1$ and $\{ z_n\} $ desired as the claim. \end{proof} \begin{lemma} \label{lem11} $\{ z_n\} _{n=1}^{\infty }$ is bounded in $W^{1,p(x)}(\Omega ) $. \end{lemma} \begin{proof} We argue by contradiction. Passing to a subsequence if necessary, still denoted by $\{ z_n\} $, we may assume that $\| z_n\|_{1,p(x) }\to \infty $ as $n\to \infty $. Let $\{ \omega _n\} \subset W^{1,p(x)}(\Omega) $ and put $\omega _n:=\frac{z_n}{\|z_n\|_{1,p(x) }}$. Since $\|\omega _n\|_{1,p(x) }=1$, up to subsequences, we obtain \begin{gather*} \omega _n \rightharpoonup \omega \quad \text{in }W^{1,p(x)}(\Omega) , \\ \omega _n \to \omega \quad \text{in }L^{\gamma (x)}(\Omega ) , \\ \omega _n(x) \to \omega (x) \quad \text{a.e. }x\in \Omega . \end{gather*} Then, the main concern is whether $\{ \omega _n\} \subset W^{1,p(x)}(\Omega ) $ vanish or not. We shall prove that none of these alternatives can occur and this contradiction will prove that $\{\omega _n\} \subset W^{1,p(x)}(\Omega ) $ is bounded. If $\omega =0$, we can define a sequence $\{ t_n\} \subset\mathbb{R}$, as argued in \cite{Zang}, such that \begin{equation} J_{\lambda _n}(t_nz_{n)}:=\max_{t\in [0,1]}J_{\lambda _n}(tz_n) . \label{3.1} \end{equation} Let $\overline{\omega }_n:=(2p^{+}c)^{\frac{1}{p^{-}}}\omega _n$ with $c>0$. Then for $n$ is large enough, we have \begin{equation} \begin{split} J_{\lambda _n}(t_nz_n) &\geq J_{\lambda _n}(\overline{\omega }_n) \geq A((2p^{+}c)^{\frac{1}{p^{-}}}\omega_n) -\lambda _nB(\overline{\omega }_n) \\ &\geq \frac{1}{p^{+}}(2p^{+}c)A(\omega _n) -\lambda _nB(\overline{\omega }_n) \geq 2c-\lambda _nB( \overline{\omega }_n) \geq c, \end{split} \label{e3.2} \end{equation} which implies that $\lim_{n\to \infty } J_{\lambda_n}(t_nz_n) =\infty $ by the fact $c>0$ can be large arbitrarily. Noting that $J_{\lambda _n}(0) =0$ and $J_{\lambda _n}(z_n) \to c$, then $00$, we have \begin{align*} (\frac{1}{\overline{p}_n}B'(z_n) -B(z_n) ) &= \frac{1}{\overline{p}_n}\int_{\Omega}G_{\gamma _{z_n}}(x,z_n)dx \geq \frac{1}{\overline{p}_n\xi } \int_{\Omega }G_{\gamma _{t_nz_n}}(x,t_nz_n)dx \\ &= \frac{\overline{p}_{t_n}}{\overline{p}_n\xi } \big(\frac{1}{\overline{p}_{t_n}}B'(t_nz_n) -B( t_nz_n) \big) \to +\infty . \end{align*} This contradicts the following result of Lemma \ref{lem10}, \[ \lambda _n(\frac{1}{\ \overline{p}_n}B'( z_n) -B(z_n) ) =J_{\lambda _n}(z_n)-\frac{1}{ \overline{p}_n}\langle J_{\lambda _n}'(z_n),z_n\rangle =J_{\lambda _n}(z_n)\in [\overline{b}_k,\overline{c}_k] . \] If $\omega \neq 0$, since $J_{\lambda _n}'(z_n)=0$, we have, by Proposition \ref{prop1}, \begin{equation} \begin{split} 1-o(1) &=\int_{\Omega }\frac{f(x,z_n)z_n}{\varphi (z_n) }dx\text{ }\geq \int_{\Omega }\frac{ f(x,z_n)z_n}{\|z_n\|_{1,p(x) }^{p^{+}}}dx \\ &\geq \int_{\Omega }\frac{f(x,z_n)z_n}{\| z_n\|_{1,p(x) }^{\theta }}dx=\int_{\Omega } \frac{f(x,z_n)z_n}{| z_n| ^{\theta }}| \omega _n| ^{\theta }dx, \end{split} \label{e3.4} \end{equation} where $\varphi (z_n) :=\int_{\Omega }(| \nabla z_n| ^{p(x) }+| z_n| ^{p(x) }) dx$. Define the set $\Omega _0=\{ x\in \Omega :\omega (x)=0\} $. Then for $x\in \Omega \backslash \Omega _0=\{ x\in \Omega :\omega (x) \neq 0\} $, we have $|z_n(x) | \to +\infty $ as $n\to \infty $. Hence, by $(\mathbf{S}_{1}) $ and $(\mathbf{S}_2) $, we have \[ \frac{f(x,z_n)z_n}{| z_n| ^{\theta }}| \omega _n| ^{\theta }dx\to +\infty \quad \text{as }n\to \infty . \] Using Fatou's lemma and that $| \Omega \backslash \Omega_0| >0$, we obtain \begin{equation} \int_{\Omega \backslash \Omega _0}\frac{f(x,z_n)z_n}{ | z_n| ^{\theta }}| \omega _n| ^{\theta }dx\to +\infty \quad \text{as }n\to \infty . \label{e3.5} \end{equation} On the other hand, by condition (S2), there exists $c>-\infty $ such that $\frac{f(x,t)t}{t^{\theta }}\geq c$ for $t\in\mathbb{R}$ and a.e. $x\in \overline{\Omega }$. Moreover, we have $\int_{\Omega_0}| \omega _n| ^{\theta }dx\to 0\ $ as $n\to \infty $. Thus, there exists $\Lambda >-\infty $ such that \begin{equation} \int_{\Omega _0}\frac{f(x,z_n)z_n}{| z_n| ^{\theta }}| \omega _n| ^{\theta }dx\geq c\int_{\Omega _0}| \omega _n| ^{\theta }dx\geq \Lambda >-\infty . \label{e3.6} \end{equation} Combining \eqref{e3.4}, \eqref{e3.5} and \eqref{e3.6}, we obtain a contradiction. Therefore, $\{ z_n\}_{n=1}^{\infty }$ is bounded, and the proof is complete. \end{proof} \begin{thebibliography}{99} \bibitem{Acerbi} E. Acerbi, G. Mingione; \emph{Regularity results for stationary electrorheological fluids}, Arch. Ration. Mech. Anal. 164 (2002), 213-259. \bibitem{Ambrosetti} A. Ambrosetti, P. H. Rabinowitz; \emph{Dual variational methods in critical point theory and applications}, J. Funct. Anal. 173\textbf{\ }(14), 349-381. \bibitem{Antonsev} S. N. Antontsev, S. I. Shmarev; \emph{Elliptic equations and systems with nonstandard growth conditions: Existence, uniqueness and localization properties of solutions}, Nonlinear Anal. 65 (2006), 728--761. \bibitem{Chabrowski} J. Chabrowski, Y. Fu; \emph{Existence of solutions for $p(x)$-Laplacian problems on a bounded domain}, J. Math. Anal. Appl. 306 (2005), 604-618. \bibitem{Diening} L. Diening; \emph{Theoretical and Numerical Results for Electrorheological Fluids}, Ph. D. thesis, University of Frieburg, Germany, 2002. \bibitem{Edmunds} D. Edmunds and J. Rakosnik;\emph{Sobolev embeddings with variable exponent}, Studia Math. 143 (2000), 267-293. \bibitem{Fan1} X. L. Fan, J. S. Shen, D. Zhao; \textit{\ Sobolev embeddingtheorems for spaces $W^{k,p(x)} (\Omega)$}, J. Math. Anal. Appl. 262 (2001), 749--760. \bibitem{Fan2} X. L. Fan, D. Zhao; \emph{On the spaces $L^{p(x) }(\Omega ) $ and $W^{m,p(x) }(\Omega ) $}, J. Math. Anal. Appl. 263 (2001), 424--446. \bibitem{Fan3} X. L. Fan, Q. H. Zhang; \emph{Existence of solutions for $p(x)$-Laplacian Dirichlet problems}, Nonlinear Anal. 52 (2003), 1843-1852. \bibitem{Fan4} X. L. Fan and X. Han; \emph{Existence and multiplicity of solutions for $p(x) $-Laplacian equations in $\mathbb{R}^{N}$}, Nonlinear Analysis TMA, 59 (2004), 173-188. \bibitem{Halsey} T. C. Halsey; \emph{Electrorheological fluids}, Science 258 (1992), 761-766. \bibitem{Hasto} P. H\"{a}st\"{o}; \emph{The $p(x)$-Laplacian and applications}, J. Anal. 15 (2007), 53-62 (Special proceedings volume). \bibitem{Kovacik} O. Kov\u{a}\v{c}ik, J. R\u{a}kosnik; \emph{On spaces $L^{p(x)}$ and $W^{k,p(x)}$}, Czechoslovak Math. J. 41(116) (1991), 592--618. \bibitem{Mihailescu} M. Mih\u{a}ilescu, V. R\u{a}dulescu; \emph{A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids}, Proc. R. Soc. A 462 (2006), 2625--2641. \bibitem{Ruzicka} M. R\r{u}\v{z}i\v{c}ka; \emph{Electrorheological Fluids: Modeling and Mathematical Theory}, Lecture Notes in Mathematics, 1748, Springer-Verlag, Berlin, 2000. \bibitem{Zang} A. Zang; \emph{$p(x)$-Laplacian equations satisfying Cerami condition}, J. Math. Anal. Appl. 337 (2008), 547-555. \bibitem{Zhikov} V. V. Zhikov; \emph{Averaging of functionals of the calculus of variations and elasticity theory} (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), 675-710. \bibitem{Zou} W. Zou; \emph{Variant fountain theorems and their applications}, Manuscript math. 104 (2001), 343-358. \end{thebibliography} \end{document}