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EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR
DIRICHLET PROBLEMS INVOLVING THE P(X)-LAPLACE

OPERATOR

MUSTAFA AVCI

Abstract. In this article, we study superlinear Dirichlet problems involv-
ing the p(x)-Laplace operator without using the Ambrosetti-Rabinowitz’s su-

perquadraticity condition. Using a variant Fountain theorem, but not includ-

ing Palais-Smale type assumptions, we prove the existence and multiplicity of
the solutions.

1. Introduction

We study the existence of infinitely many solutions for the Dirichlet boundary
problems

−∆p(x)u+ |u|p(x)−2u = f(x, u) in Ω,
u = 0 on ∂Ω,

(1.1)

and
−∆p(x)u = f(x, u) in Ω,

u = 0 on ∂Ω,
(1.2)

where Ω is a bounded smooth domain of RN , p ∈ C(Ω) such that 1 < p(x) < N for
any x ∈ Ω and f is a Carathéodory function.

The study of differential equations and variational problems involving the p(x)-
Laplace operator −∆p(x)u := −div(|∇u|p(x)−2∇u), which is a natural generaliza-
tion of the p-Laplace operator, have attracted a special interest in recent years.
A lot of researchers have devoted their work to this area (see, e.g., [3, 4, 12, 14])
since there are some physical phenomena which can be modelled by such kind of
equations. In particular, we may mention some applications related to the study
of elastic mechanics and electrorheological fluids [1, 5, 11, 15, 17]. The appearance
of such physical models was facilitated by the development of variable exponent
Lebesgue Lp(x) and Sobolev spaces W 1,p(x).

Generally, to show the existence of solutions for Dirichlet problems which is su-
perlinear, it is essential to assume the following superquadraticity condition, which
is known as Ambrosetti-Rabinowitz’s type condition [2]:

2000 Mathematics Subject Classification. 35D05, 35J60, 35J70, 58E05.
Key words and phrases. p(x)-Laplace operator; variable exponent Lebesgue-Sobolev spaces;

variational approach; Fountain theorem.
c©2013 Texas State University - San Marcos.

Submitted November 11, 2011. Published January 14, 2013.

1



2 M. AVCI EJDE-2013/14

(AR) There exists M > 0 and τ > p+ such that

0 < τF (x, s) ≤ f(x, s)s, |s| ≥M, x ∈ Ω,

where f is the nonlinear term in the equation with F (x, t) =
∫ t

0
f(x, s)ds

for x ∈ Ω and t ∈ R.
There are many articles dealing with superlinear Dirichlet problems involving

p(x)-Laplacian, in which (AR) is the main assumption to get the existence and
multiplicity of solutions [9, 10]. However, there are many functions which are
superlinear but not satisfy (AR).

It is well known that the main aim of using (AR) is to ensure the boundedness
of the Palais-Smale type sequences of the corresponding functional. In the present
paper we do not use (AR) and we know that without (AR) it becomes a very
difficult task to get the boundedness. So, using a weaker assumption (G1) (see
main results) instead of (AR), and some variant Fountain theorem, i.e., Theorem
2.5, we overcome these difficulties.

2. Abstract framework and preliminary results

We state some basic properties of the variable exponent Lebesgue-Sobolev spaces
Lp(x)(Ω) and W 1,p(x)(Ω), where Ω ⊂ RN is a bounded domain (for more details,
see [6, 7, 8, 13]). Set

C+(Ω) = {p ∈ C(Ω) : inf p(x) > 1,∀x ∈ Ω}.

Let p ∈ C+(Ω) and denote

p− := inf
x∈Ω

p(x) ≤ p(x) ≤ p+ := sup
x∈Ω

p(x) <∞.

For any p ∈ C+(Ω), we define the variable exponent Lebesgue space by

Lp(x)(Ω) = {u : Ω→ R is measurable,
∫

Ω

|u(x)|p(x)dx <∞}.

Then Lp(x)(Ω) endowed with the norm

|u|p(x) = inf{µ > 0 :
∫

Ω

|u(x)
µ
|p(x)dx ≤ 1},

becomes a Banach space.
The modular of the Lp(x)(Ω) space, which is the mapping ρ : Lp(x)(Ω) → R

defined by

ρ(u) =
∫

Ω

|u(x)|p(x)dx, ∀u ∈ Lp(x)(Ω).

Proposition 2.1 ([7, 13]). If u, un ∈ Lp(x)(Ω) (n = 1, 2, . . . ), then we have
(i) |u|p(x) < 1 (= 1, > 1) if and only if ρ(u) < 1 (= 1, > 1);

(ii) |u|p(x) > 1 implies |u|p
−

p(x) ≤ ρ(u) ≤ |u|p
+

p(x), |u|p(x) < 1 implies |u|p
+

p(x) ≤

ρ(u) ≤ |u|p
−

p(x);
(iii) limn→∞ |un|p(x) = 0 if and only if limn→∞ ρ(un) = 0; limn→∞ |un|p(x) =∞

if and only if limn→∞ ρ(un) =∞.

Proposition 2.2 ([7, 13]). If u, un ∈ Lp(x)(Ω) (n = 1, 2, . . . ), then the following
statements are equivalent:
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(i) limn→∞ |un − u|p(x) = 0;
(ii) limn→∞ ρ(un − u) = 0;
(iii) un → u in measure in Ω and limn→∞ ρ(un) = ρ(u).

The variable exponent Sobolev space W 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)},

with the norm
‖u‖1,p(x) = |u|p(x) + |∇u|p(x),

or equivalently

‖u‖1,p(x) = inf
{
µ > 0 :

∫
Ω

(|∇u(x)
µ
|p(x) + |u(x)

µ
|p(x))dx ≤ 1

}
for all u ∈W 1,p(x)(Ω). The space W 1,p(x)

0 (Ω) is defined as the closure of C∞0 (Ω) in
W 1,p(x)(Ω) with respect to the norm ‖u‖1,p(x). For u ∈ W 1,p(x)

0 (Ω), we define an
equivalent norm

‖u‖ = |∇u|p(x),

since Poincaré inequality holds, i.e., there exists a positive constant c such that

|u|p(x) ≤ c|∇u|p(x),

for all u ∈W 1,p(x)
0 (Ω), see [9].

Proposition 2.3 ([7, 13]). If 1 < p− ≤ p+ < ∞, then Lp(x)(Ω), W 1,p(x)(Ω) and
W

1,p(x)
0 (Ω) are separable and reflexive Banach spaces.

Proposition 2.4 ([7, 13]). Let q ∈ C+(Ω). If q(x) < p∗(x) for all x ∈ Ω, then the
embedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω) is compact and continuous, where

p∗(x) =

{
Np(x)
N−p(x) if p(x) < N,

+∞ if p(x) ≥ N.

Let E be a Banach space with the norm ‖ ·‖ and E = ⊕j∈NXj with dimXj <∞
for any j ∈ N. Set

Yk = ⊕kj=0Xj , Zk = ⊕∞j=kXj ,

Bk = {u ∈ Yk : ‖u‖ ≤ ρk}, Nk = {u ∈ Zk : ‖u‖ = rk} for ρk > rk > 0.

Let us consider the C1-functional Iλ : E → R defined by

Iλ(u) := A(u)− λB(u), λ ∈ [1, 2].

Now we recall the following variant of the fountain theorem [18, Theorem 2.1],
which is the main tool in the proof of the main results of this article. We will use
the following assumptions:

(F1) Iλ maps bounded sets to bounded sets uniformly for λ ∈ [1, 2]. Moreover,
Iλ(−u) = Iλ(u) for all (λ, u) ∈ [1, 2]× E;

(F2) B(u) ≥ 0 for all u ∈ E, and A(u)→∞ or B(u)→∞ as ‖u‖ → ∞,
(F3) B(u) ≤ 0 for all u ∈ E; B(u)→ −∞ as ‖u‖ → ∞.
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Theorem 2.5. Assume the functional Iλ satisfies (F1), and either (F2) or (F3).
For k ≥ 2, let

Γk := {ψ ∈ C(Bk, E) : ψ is odd, ψ
∣∣
∂Bk

= id},
ck(λ) := inf

ψ∈Γk
max
u∈Bk

Iλ(γ(u)),

bk(λ) := inf
u∈Zk,‖u‖=rk

Iλ(u),

ak(λ) := max
u∈Yk,‖u‖=ρk

Iλ(u).

If bk(λ) > ak(λ) for all λ ∈ [1, 2], then ck(λ) ≥ bk(λ) for all λ ∈ [1, 2]. Moreover,
for a.e λ ∈ [1, 2], there exists a sequence {ukn(λ)}∞n=1 such that supn ‖ukn(λ)‖ <∞,
I ′λ(ukn(λ))→ 0 and Iλ(ukn(λ))→ ck(λ) as n→∞.

3. Main results

First, we study the Dirichlet boundary-value problem

−∆p(x)u+ |u|p(x)−2u = f(x, u) in Ω,
u = 0 on ∂Ω,

(3.1)

where Ω is a bounded smooth domain of RN .
We assume the following conditions:

(S1) f : Ω × R → R is a Carathéodory function and |f(x, t)| ≤ c(1 + |t|q(x)−1)
for a.e. x ∈ Ω and all t ∈ R, f(x, t)t ≥ 0 for all t > 0, where p, q ∈ C+(Ω)
such that p(x) < q(x) < p∗(x) for all x ∈ Ω;

(S2) lim inf |t|→∞
f(x,t)t
|t|θ ≥ c > 0 uniformly for x ∈ Ω, where p+ < θ ≤ q−;

(S3) limt→0
f(x,t)

tp−−1 = 0 uniformly for x ∈ Ω, f(x,u)

up−−1 is an increasing function of
t ∈ R for all x ∈ Ω.

(S4) f(x,−t) = −f(x, t) for all x ∈ Ω, t ∈ R.
(G1) There exists a constant ξ ≥ 1, such that for any s ∈ [0, 1], t ∈ R, and for

each Gγ ∈ F , and all η ∈ [p−, p+], the inequality ξGγ(x, t) ≥ Gη(x, st) hold
for a.e. x ∈ Ω, where

F = {Gγ : Gγ(x, t) = f(x, t)t− γF (x, t), γ ∈ [p−, p+]}.

Note that when p(x) ≡ p a constant, F = {f(x, t)t− pF (x, t)} is consist of
only one element.

Remark 3.1. It is not difficult to show that if f(x, t) is increasing in t, then (AR)
implies (G1) when t is large enough. However, in general, (AR) does not imply
(G1); see [16, Remark 3.3].

Theorem 3.2. Assume that (S1)–(S4), (G1) hold. Then problem (3.1) has infin-
itely many solutions {uk} satisfying

J(uk) =
∫

Ω

1
p(x)

(|∇uk|p(x) + |uk|p(x))dx−
∫

Ω

F (x, uk)dx→∞ as k →∞,

where J : W 1,p(x)(Ω) → R is the functional corresponding to problem (3.1) and
F (x, t) =

∫ t
0
f(x, s)ds.
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Remark 3.3. Condition (S1) implies that the functional J is well defined and of
class C1. It is well known that the critical points of J are weak solutions of (3.1).
Moreover, the derivative of J is given by

〈J ′(u), υ〉 =
∫

Ω

(|∇u|p(x)−2∇u∇υ + |u|p(x)−2uυ)dx−
∫

Ω

f(x, u)υdx,

for any u, υ ∈W 1,p(x)(Ω).

Second, we consider the Dirichlet boundary problem

−∆p(x)u = f(x, u) in Ω,
u = 0 on ∂Ω,

(3.2)

where Ω is a bounded smooth domain of RN . We will use the following assumptions:
(E1) f : Ω × R → R is a Carathéodory function and |f(x, t)| ≤ c(1 + |t|q(x)−1)

a.e. x ∈ Ω and all t ∈ R, where p, q ∈ C+(Ω) such that p(x) < q(x) < p∗(x)
for x ∈ Ω.

(E2) f(x,t)

tp−−1 is increasing in t ∈ R for t large enough.

Theorem 3.4. Assume that (S2), (S4), (G1), (E1)-(E2) hold. Then problem (3.2)
has infinitely many solutions {uk} satisfying

Ψ(uk) =
∫

Ω

1
p(x)
|∇uk|p(x)dx−

∫
Ω

F (x, uk)dx→∞ as k →∞,

where Ψ : W 1,p(x)
0 (Ω)→ R is the functional corresponding to problem (3.2).

Since the proof of Theorem 3.4 is very similar to the proof of Theorem 3.2, we
only prove Theorem 3.2 and omit the other proof.

We say that u ∈W 1,p(x)(Ω) is a weak solution of (3.1) if∫
Ω

(|∇u|p(x)−2∇u∇υ + |u|p(x)−2uυ)dx =
∫

Ω

f(x, u)υdx,

for any υ ∈W 1,p(x)(Ω).
Let us choose an orthonormal basis {ej} ⊂ W 1,p(x)(Ω) and define Xj := Rej .

Then the spaces Yk and Zk can be defined as in Section 2. Let us consider the
C1-functional Jλ : W 1,p(x)(Ω)→ R defined by

Jλ(u) =
∫

Ω

1
p(x)

(|∇u|p(x)+|u|p(x))dx−λ
∫

Ω

F (x, u)dx := A(u)−λB(u), λ ∈ [1, 2].

Then B(u) ≥ 0, A(u) → ∞ as ‖u‖1,p(x) → ∞, and Jλ(−u) = Jλ(u) for all λ ∈
[1, 2], u ∈W 1,p(x)(Ω).

In the view of Theorem 2.5, we can get the proof of Theorem 3.2 by help of the
following two lemmas.

Lemma 3.5. Under the assumptions of Theorem 3.2 there exist a sequence λn → 1,
as n→∞, ck > bk > 0, and {zn}∞n=1 ⊂W 1,p(x)(Ω), such that

J ′λ(zn) = 0, Jλ(zn) ∈ [bk, ck].

Proof. It is easy to prove that, for some ρk > 0 large enough, we have ak(λ) :=
maxu∈Yk,‖u‖=pk Jλ(u) ≤ 0 uniformly for λ ∈ [1, 2]. Indeed, by the conditions (S1)–
(S3), for any ε > 0 there exists Cε > 0 such that f(x, u)u ≥ Cε|u|θ − ε|u|p− .
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Further, on the finite dimensional subspace Yk, we can find some constants c > 0
such that

|u|θ ≥ c‖u‖1,p(x), |u|p− ≤ c‖u‖1,p(x), ∀u ∈ Yk.
By Propositions 2.1 and 2.4, we have

Jλ(u) ≤ 1
p−

∫
Ω

(|∇u|p(x) + |u|p(x))dx− λCε
θ

∫
Ω

|u|θdx+
λε

p−

∫
Ω

|u|p
−
dx

≤ 1
p−
‖u‖p

+

1,p(x) −
λCεc

θ

θ
‖u‖θ1,p(x) +

λcp
−

p−
‖u‖p

−

1,p(x) .

Since θ > p+, it follows that

ak(λ) := max
u∈Yk,‖u‖1,p(x)=ρk

Jλ(u)→ −∞ as ‖u‖1,p(x) → +∞

uniformly for λ ∈ [1, 2] and for all u ∈ Yk.
On the other hand, by conditions (S1) and (S3), for any ε > 0 there exists Cε > 0

such that |f(x, u)| ≤ ε|u|p−−1 + Cε|u|q(x)−1. Let

βk := sup
u∈Zk,‖u‖1,p(x)=1

|u|q(x), ϑk := sup
u∈Zk,‖u‖1,p(x)=1

|u|p− .

Then βk → 0 and ϑk → 0 as k → ∞ (see [10]). Therefore, when u ∈ Zk and
‖u‖1,p(x) > 1, we have

Jλ(u) ≥ 1
p+

∫
Ω

(|∇u|p(x) + |u|p(x))dx− λε
∫

Ω

|u|p
−
dx− λCε

∫
Ω

|u|q(x)dx

≥ 1
p+
‖u‖p

−

1,p(x) − c|u|
p−

p− − c|u|
q+

q(x)

≥ 1
p+
‖u‖p

−

1,p(x) − cϑ
p−

k ‖u‖
p−

1,p(x) − cβ
q+

k ‖u‖
q+

1,p(x),

where c = max{2ε, 2Cε}. For sufficiently large k, we have cϑp
−

k < 1
2p+ . Then, it

follows

Jλ(u) ≥ 1
2p+
‖u‖p

−

1,p(x) − cβ
q+

k ‖u‖
q+

1,p(x).

If we choose rk := (2cq+βq
+

k )
1

p−−q+ , then for u ∈ Zk with ‖u‖1,p(x) = rk, we
obtain

Jλ(u) ≥ 1
2p+

(2cq+βq
+

k )
p−

p−−q+ − cβq
+

k (2cq+βq
+

k )
q+

p−−q+

≥ q+ − p+

2p+q+
(2cq+βq

+

k )
p−

p−−q+ := bk,

which implies

bk(λ) := inf
u∈Zk,‖u‖1,p(x)=rk

Jλ(u)→∞ as k →∞

uniformly for λ. So, by Theorem 2.5, for a.e. λ ∈ [1, 2], there exists a sequence
{ukn(λ)}∞n=1 such that

sup
n
‖ukn(λ)‖1,p(x) <∞, J ′λ(ukn(λ))→ 0,

Jλ(ukn(λ))→ ck(λ) ≥ bk(λ) ≥ bk as n→∞.
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Moreover, since ck(λ) ≤ supu∈Bk Jλ(u) := ck and W 1,p(x)(Ω) is embedded com-
pactly to Lq(x)(Ω), and thanks to the standard arguments, {ukn(λ)}∞n=1 has a
convergent subsequence. Hence, there exists zk(λ) such that J ′λ(zk(λ)) = 0 and
Jλ(zk(λ)) ∈ [bk, ck]. Consequently, we can find λn → 1 and {zn} desired as the
claim. �

Lemma 3.6. {zn}∞n=1 is bounded in W 1,p(x)(Ω).

Proof. We argue by contradiction. Passing to a subsequence if necessary, still de-
noted by {zn}, we may assume that ‖zn‖1,p(x) → ∞ as n → ∞. Let {ωn} ⊂
W 1,p(x)(Ω) and put ωn := zn

‖zn‖1,p(x)
. Since ‖ωn‖1,p(x) = 1, up to subsequences, we

obtain

ωn ⇀ ω in W 1,p(x)(Ω),

ωn → ω in Lγ(x)(Ω),

ωn(x)→ ω(x) a.e. x ∈ Ω.

Then, the main concern is whether {ωn} ⊂ W 1,p(x)(Ω) vanish or not. We shall
prove that none of these alternatives can occur and this contradiction will prove
that {ωn} ⊂W 1,p(x)(Ω) is bounded.

If ω = 0, we can define a sequence {tn} ⊂ R, as argued in [16], such that

Jλn(tnzn) := max
t∈[0,1]

Jλn(tzn). (3.3)

Let ωn := (2p+c)
1
p− ωn with c > 0. Then for n is large enough, we have

Jλn(tnzn) ≥ Jλn(ωn) ≥ A((2p+c)
1
p− ωn)− λnB(ωn)

≥ 1
p+

(2p+c)A(ωn)− λnB(ωn) ≥ 2c− λnB(ωn) ≥ c,
(3.4)

which implies that limn→∞ Jλn(tnzn) =∞ by the fact c > 0 can be large arbitrarily.
Noting that Jλn(0) = 0 and Jλn(zn)→ c, then 0 < tn < 1, when n is large enough.
Hence, we obtain

〈J ′λn(tnzn), tnzn〉 = A′(tnzn)− λnB′(tnzn) = 0. (3.5)

Thus, from (3.4) and (3.5), we can write

λn(
1
ptn

B′(tnzn)−B(tnzn)) =
1
ptn

A′(tnzn)− λnB(tnzn) = Jλn(tnzn)→∞

as n→∞, where ptn = A′(tnzn)
A(tnzn) .

Let γzn = pn = A′(zn)
A(zn) , γtnzn = ptn , then γzn , γtnzn ∈ [p−, p+]. Thus, Gγzn ,

Gγtnzn ∈ F . Using condition (G1) and the fact infn
ptn
pnξ

> 0, we have

(
1
pn
B′(zn)−B(zn)) =

1
pn

∫
Ω

Gγzn (x, zn)dx ≥ 1
pnξ

∫
Ω

Gγtnzn (x, tnzn)dx

=
ptn
pnξ

( 1
ptn

B′(tnzn)−B(tnzn)
)
→ +∞.

This contradicts the following result of Lemma 3.5,

λn(
1
pn
B′(zn)−B(zn)) = Jλn(zn)− 1

pn
〈J ′λn(zn), zn〉 = Jλn(zn) ∈ [bk, ck].
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If ω 6= 0, since J ′λn(zn) = 0, we have, by Proposition 2.1,

1− o(1) =
∫

Ω

f(x, zn)zn
ϕ(zn)

dx ≥
∫

Ω

f(x, zn)zn
‖zn‖p

+

1,p(x)

dx

≥
∫

Ω

f(x, zn)zn
‖zn‖θ1,p(x)

dx =
∫

Ω

f(x, zn)zn
|zn|θ

|ωn|θdx,
(3.6)

where ϕ(zn) :=
∫

Ω
(|∇zn|p(x) + |zn|p(x))dx.

Define the set Ω0 = {x ∈ Ω : ω(x) = 0}. Then for x ∈ Ω\Ω0 = {x ∈ Ω : ω(x) 6=
0}, we have |zn(x)| → +∞ as n→∞. Hence, by (S1) and (S2), we have

f(x, zn)zn
|zn|θ

|ωn|θdx→ +∞ as n→∞.

Using Fatou’s lemma and that |Ω\Ω0| > 0, we obtain∫
Ω\Ω0

f(x, zn)zn
|zn|θ

|ωn|θdx→ +∞ as n→∞. (3.7)

On the other hand, by condition (S2), there exists c > −∞ such that f(x,t)t
tθ

≥ c

for t ∈ R and a.e. x ∈ Ω. Moreover, we have
∫

Ω0
|ωn|θdx → 0 as n → ∞. Thus,

there exists Λ > −∞ such that∫
Ω0

f(x, zn)zn
|zn|θ

|ωn|θdx ≥ c
∫

Ω0

|ωn|θdx ≥ Λ > −∞. (3.8)

Combining (3.6), (3.7) and (3.8), we obtain a contradiction. Therefore, {zn}∞n=1 is
bounded, and the proof is complete. �
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[13] O. Kovăčik, J. Răkosnik; On spaces Lp(x) and W k,p(x), Czechoslovak Math. J. 41(116)

(1991), 592–618.



EJDE-2013/14 EXISTENCE AND MULTIPLICITY OF SOLUTIONS 9
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