Electron. J. Diff. Equ., Vol. 2013 (2013), No. 15, pp. 1-14.

Multiple positive solutions for quasilinear elliptic systems

Qin Li, Zuodong Yang

Abstract:
In this article, we investigate how the coefficient $f(z)$ affects the number of positive solutions of the quasilinear elliptic system
$$\displaylines{
 -\Delta_{p}u =\lambda g(z)|u|^{q-2}u+\frac{\alpha}{\alpha+\beta}
 f(z)|u|^{\alpha-2}u|v|^{\beta} \quad\hbox{in }\Omega,\cr
 -\Delta_{p}v =\mu h(z)|v|^{q-2}v
 +\frac{\beta}{\alpha+\beta}f(z)|u|^{\alpha}|v|^{\beta-2}v
 \quad\hbox{in }\Omega,\cr
 u=v=0\quad\hbox{on }\partial\Omega,
 }$$
where $0\in\Omega\subset \mathbb{R}^{N}$ is a bounded domain, $\alpha >1$, $\beta>1$ and $1<p<q<\alpha+\beta=p^{*}=\frac{Np}{N-p}$ for $N>2p$.

Submitted July 6, 2012. Published January 17, 2013.
Math Subject Classifications: 35J65, 35J50.
Key Words: Quasilinear elliptic systems; multiple positive solutions; critical point, Nehari manifold.

Show me the PDF file (271 KB), TEX file, and other files for this article.

  Qin Li
Institute of Mathematics, School of Mathematical Sciences
Nanjing Normal University
Jiangsu Nanjing, China
email: 294973245@qq.com
Zuodong Yang
Institute of Mathematics, School of Mathematical Sciences
Nanjing Normal University
Jiangsu Nanjing, China
email: zdyang_jin@263.net

Return to the EJDE web page