\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 158, pp. 1--12.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/158\hfil Existence of solutions] {Existence of solutions for a Neumann problem involving the $p(x)$-Laplacian} \author[G. Barletta, A. Chinn\`i \hfil EJDE-2013/158\hfilneg] {Giuseppina Barletta, Antonia Chinn\`i} % in alphabetical order \address{Giuseppina Barletta \newline Universit\`{a} degli Studi Mediterranea di Reggio Calabria, MECMAT-Dipartimento di Meccanica e Materiali, Via Graziella, Localit\`{a} Feo di Vito, 89100 Reggio Calabria, Italy} \email{giuseppina.barletta@unirc.it} \address{Antonia Chinn\`i \newline Department of Civil, Information Technology, Construction, Environmental Engineering and Applied Mathematics, University of Messina, 98166 Messina, Italy} \email{achinni@unime.it} \thanks{Submitted March 29, 2013. Published July 10, 2013.} \subjclass[2000]{35J60, 35J20} \keywords{$p(x)$-Laplacian; variable exponent Sobolev spaces} \begin{abstract} We study the existence and multiplicity of weak solutions for a parametric Neumann problem driven by the $p(x)$-Laplacian. Under a suitable condition on the behavior of the potential at $0^+$, we obtain an interval such that when a parameter $\lambda$ is in this interval, our problem admits at least one nontrivial weak solution. We show the multiplicity of solutions for potentials satisfying also the Ambrosetti-Rabinowitz condition. Moreover, if the right-hand side $f$ satisfies the Ambrosetti-Rabinowitz condition, then we obtain the existence of two nontrivial weak solutions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} In this article we are interested in the multiplicity of weak solutions of the Neumann problem \begin{equation} \label{eq:neumann} \begin{gathered} -\Delta _{p(x)}u + a(x)|u|^{p(x)-2}u = \lambda f(x,u)\quad\text{in }\Omega\\ \frac{\partial u}{\partial \nu}=0\quad\text{on } \partial\Omega \end{gathered} \end{equation} where $\Omega\subset \mathbb{R}^{N}$ is an open bounded domain with smooth boundary $\partial\Omega$, $p \in C(\bar{\Omega})$, $\Delta _{p(x)}u :=\operatorname{div} (|\nabla u|^{p(x)-2}\nabla u)$ denotes the $p(x)$-Laplace operator, $a$ belongs to $L^{\infty}(\Omega)$ and $a_{-}:=\operatorname{ess\,inf}_\Omega a(x)>0$, $\lambda$ is a positive parameter and $\nu$ is the outward unit normal to $\partial\Omega$. In this context we assume that $p \in C(\bar{\Omega})$ satisfies the condition \begin{equation}\label{eq:p(x)} 1 N$. Later, Xiayang Shi and Xuanhao Ding in \cite{SD} extend the results of \cite{MIHAILESCU} to Carath\'{e}odory functions $f$ satisfying a growth condition of type (F1), but with $1N$. A two parameter problem was studied first in \cite{LIU} and then in \cite{ChaoJi2}, where $f$ and $g$ are continuous and satisfy our condition (F1) but with a more restrictive assumption for the variable exponents $q$ and $p$. However, we emphasize that in both papers the authors need some additional hypotheses on the potentials $F$ and $G$. For instance, in \cite{LIU} we have a growth $r$ for $F$ and $G$, with $1N\geq 2$ (we do not have such restriction). In \cite{FAN2} the nonlinear term is $f+\lambda g$ with $f$ and $g$ continuous functions verifying our growth condition (F1) with respect to the second variable, but with the restrictions $p^+N$ for the exponent $p$. Furthermore, we have no relation between $q$ and $p$ except for the standard $q(x)0:\int_{\Omega} \big|\frac{u(x)}{\lambda}\big|^{p(x)}dx \le 1\Big\}. $$ The generalized Lebesgue-Sobolev space $W^{1,p(x)}(\Omega)$ is defined as $$ W^{1,p(x)}(\Omega):=\big\{ u\in L^{p(x)}(\Omega):|\nabla u |\in L^{p(x)}(\Omega) \big\} $$ with the norm \begin{equation}\label{eq:norm} \| u\|_{W^{1,p(x)}(\Omega)}:= \| u\|_{L^{p(x)}(\Omega )} + \| |\nabla u |\|_{L^{p(x)}(\Omega )}\cdot \end{equation} With such norms, $L^{p(x)}(\Omega)$ and $W^{1,p(x)}(\Omega)$ are separable, reflexive and uniformly convex Banach spaces. The following result generalizes the well-known Sobolev embedding theorem. \begin{theorem}[{\cite[Proposition 2.5]{FAN3}}] \label{Imbedding} Assume that $p\in C(\bar{\Omega})$ with $p(x)> 1$ for each $x\in \bar{\Omega}$. If $r \in C(\bar{\Omega})$ and $1 < r(x) 0$, \end{itemize} then on $W^{1,p(x)}(\Omega)$ it is possible to consider the norm $$ \|u\|_a= \inf\Bigl\{\sigma >0:\int_{\Omega} \Bigl (\bigl|\frac{\nabla u(x)}{\sigma}\bigr|^{p(x)} +a(x)\bigl|\frac{u(x)}{\sigma}\bigr|^{p(x)}\Bigr)\, dx \leq 1 \Bigr\} \,, $$ which is equivalent to that introduced in \eqref{eq:norm} (see \cite{CCD6}). In particular, if for $\alpha>0$ and $h\in C(\bar{\Omega})$ with $10$, a point $u\in W^{1,p(x)}(\Omega)$ is a weak solution to \eqref{eq:neumann} if $$ \int_{\Omega} \Big(|\nabla u(x)|^{p(x)-2}\nabla u(x)\nabla v(x) +a(x)|u|^{p(x)-2} uv\Big)\, dx =\lambda \int_{\Omega}f(x,u(x))v(x)dx $$ holds for each $v \in W^{1,p(x)}(\Omega)$. To obtain one or more solutions to \eqref{eq:neumann}, fixed $\lambda >0$, we denote by $I_{\lambda}$ the energy functional $$ I_{\lambda}(\cdot):=\Phi(\cdot)-\lambda\Psi(\cdot), $$ where $\Phi, \Psi:W^{1,p(x)}(\Omega)\to\mathbb{R}$ are defined as follows \begin{gather*} \Phi(u)=\int_{\Omega}\frac{1}{p(x)}\Bigl(|\nabla u|^{p(x)} +a(x)|u|^{p(x)} \Bigr) \, dx,\\ \Psi(u)=\int_{\Omega}F(x,u(x))dx \end{gather*} for each $u\in W^{1,p(x)}(\Omega)$ and $$ F(x,\xi):=\int_{0}^{\xi}f(x,t)\,dt $$ for each $(x,\xi )\in \Omega\times\mathbb{R}$. When $I_{\lambda}$ is $C^1$ its critical points are weak solutions to \eqref{eq:neumann}. Similar arguments to those used in \cite{MIHAILESCU} and in \cite{FAN2} imply that $\Phi$ is sequentially weakly lower semi-continuous and is a $C^1$ functional in $W^{1,p(x)}(\Omega)$, with the derivative given by $$ \langle \Phi'(u),v\rangle=\int_{\Omega} \Big(|\nabla u(x)|^{p(x)-2}\nabla u(x) \nabla v(x) + a(x)|u|^{p(x)-2}uv\Big)\,dx , $$ for any $u, v \in W^{1,p(x)}(\Omega)$. Moreover (see \cite[Lemma 3.1]{CCD6}), $\Phi '$ is an homeomorphism. Finally we recall that in \cite[Proposition 2.2]{CCD6} it was shown that $\Phi$ is in close relation with the norm $\|\cdot\|_a$. In fact, we have the following result. \begin{proposition} \label{teo:limitazioni2} Let $u \in W^{1,p(x)}(\Omega)$. Then \begin{itemize} \item[(j)] If $\|u\|_a < 1$ then $\frac{1}{p^+}\|u\|_a^{p^+}\leq \Phi(u) \leq \frac{1}{p^-}\|u\|_a^{p^-}$. \item[(jj)] If $\|u\|_a > 1$ then $\frac{1}{p^+}\|u\|_a^{p^-}\leq \Phi(u) \leq \frac{1}{p^-}\|u\|_a^{p^+}$. \end{itemize} \end{proposition} We observe that $\Psi$ can be defined in the space $L^{q(x)}(\Omega)$. In fact, from \cite[Theorems 4.1 and 4.2]{KOVACIKRAKOSNIK}, we know that the growth condition (F1) imposed on $f$ guarantees that the Nemytsky operator $N_{f}$ defined by $N_{f}(u)=f(\cdot ,u(\cdot))$ maps $L^{q(x)}(\Omega)$ in $L^{q'(x)}(\Omega)$ where $q'(x)=\frac{q(x)}{q(x)-1}$ and that is continuous and bounded. Before studying the regularity properties of $\Psi$, we introduce the functional $J:L^{q'(x)}(\Omega)\to (L^{q(x)}(\Omega))^{*}$ defined as $$ J(h)(w):=\int_{\Omega}h(x)w(x)\,dx $$ for each $h\in L^{q'(x)}(\Omega)$, $w\in L^{q(x)}(\Omega)$. From \cite[Theorem 3.4.6]{Diening}, we know that $J$ is an isomorphism from $L^{q'(x)}(\Omega)$ to $(L^{q(x)}(\Omega))^{*}$. \begin{lemma} \label{derivata-continua-e-compatta} Under assumption {\rm (F1)} $\Psi$ is a continuously G\^ateaux differentiable functional with $$ \Psi '(u)(v)=\int_{\Omega}f(x,u(x))v(x)dx $$ for each $u, v \in W^{1,p(x)}(\Omega)$ and $\Psi'$ is a compact operator. \end{lemma} \begin{proof} In a standard way we obtain $$ \Psi '(u)(v)=\int_{\Omega}f(x,u(x))v(x)dx $$ from each $u, v \in W^{1,p(x)}(\Omega)$. If $\left\{u_{n}\right\}\rightarrow u$ in $W^{1,p(x)}(\Omega)$ then, for Theorem \ref{Imbedding}, $\left\{u_{n}\right\}\rightarrow u$ in $L^{q(x)}(\Omega)$. Thanks to the properties of the Nemytsky operator, one has $\left\{N_{f}(u_{n})\right\}\rightarrow N_{f}(u)$ in $L^{q'(x)}(\Omega)$ and so $\left\{J(N_{f}(u_{n}))\right\}\rightarrow J(N_{f}(u))$ in $(L^{q(x)}(\Omega))^{*}$. This condition leads to $\left\{J(N_{f}(u_{n}))\right\}\rightarrow J(N_{f}(u))$ in $(W^{1,p(x)}(\Omega))^{*}$ and, taking into account that $$ J(N_{f}(u))(\cdot )=\Psi'(u)(\cdot ) $$ for each $u\in W^{1,p(x)}(\Omega)$, we obtain the continuity of $\Psi '$. If we suppose that $\left\{u_{n}\right\}\rightharpoonup u$ in $W^{1,p(x)}(\Omega)$, then, thanks to the compactness of the embedding $W^{1,p(x)}(\Omega)\hookrightarrow L^{q(x)}(\Omega)$, $\left\{u_{n}\right\}\rightarrow u$ in $L^{q(x)}(\Omega)$ (up to a subsequence). This ensures the continuity of $\Psi '$ on $L^{q(x)}(\Omega)$ and so its compactness. \end{proof} To conclude this section we introduce two abstract results obtained by Bonanno in \cite{BONANNO} and \cite{BONANNO2} that will allow us to obtain multiple solutions to \eqref{eq:neumann}. Before to recall them we give the following definition. \begin{definition} \label{def:PS} \rm Let $\Phi$ and $\Psi$ be two continuously G\^ateaux differentiable functionals defined on a real Banach space $X$ and fix $r\in\mathbb{R}$. The functional $I=\Phi-\Psi$ is said to verify the Palais-Smale condition cut off upper at $r$ (in short $(P.S.)^{[r]}$) if any sequence $\{u_{n}\}$ in $X$ such that \begin{itemize} \item [$(\alpha)$] $\left\{I(u_n)\right\}$ is bounded; \item [$(\beta)$] $\lim_{n\to +\infty}\|I'(u_n )\|_{X^*}=0$; \item [$(\gamma)$] $\Phi(u_n )0$ and $\bar{x}\in X$, with $0<\Phi(\bar{x})0$ and assume that, for each $$ \lambda\in ]0,\frac{r}{\sup_{u\in \Phi^{-1}(]-\infty, r [)}\Psi(u)} [, $$ the functional $I_{\lambda}:=\Phi-\lambda\Psi$ satisfies $(P.S.)$ condition and it is unbounded from below. Then, for each $$ \lambda\in ]0,\frac{r}{\sup_{u\in \Phi^{-1}(]-\infty, r [)}\Psi(u)} [, $$ the functional $I_{\lambda}$ admits two distinct critical points. \end{theorem} \section{Main results} The first result guarantees the existence of one non trivial solution to problem \eqref{eq:neumann}. \begin{theorem} \label{teo:ris1} Let $f :\Omega\times\mathbb{R} \to\mathbb{R}$ be a Carath\'{e}odory function satisfying {\rm (F1)} and \begin{itemize} \item [(F2)] $$ \limsup_{t\to 0^{+}}\frac{\int_{\Omega}F(x,t)\,dx}{t^{p^{-}}}=+\infty. $$ \end{itemize} Put $\lambda^{*}=\frac{1}{a_1k_1(p^{+})^{1/p^-} +\frac{a_{2}}{q^{-}}[k_{q}]^{q}(p^{+})^{\frac{q^{+}}{p^{-}}}}$, where $k_1$ and $k_{q}$ are given by \eqref{embeddingconstant}. Then for each $\lambda\in ]0,\lambda^{*}[$, problem \eqref{eq:neumann} admits at least one nontrivial weak solution. \end{theorem} \begin{proof} Put $X:=W^{1,p(x)}(\Omega)$ equipped by norm $\|\cdot\|_{a}$. We consider the functional $$ I_{\lambda}(\cdot):=\Phi(\cdot)-\lambda\Psi(\cdot) $$ introduced in the previous section and note that $\Phi$ and $\Psi$ satisfy the regularity assumptions required in Theorem \ref{teo:bon} as well as the condition (A2) for all $r, \lambda >0$ (see Lemma \ref{derivata-continua-e-compatta} and Remark \ref{condizione PS}). Fixed $\lambda\in ]0,\lambda^{*}[$, we choose $r=1$ and verify condition (A1) of Theorem \ref{teo:bon}. By (F2) there exists \begin{equation}\label{eq:xi} 0<\xi_{\lambda}<\min \Big\{1,\Big(\frac{p^-}{\|a\|_{\infty}|\Omega|} \Big)^{1/p^-}\Big\} \end{equation} such that \begin{equation}\label{eq:magg} \frac{p^{-}\int_{\Omega}F(x,\xi_{\lambda})\,dx}{\xi_{\lambda}^{p^{-}} \|a\|_{\infty}|\Omega|}> \frac{1}{\lambda}\,. \end{equation} We denote by $u_{\lambda}$ the function of $X$ defined by $u_{\lambda}(x)=\xi_{\lambda}$ for each $x\in\Omega$ and observe that \begin{equation}\label{eq:phi} \Phi(u_{\lambda})\le\frac{1}{p^-}\|a\|_{\infty}|\Omega|[\xi_{\lambda}]^{p}<1 \end{equation} and $$ \Psi(u_{\lambda})=\int_{\Omega}F(x,\xi_{\lambda})\,dx\,. $$ We observe that condition (F1) implies $$ |F(x,t)|\le a_1|t|+ \frac{a_{2}}{q(x)}|t|^{q(x)} $$ for each $(x,t)\in \Omega\times \mathbb{R}$. For each $u\in \Phi^{-1} (]-\infty ,1])$ it results $$ \Psi (u)\le a_1\int_{\Omega}|u(x)|\,dx + \frac{a_2}{q^-}\int_{\Omega}|u(x)|^{q(x)}\,dx =a_1\|u\|_{L^{1}(\Omega)}+ \frac{a_2}{q^-}\rho_{q}(u)\,. $$ \cite[Theorem 1.3]{FAN5} and the embeddings $W^{1,p(x)}(\Omega)\hookrightarrow L^{1}(\Omega)$ and $W^{1,p(x)}(\Omega)\hookrightarrow L^{q(x)}(\Omega)$ ensure \begin{equation}\label{eq:Psi} a_1\|u\|_{L^{1}(\Omega)}+ \frac{a_2}{q^-}\rho_{q}(u) \le a_1\|u\|_{L^{1}(\Omega)}+ \frac{a_2}{q^-}[\|u\|_{L^{q(x)}(\Omega)}]^{q} \le a_1k_1\|u\|_{a}+ \frac{a_2}{q^-}[k_{q}\|u\|_{a}]^{q} \end{equation} Taking into account that for each $u\in \Phi^{-1} (]-\infty ,1])$, thanks to Proposition \ref{teo:limitazioni2}, one has $$ \|u\|_{a}\le (p^{+})^{1/p^-}, $$ conditions \eqref{eq:magg} and \eqref{eq:Psi} lead to \begin{equation}\label{eq:sup1} \begin{split} \sup_{\Phi (u)\le 1}\Psi (u) &\le a_1k_1(p^{+})^{1/p^-} +\frac{a_2}{q^-}[k_{q}]^{q}(p^{+})^{\frac{q^+}{p^-}}\\ &=\frac{1}{\lambda^{*}}<\frac{1}{\lambda}\\ &<\frac{p^{-}\int_{\Omega}F(x,\xi_{\lambda})\,dx}{\xi_{\lambda}^{p^{-}} \|a\|_{\infty}|\Omega|}<\frac{\Psi (u_{\lambda})}{\Phi (u_{\lambda})} \end{split} \end{equation} and so condition (A1) of Theorem \ref{teo:bon} is verified. Since $\lambda\in \big] \frac{\Phi(u_{\lambda})}{\Psi(u_{\lambda})}, \frac{1}{\sup_{\Phi(u)\le 1}\Psi(u)} \big [$, Theorem \ref{teo:bon} guarantees the existence of a local minimum point $\bar{u}$ for the functional $I_{\lambda}$ such that $$ 0<\Phi(\bar{u})<1 $$ and so $\bar{u}$ is a non-trivial weak solution of problem \eqref{eq:neumann}. \end{proof} To establish the existence of two solutions to problem \eqref{eq:neumann}, we assume that the nonlinear term $f$ satisfies this Ambrosetti-Rabinowitz-type condition \begin{itemize} \item [(F3)] there exist $\mu >p^{+}$ and $\beta>0$ such that $$ 0<\mu F(x,\xi)\le \xi f(x,\xi) $$ for each $x\in\Omega$ and for $|\xi| \ge \beta$. \end{itemize} \begin{lemma}\label{PS under AR} Let $f :\Omega\times\mathbb{R} \to\mathbb{R}$ be a Carath\'{e}odory function satisfying {\rm (F1)} and {\rm (F3)}. Then, for each $\lambda >0$, $I_\lambda$ satisfies the $(PS)$-condition. \end{lemma} \begin{proof} Let $\{u_n\}$ be a $(PS)$ sequence for $I_\lambda$. Then: \begin{gather}\label{9} |I_\lambda(u_n)|\leq M\quad\text{for some $M>0$ and all } n\geq 1\,,\\ \label{10} I_\lambda'(u_n)\to 0\quad \text{in } W^{1,p(x)}(\Omega)^*,\text{ as } n\to\infty\,. \end{gather} Due to \eqref{10} we can find $\overline n\in N$, such that \begin{equation}\label{11} \begin{aligned} -I_\lambda'(u_n)(u_n) &=-\int_{\Omega}\Bigl(|\nabla u_n|^{p(x)} +a(x)|u_n|^{p(x)} \Bigr) \, dx +\lambda\int_{\Omega}f(x,u_n(x))u_n(x)\, dx\\ & \leq\|u_n\|_a\quad \text{for all } n\ge \overline n\,. \end{aligned} \end{equation} We argue by contradiction and we assume that $\{u_n\}$ is unbounded, so we can choose $\overline n$ such that $\|u_n\|_a>1$ for any $n\geq \overline n$. Our assumptions on $f$ guarantee that we can find a number $A(\beta)>0$ such that for any $n\in \mathbb{N}$ one has: \begin{equation}\label{12} \int_{\{x\in\Omega: |u_n(x)|\leq\beta\}}\left(f(x,u_n(x))u_n(x) -\mu F(x,u_n(x))\right)\,dx \ge -A(\beta). \end{equation} Gathering \eqref{9}, \eqref{11}, \eqref{12} and taking into account $(jj)$ of Proposition \ref{teo:limitazioni2}, for $n$ large enough we obtain \begin{equation}\label{14} \begin{aligned} &\mu\cdot M+\|u_n\|_a\\ &\geq \mu I_\lambda(u_n)-I_\lambda'(u_n)(u_n)\\ &=\int_{\Omega}\frac{\mu-p(x)}{p(x)}\Bigl(|\nabla u_n|^{p(x)} +a(x)|u_n|^{p(x)} \Bigr) \, dx \\ &\quad +\lambda\int_{\{x\in\Omega: |u_n(x)|\leq\beta\}} \left(f(x,u_n(x))u_n(x)-\mu F(x,u_n(x))\right)\,dx \\ &\quad +\lambda\int_{\{x\in\Omega:|u_n(x)|\geq\beta\}} \left(f(x,u_n(x))u_n(x)-\mu F(x,u_n(x))\right)\,dx \\ &\geq (\mu-p^+)\Phi (u_n)-\lambda A(\beta)\\ &\geq \frac{(\mu-p^+)}{p^+}\|u_n\|_a^{p^-}-\lambda A(\beta)\,, \end{aligned} \end{equation} which contradicts the unboundedness of $\{u_n\}$, since $p^->1$. So $\{u_n\}$ is bounded, so, taking into account that $\Psi '$ is compact, we obtain the existence of a convergent subsequence. \end{proof} \begin{theorem} \label{teo:ris2} Let $f :\Omega\times\mathbb{R} \to\mathbb{R}$ be a Carath\'{e}odory function satisfying {\rm (F1)} and {\rm (F3)}. Then, for each $\lambda\in ]0,\lambda^{*}[$, where $\lambda^{*}$ is the constant introduced in the statement of Theorem \ref{teo:ris1}, problem \eqref{eq:neumann} admits at least two distinct weak solutions. \end{theorem} \begin{proof} We choose $r=1$, $X=W^{1,p(x)}(\Omega)$ and apply Theorem \ref{teo:bon2} to the functionals $\Phi$ and $\Psi$ introduced before. Clearly, $\Phi$ is bounded from below and $\Phi(0)=\Psi(0)=0$. From Lemma \ref{PS under AR} we know that our functional $I_{\lambda}(\cdot):=\Phi(\cdot)-\lambda \Psi (\cdot)$ satisfies the $(P.S.)$ condition for each $\lambda >0$. By integrating condition (F3), we can find $a_{3}>0$ such that $$ F(x, \xi)\ge a_{3}\xi^{\mu} $$ for each $|\xi|\ge\beta_1>\beta$. Fixed $k>\max\left\{ \beta_1, 1\right\}$, we consider the function $\bar{u}\equiv k \in X$ and we observe that, for each $t>1$ it results $$ I_{\lambda}(t\bar{u})\le \frac{1}{p^-}\|a\|_{\infty}|\Omega|t^{p^+}k^{p^+} -\lambda a_{3}|\Omega|t^{\mu}k^{\mu}\,. $$ Since $\mu >p^+$, this condition implies that $I_{\lambda}$ is unbounded from below. Finally, fixed $\lambda\in ]0,\lambda^{*}[$ and taking into account \eqref{eq:sup1}, we have $$ 0<\lambda <\frac{1}{\sup_{u\in \Phi^{-1}(]-\infty, 1 [)}\Psi(u)} $$ and so, the functional $I_{\lambda}$ admits two distinct critical points that are weak solutions to problem \eqref{eq:neumann}. \end{proof} \begin{remark} \label{due soluzioni non nulle} \rm We observe that, if $f(x,0)\neq 0$, then Theorem \ref{teo:ris2} ensures the existence of two non trivial weak solutions for problem \eqref{eq:neumann}. \end{remark} \begin{remark} \label{stima di lambda}\rm Taking into account Remark \ref{stima di kr} and Remark \ref{stima di k1}, if $\Omega$ is an open convex subset of $\mathbb{R}^{N}$ and the variable exponents $q$ and $p$ verify conditions $q^{+}<{p^{-}}^{*}$ and $p^{-}\neq N$, then it is possible to obtain a precise estimate of parameter $\lambda^{*}$ in Theorems \ref{teo:ris1} and \ref{teo:ris2}. \end{remark} \section{Examples} Now we give some applications of the previous results. \begin{example} \label{es1}\rm Let $a_1$ and $a_{2}$ in $L^{\infty}(\Omega)$, with $\operatorname{ess\,inf}_{x\in \Omega}a_1(x)>0$. We consider $$ f(x,t)=a_1(x)+a_{2}(x)|t|^{q(x)-1} $$ for each $(x,t)\in\Omega\times \mathbb{R}$ where $q\in C(\bar{\Omega})$ with $1< q(x) < p^{*}(x)$ for each $x\in\bar{\Omega}$. We observe that condition (F1) of Theorem \ref{teo:ris1} is easily verified. Moreover, by integration we obtain $$ F(x,t)=a_1(x)t+\frac{a_{2}(x)}{q(x)}t^{q(x)} $$ for each $x\in\Omega$ and $t>0$. This implies that $$ \lim_{t\to 0^{+}}\frac{ \operatorname{ess\,inf}_{x\in \Omega}F(x,t)}{t^{p^{-}}} =+\infty $$ and so condition (F2) of Theorem \ref{teo:ris1} is satisfied. \end{example} Finally, we present an application of Theorem \ref{teo:ris2}. \begin{example} \label{duesoluzioni}\rm We take the function $f$ defined by \[ f(x,t)= a+b q(x) |t|^{q(x)-2}t\quad\text{for } (x,t)\in \Omega\times\mathbb{R}\,, \] where $a$ and $b$ are two positive constants and $p,\,q\in C(\bar{\Omega})$ satisfy the inequalities $1< p^{+}\max\Big\{\big[\frac{a(\mu -1)}{b(q^{-}-\mu)}\big]^{\frac{1}{q^--1}},\, \big(\frac{a}{b}\big)^{\frac{1}{q^--1}},\, 1\Big\}\,. $$ We prove that $f$ fulfills the assumptions requested in Theorem \ref{teo:ris2}. Condition (F1) of Theorem \ref{teo:ris2} is easily verified. Taking into account that \begin{equation} F(x,t)= at+b |t|^{q(x)}\quad\text{for } (x,t)\in \Omega\times\mathbb{R}\,, \end{equation} and $\beta > (\frac{a}{b})^{\frac{1}{q^--1}}$, one has $$ F(x,t)\ge -a |t| +b|t|^{q(x)}=|t|(-a+b|t|^{q(x)-1})>0 $$ for each $x\in\Omega$ and for $|t| \ge \beta$. Moreover, the assumption $\beta>[\frac{a(\mu -1)}{b(q^{-}-\mu)}]^{\frac{1}{q^--1}}$ leads to the following inequality $$ b(q(x)-\mu)|t|^{q(x)-1}\ge b(q^--\mu)\beta^{q^--1}\ge a(\mu-1) $$ for each $x\in\Omega$ and $t\ge\beta$. This implies that $$ \mu F(x,t)\le t f(x,t) $$ holds for each $x\in\Omega$ and $|t|\ge \beta$ and so condition (F3) is verified. \end{example} \begin{remark} \label{stima della costante nell'esempio} \rm We observe that the function $f$ in Example \ref{duesoluzioni} satisfies the condition $f(x,0)\neq 0$. This implies that problem \eqref{eq:neumann} admits at least two non trivial distinct solutions (see Remark \ref{due soluzioni non nulle}). \end{remark} \begin{thebibliography}{99} \bibitem{BOCHI1} Bonanno, G.; Chinn\`i, A.; \newblock{\it Discontinuous elliptic problems involving the $p(x)$-Laplacian}, \newblock {\rm Math. Nachr.}, \textbf{284}, n.5,6 (2011), 639--652. \bibitem{BOCHI3} Bonanno, G.; Chinn\`i, A.; \newblock{\it Multiple solutions for elliptic problems involving the p(x)-Laplacian}, \newblock {\rm Le Matematiche}, \textbf{66} (2011), 105--113. \bibitem{BOCHI4} Bonanno, G.; Chinn\`i, A.; \newblock{\it Existence results of infinitely many solutions for p(x)-Laplacian elliptic Dirichlet problems}, \newblock {\rm Complex Variables and Elliptic Equations},\textbf{57}, n. 11 (2012), 1233-246. \bibitem{BOCHI5} Bonanno, G.; Chinn\`i, A.; \newblock{\it Existence and multiplicity of weak solutions for elliptic Dirichlet problems with variable exponent}, \newblock preprint. \bibitem{BONANNO} Bonanno, G.; \newblock{\it A critical point theorem via the Ekeland variational principle}, \newblock {\rm Nonlinear Analysis}, \textbf{75} (2012), 2992--3007. \bibitem{BONANNO2} Bonanno, G.; \newblock{\it Relations between the mountain pass theorem and local minima}, \newblock {\rm Adv. Nonlinear Anal.}, \textbf{1} (2012), 205--220. \bibitem{BonMolRad} Bonanno, G.; Molica Bisci, G.; R\u{a}dulescu, V. D.; \newblock{\it Weak solutions and energy estimates for a class of nonlinear elliptic Neumann problems}, \newblock {\rm Advanced Nonlinear Studies}, 13, no. 2 (2013), 373--390. \bibitem{CCD6} Cammaroto, F.; Chinn\`i, A.; Di Bella, B.; \newblock{\it Multiple solutions for a Neumann problem involving the $p(x)$-Laplacian}, \newblock {\rm Nonlinear Anal.}, {\bf 71} (2009), 4486--4492. \bibitem{ChaoJi2} Chao, Ji; \newblock{\it Remarks on the existence of three solutions for the p(x)-Laplacian equations}, \newblock {\rm Nonlinear Anal.}, {\bf 74} (2011), 2908--2915. \bibitem{ChiLi1} Chinn\`i, A.; Livrea, R. \newblock{\it Multiple solutions for a Neumann-type differential inclusion problem involving the $p(\cdot)$-Laplacian}, \newblock {\rm Discrete and Continuous Dynamical Systems}(Series S), {\bf 5 (4)} (2012), 753--764. \bibitem{Diening} Diening, L.; Harjulehto, P.; H\"ast\"o, P.; Ru\u{z}i\u{c}ka, M.; \newblock{\it Lebesgue and Sobolev spaces with variable exponents}, \newblock {\rm Lecture Notes in Mathematics}, {\bf 2017}, Springer-Verlag, Heidelberg (2011). \bibitem{FAN2} Fan, X. L.; Deng, S. G.; \newblock{\it Remarks on Ricceri's variational principle and applications to the $p(x)$-Laplacian equations}, \newblock {\rm Nonlinear Anal.}, {\bf 67} (2007), 3064--3075. \bibitem{FAN3} Fan, X. L.; Zhang, Q. H.; \newblock{\it Existence of solutions for $p(x)$-Laplacian Dirichlet problem}, \newblock {\rm Nonlinear Anal.}, {\bf 52} (2003), 1843--1852. \bibitem{FJ} Fan, X. L.; Ji, C.; \newblock{\it Existence of infinitely many solutions for a Neumann problem involving the p(x)-Laplacian}, \newblock {\rm J. Math. Anal. Appl.}, {\bf 334} (2007), 248--260. \bibitem{DLIU} Liu, D.; \newblock{\it Existence of multiple solutions for a $p(x)$-Laplace equations}, \newblock {\rm Electron. J. Differential Equations}, Vol. 2010(2010) {\bf 33}, 1-11. \bibitem{FAN5} Fan, X. L.; Zhao, D.; \newblock{\it On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$}, \newblock {\rm J. Math. Anal. Appl.}, {\bf 263} (2001), 424--446. \bibitem{LIU} Liu, Q.; \newblock{\it Existence of three solutions for $p(x)$-Laplacian equations}, \newblock {\rm Nonlinear Anal.}, {\bf 68} (2008), 2119--2127. \bibitem{KOVACIKRAKOSNIK} Kov\'a\u{c}ik, O.; R\'akosn\'ik, J.; \newblock{\it On spaces $L^{p(x)}$ and $W^{1,p(x)}$}, \newblock {\rm Czechoslovak Math.}, {\bf 41} (1991), 592--618. \bibitem{MIHAILESCU} Mih\u{a}ilescu, M.; \newblock{\it Existence and multiplicity of solutions for a Neumann problem involving the $p(x)$-Laplace operator}, \newblock {\rm Nonlinear Anal.}, {\bf 67} (2007), 1419--1425. \bibitem{MOSCHETTO} Moschetto, D. S.; \newblock {\it A quasilinear Neumann problem involving the $p(x)$-Laplacian}, \newblock { \rm Nonlinear Analysis}, {\bf 71} (2009), 2739--2743. \bibitem{MUSIELAK} Musielak, J.; \newblock{\it Orlicz spaces and modular spaces}, \newblock {\rm Lecture Notes in Mathematics}, {\bf 1034}, Springer, Berlin (1983). \bibitem{RAB} Rabinowitz, P.H.; \newblock{\it Minimax Methods in Critical Point Theory with Applications to Differential Equations}, \newblock {\rm C.B.M.S., A.M.S.}, {\bf 65} (1986). \bibitem{RICCERI1} Ricceri, B.; \newblock{\it A general variational principle and some of its applications}, \newblock {\rm J. Comput. Appl. Math.}, {\bf 113} (2000), 401--410. \bibitem{Ruzicka} Ru\u{z}i\u{c}ka, M.; \newblock \it{Electrorheological fluids: modeling and mathematical theory}, \newblock \rm{Springer-Verlag, Berlin 2000.} \bibitem{SD} Ding, X.; Shi, X.; \newblock {\it Existence and multiplicity of solutions for a general p(x)-Laplacian Neumann problem}, \newblock { \rm Nonlinear Analysis}, {\bf 70} (2009), 3715-3720. \end{thebibliography} \end{document}