\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{amssymb} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 204, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/204\hfil The $(n-1)$-radial symmetric solution] {The $(n-1)$-radial symmetric positive classical solution for elliptic equations with gradient} \author[Y. Zhang, Q. Xu, P. Zhao \hfil EJDE-2013/204\hfilneg] {Yong Zhang, Qiang Xu, Peihao Zhao} \address{Yong Zhang \newline Department of Mathematics, Lanzhou University, Lanzhou, Gansu, 730000, China \newline Department of Mathematics, Chizhou College, Chizhou, Anhui, 247000, China} \email{zhangy12@lzu.edu.cn} \address{Qiang Xu \newline Department of Mathematics, Lanzhou University, Lanzhou, Gansu, 730000, China} \email{xuqiang09@lzu.edu.cn} \address{Peihao Zhao \newline Department of Mathematics, Lanzhou University, Lanzhou, Gansu, 730000, China} \email{zhaoph@lzu.edu.cn} \thanks{Submitted June 14, 2013. Published Spetember 16, 2013.} \subjclass[2000]{35J60, 35B09} \keywords{Elliptic equations; symmetric; positive solution; a priori estimates; \hfill\break\indent fixed point theorem} \begin{abstract} In this article, we study the existence of the $(n-1)$-radial symmetric positive classical solution for elliptic equations with gradient. By some special techniques in two variables, we show a priori estimates, and then show the existence of a solution using a fixed point theorem. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} In this article, we consider the following boundary-value problem of a second-order elliptic equation, \begin{equation} \begin{gathered} -\Delta u=f(x,u,\nabla u)\quad \text{in } \Omega ,\\ u(x)=0 , \quad \text{on } \partial\Omega, \end{gathered}\label{e1.1} \end{equation} where $\Omega$ is a bounded domain in $\mathbb{R}^n$, $n\geq 3$. This type of equations have been studied by several authors. As the nonlinearity $f$ depends on the gradient of the solution, solving \eqref{e1.1} is not variational and the well developed critical point theory can not be applied directly. But if $f$ has a special form, by changing variables, \eqref{e1.1} can be transformed into a boundary-value problem which is independent of $\nabla u$. For example, When $f(x,u,\nabla u)=g(u)+\lambda|\nabla u|^2+\eta$, Ghergu and R\u{a}dulescu \cite{Ghergu1} used the above method to show the existence of positive classical solution under the assumption that $g$ is decreasing and unbounded at the origin. A similar method appears in \cite{Abdellaoui}, where $f(x,u,\nabla u)$ has critical growth with respect to $\nabla u$; see also \cite{Ghergu2,Zou}. In addition, Chen and Yang \cite{Chen Wenjing} considered the existence of positive solutions for \eqref{e1.1} on a smooth compact Riemannian manifold. As far as we know, the methods used to solve \eqref{e1.1} are mainly sub and super-solution, fixed point theorems, Galerkin method, and topological degree, see, for instance, \cite{Alves, Amann,Figueiredo2,Pohozaev,Wang,Xavier,Yan}. It is worth mentioning that de Figueiredo, Girardi and Matzeu \cite{Figueiredo1} developed a quite different method of variational type. Firstly, for each $\omega\in H_0^1(\Omega)$, they considered the boundary problem \begin{equation} \begin{gathered} -\Delta u=f(x,u,\nabla \omega)\quad \text{in } \Omega ,\\ u(x)=0 , \quad \text{on } \partial\Omega. \end{gathered}\label{e1.2} \end{equation} which is a variational problem. Under the assumptions that $f$ has a superlinear subcritical growth at zero and at infinity with respect to the second variable, and $f$ is locally Lipschitz continuous with the third variable, they proved that a weak solution $u_{\omega}$ of \eqref{e1.2} exists by mountain-pass theorem. Then they have constructed a sequence $\{u_k\}\subset H_0^1(\Omega)$ as solutions of \begin{equation} \begin{gathered} -\Delta u_n=f(x,u_n,\nabla u_{n-1})\quad \text{in } \Omega ,\\ u_n(x)=0 , \quad \text{on } \partial\Omega, \end{gathered}\label{e1.3} \end{equation} and verified that $\{u_k\}$ converges to a solution of \eqref{e1.1}. However, this solution is just in $H_0^1(\Omega)$. Additionally, the existence of classical solutions for \eqref{e1.1} has been obtained by mountain-pass lemma and a suitable truncation method in \cite{Girardi}, but the conditions imposed on $f$ are very strong: \begin{enumerate} \item $f$ is locally Lipschitz continuous on $\bar{\Omega}\times \mathbb{R}\times \mathbb{R}^n$, \item $\frac{f(x,t,\xi)}{t}$ converges to zero uniformly with respect to $x\in \Omega$, $\xi\in \mathbb{R}^n $ as $t$ tends to zero, \item there exist $a_{1}>0$, $p\in (1,\frac{n+2}{n-2})$ and $r\in (0,1)$ such that \[ |f(x,t,\xi)|\leq a_{1}(1+|t|^{p})(1+|\xi|^{r}),\quad \forall x\in \bar{\Omega},\; t\in \mathbb{R},\; \xi\in \mathbb{R}^n, \] \item there exist $\vartheta >2$ and $a_{2}, a_{3}, t_0>0$ such that \begin{gather*} 0<\vartheta F(x,t,\xi)\leq tf(x,t,\xi),\quad \forall x\in \bar{\Omega},\; t\geq t_0,\; \xi\in \mathbb{R}^n,\; F(x,t,\xi)\geq a_{2}|t|^{\vartheta}-a_{3}; \\ F(x,t,\xi)\geq a_{2}|t|^{\vartheta}-a_{3}, \end{gather*} where $F(x,t,\xi)=\int_0^{t}f(x,s,\xi)ds$. \end{enumerate} As far as we know, a few authors have paid attention to the radial solutions of \eqref{e1.1}; see for example \cite{Bisci, Figueiredo2}. So we will limit us to the radially symmetric case and try to focus on some new methods to study \eqref{e1.1}. We consider the boundary-value problem \eqref{e1.1} and assume the following: \begin{itemize} \item[(D1)] $\Omega$ is a so-called $(n-1)$-symmetric domain in $\mathbb{R}^n$($n\geq 3$), that is, $\Omega$ is symmetric with respect to $x_{1},x_{2},\cdots,x_{n-1}$ and $0\notin\overline{\Omega}$; \item[(F1)] $f(x,u,\eta)$ is a nonnegative function satisfying $f(x,u,\eta)=f(r,x_n,u,|\eta|)$, where $r=\sqrt{x_{1}^2+x_{2}^2+\cdots+x_{n-1}^2}$; \item[(F2)] there exist $c_0\geq 1$, $M>0$, $ p>1$, $\tau\in(0,\frac{2p}{p+1}) $ such that \[ u^{p}-M|\eta|^{\tau}\leq f(x,u,\eta)\leq c_0u^{p}+M|\eta|^{\tau},\quad \forall (x,u,\eta)\in\Omega\times\mathbb{R}\times\mathbb{R}^n; \] \item[(F3)] $f(x,u,\eta)\in C^{\beta}(\Omega,\mathbb{R},\mathbb{R}^n)$ for some $\beta\in(0,1)$. \end{itemize} We remark that in \cite{Ruiz}, the constants $p$ and $\tau$ belong to $(1 , \frac{2(n-1)}{n-2})$ and $(1,\frac{2p}{p+1})$ respectively. Obviously, the conditions in (F2) are weaker than those in \cite{Ruiz}. If the solution $u(x)$ is $(n-1)$-radial symmetric, that is $u(x)=u(r,x_n)$, then by (F1) Equation \eqref{e1.1} can be transformed into the following elliptic equation in two variables: \begin{equation} \begin{gathered} -(u_{rr}+u_{x_nx_n})=H(r,x_n,u,u_{r},u_{x_n}),\quad \text{in } \Omega ,\\ u(x)=0 , \quad \text{on } \partial\Omega, \end{gathered}\label{e1.4} \end{equation} where $H(r,x_n,u,u_{r},u_{x_n})=f(r,x_n,u,|\nabla u|)+\frac{n-2}{r}u_{r}$. Motivated by the priori estimates mentioned in \cite{Ruiz} and special technique for the equation in two variables developed in \cite{Gilbarg}, we develop an approach which is distinct from the previous works, and shows the existence of the $(n-1)$-radial symmetric positive classical $C^{2,\beta}$-solutions of \eqref{e1.1}. Note that solution in \cite{Ruiz} is just in $C^{1,\alpha}(\Omega)$. The rest of this work is organized as follows. Motivated by \cite{Ruiz} we give a priori estimates in section 2. In section 3 we show the existence of $(n-1)$-radial symmetric positive classical solutions with the help of \cite{Gilbarg}. \section{A priori estimates} Compared with the reference \cite{Ruiz}, we should deal with the second term $\frac{n-2}{r}u_{r}$ of $H(r,x_n,u,u_{r},u_{x_n})$ in \eqref{e1.4} additionally, it is necessary to give a brief proof of the a priori estimates although the process is similar to that in \cite{Ruiz}. \begin{theorem} \label{thm2.1} Assume that {\rm (D1)} and {\rm (F2)} hold, and that $\lambda<\lambda_0$ for some $\lambda_0$ fixed. Then, for any $C^1$-solution $u$ of the equation \begin{equation} \begin{gathered} -(u_{rr}+u_{x_nx_n})=H(r,x_n,u,u_{r},u_{x_n})+\lambda, \quad \text{in } \Omega ,\\ u(x)=0, \quad \text{on } \partial\Omega, \end{gathered}\label{e2.1} \end{equation} there exists a positive constant $C$ such that $\sup_{\Omega} u 0$ and $\phi=[\xi(\frac{x-x_0}{R})]^{k}u^{-d}$ as a test function for \eqref{e2.2} ($k$ to be fixed later). We obtain \[ -\int_{\Omega}(u_{rr}+u_{x_nx_n})\xi^{k}u^{-d}\geq \int_{\Omega}(u^{p}-M|\nabla u|^{\tau}+\frac{n-2}{r}u_{r})\xi^{k}u^{-d}. \] Integrating by parts and using that $|\nabla\xi^{k}|=k\xi^{k-1}|\nabla \xi|\leq \xi^{k}\frac{2k}{R\xi}$, we obtain \begin{align*} &d\int_{\Omega}\xi^{k}u^{\gamma-p-1}|\nabla u|^2+\int_{\Omega}\xi^{k}u^{\gamma}\\ &\leq\int_{\Omega}u^{-d}|\nabla u||\nabla\xi^{k}|+M\int_{\Omega}|\nabla u|^{\tau}\xi^{k}u^{-d}-\int_{\Omega}\frac{n-2}{r}u_{r}\xi^{k}u^{-d} \\ &\leq\int_{\Omega}u^{-d}|\nabla u|\xi^{k}\frac{2k}{R\xi}+M\int_{\Omega}|\nabla u|^{\tau}\xi^{k}u^{-d}+\frac{n-2}{\operatorname{dist}(0,\partial\Omega)}\int_{\Omega}|\nabla u|\xi^{k}u^{-d}. \end{align*} Applying the Young inequality to the first right term, we have \[ \int_{\Omega}u^{-d}|\nabla u|\xi^{k}\frac{2k}{R\xi}\leq\frac{d}{4}\int_{\Omega}\xi^{k}u^{\gamma-p-1}|\nabla u|^2+CR^{-2}\int_{\Omega}\xi^{k-2}u^{\gamma-p+1}, \] so \begin{align*} &\frac{3}{4}d\int_{\Omega}\xi^{k}u^{\gamma-p-1}|\nabla u|^2+\int_{\Omega}\xi^{k}u^{\gamma}\\ &\leq CR^{-2}\int_{\Omega}\xi^{k-2}u^{\gamma-p+1}+M\int_{\Omega}|\nabla u|^{\tau}\xi^{k}u^{-d}+\frac{n-2}{\operatorname{dist}(0,\partial\Omega)}\int_{\Omega}|\nabla u|\xi^{k}u^{-d}. \end{align*} Next we focus on the case of $\gamma>p-1$. Take $k=\frac{2\gamma}{p-1}$. By using the Young inequality again, we have \[ CR^{-2}\int_{\Omega}\xi^{k-2}u^{\gamma-p+1}\leq \frac{1}{4}\int_{\Omega}\xi^{k}u^{\gamma}+CR^{2-2\gamma/(p-1)} \] and \begin{align*} M\int_{\Omega}|\nabla u|^{\tau}\xi^{k}u^{-d} &\leq\frac{d}{4}\int_{\Omega}\xi^{k}u^{\gamma-p-1}|\nabla u|^2+C\int_{\Omega}\xi^{k}u^{t}\\ &\leq\frac{d}{4}\int_{\Omega}\xi^{k}u^{\gamma-p-1}|\nabla u|^2+\frac{1}{4}\int_{\Omega}\xi^{k}u^{\gamma}+CR^{-2}, \end{align*} the second inequality holds becasue $t=(-d-\tau\frac{\gamma-p-1}{2})\frac{2}{2-\tau}<\gamma$, and \begin{align*} \frac{n-2}{\operatorname{dist}(0,\partial\Omega)}\int_{\Omega}|\nabla u|\xi^{k}u^{-d} &\leq\frac{d}{4}\int_{\Omega}\xi^{k}u^{\gamma-p-1}|\nabla u|^2+C\int_{\Omega}\xi^{k}u^{\gamma-p+1}\\ &\leq \frac{d}{4}\int_{\Omega}\xi^{k}u^{\gamma-p-1}|\nabla u|^2+\frac{1}{4}\int_{\Omega}\xi^{k}u^{\gamma}+CR^{-2}. \end{align*} So \begin{equation} \frac{d}{4}\int_{\Omega}\xi^{k}u^{\gamma-p-1}|\nabla u|^2+\frac{1}{4}\int_{\Omega}\xi^{k}u^{\gamma}\leq CR^{2-2\gamma/(p-1)},\label{e2.5} \end{equation} which gives \eqref{e2.3}. If $\gamma=p-1$, \eqref{e2.3} is obvious by the above arguments. For the case of $\gamma2$ and $q\in (1,2)$. Then for every $R$ such that $B_{2R}\subset\Omega$, there exists a constant $C=C(q, q', R^{1-\frac{2}{q'}}\|c\|_{L^{q'}}$, $R^{2-\frac{2}{q}}\|d\|_{L^{q}} )$ such that \[ \sup_{B_{R}} u\leq C(\inf_{B_{R}} u+R^{2-\frac{2}{q}}\|f\|_{L^{q}}). \] \end{lemma} Note that this lemma is of Harnack type; see \cite{Serrin} for more information on this type of inequalities. The next theorem is similar to \cite[Theorem 2.3]{Ruiz}. \begin{theorem} \label{thm2.2} Let {\rm (D)} hold and $R\leq R_0$ such that $B_{2R}\subset\Omega$. Suppose $u(r,x_n)$ is a positive weak solution of the inequality \[ u^{p}-M|\nabla u|^{\tau}+\frac{n-2}{r}u_{r}\leq -(u_{rr}+u_{x_nx_n})\leq c_0u^{p}+M|\nabla u|^{\tau}+\frac{n-2}{r}u_{r}+\lambda,\label{e2.6} \] where $p>1$, $0<\tau<\frac{2p}{p+1}$, $\lambda>0$. Then there exists a constant $C=C(p, \tau, R_0, M)$ such that \[ \sup_{B_{R}} u\leq C(\inf_{B_{R}} u+\lambda R^2). \] \end{theorem} \begin{proof} From \eqref{e2.6}, we obtain \[ |u_{rr}+u_{x_nx_n}|\leq c_0u^{p}+M|\nabla u|^{\tau}+\frac{n-2}{r}|\nabla u|+\lambda. \] Take $f=\lambda$, $c=M|\nabla u|^{\tau-1}+\frac{n-2}{r}$ and $d=c_0u^{p-1}$. To prove this theorem, we only need to verify that \[ c(x)\in L^{q'}(B_{2R}), \quad d\in L^{q}(B_{2R}). \] Note that $\frac{n-2}{r}$ obviously belongs to $ L^{q'}(B_{2R})$, so we only need to prove $M|\nabla u|^{\tau-1}\in L^{q'}(B_{2R})$. By lemma 2.1, we have \[ \|M|\nabla u|^{\tau-1}\|_{L^{q'}}=M\Big(\int_{B_{(2R)}}|\nabla u|^{\mu}\Big)^{1/q'}\leq CR^{\frac{2-(p+1)\mu/(p-1)}{q'}}, \] where $\mu=q'(\tau-1)$ should satisfy $q'(\tau-1)<\frac{2p}{p+1}$ for some $q'>2$. Since $\tau<\frac{2p}{p+1}$ and $q'>2$ can be close enough to $2$, so we just need to verify \[ 2\big(\frac{2p}{p+1}-1\big)<\frac{2p}{p+1}. \] The above inequality is obvious, that is to say, $c(x)\in L^{q'}(B_{2R})$. For $d=c_0u^{p-1}$, by lemma 2.1 we have \[ \|d\|_{L^{q}(B_{2R})}=c_0\Big(\int_{B_{(2R)}}u^{\gamma}\Big)^{1/q}\leq CR^{(2-2q)/q}, \] where $\gamma=(p-1)q$ should satisfy $(p-1)q1$ close enough to $1$, we can get $(p-1)q0$ such that $u_n$ is solution of \eqref{e2.1} with $\lambda$ substituted by $\lambda_n$ and $\max_{\Omega} u_n\to \infty$. Let $z_n$ be a point in $\Omega$ such that $u_n(z_n)=\max_{\Omega} u_n\triangleq S_n$. Denote $\delta_n=\operatorname{dist}(z_n,\partial\Omega)$. In order to prove there exists a $y_0\in \Omega$ such that $u_n(y_0)\to\infty$, we proceed in three steps: \smallskip \noindent\textbf{Step 1:} There exists $c>0$ such that $c<\delta_nS_n^{(p-1)/2}$. Define $w(x)=S_n^{-1}u_n(y)$, where $y=M_nx+z_n$, $M_n=S_n^{(1-p)/2}$. By easy computation and condition (F2), we obtain \begin{align*} -\Delta w_n(x) &=S_n^{-1}M_n^2(H(M_nx+z_n,S_nw_n(x),S_nM_n^{-1}\nabla w_n(x))+\lambda_n)\\&\leq c_0w_n^{p}+MS_n^{-p}S_n^{\tau\frac{p+1}{2}}|\nabla w_n|^{\tau} +\frac{n-2}{\operatorname{dist}(0,\partial\Omega)}|\nabla w_n|+\lambda_nS_n^{-p}. \end{align*} Notice that $MS_n^{-p}S_n^{\tau\frac{p+1}{2}}$ and $\lambda_nS_n^{-p}$ tend to zero respectively as $n$ tends to infinity, so \[ -\Delta w_n(x)\leq c_0w_n^{p}+|\nabla w_n|^{\tau}+\frac{n-2}{\operatorname{dist}(0,\partial\Omega)}|\nabla w_n|+1. \] By the regularity result in \cite{Lieberman}, there exists a constant $C$ independent of $n$ such that $\sup_{\Omega} w_n\leq C$. Let $y_n\in \partial\Omega$ such that $d(z_n,y_n)=\delta_n$; then, by the mean value theorem, we have \[ 1=w_n(0)=w_n(0)-w_n(M_n^{-1}(y_n-z_n))\leq \sup_{\Omega} w_nM_n^{-1}\delta_n\leq CM_n^{-1}\delta_n. \] Thus, the first step is complete. \smallskip \noindent\textbf{Step 2:} There exists $\gamma>0$ such that \[ \int_{B(z_n,\delta_n/2)}|u_n|^{\gamma}\to\infty. \] By Theorem \ref{thm2.2}, we obtain \[ S_n=\max_{B(z_n,\delta_n/2)} u_n\leq C\Big(\min_{B(z_n,\delta_n/2)} u_n+\lambda_n\frac{\delta_n^2}{4}\Big). \] Since $\lambda_n$ and $\delta_n$ are bounded, we obtain that $\min_{B(z_n,\delta_n/2)} u_n\geq cS_n$ for some $c>0$. So \[ \int_{B(z_n,\delta_n/2)}|u_n|^{\gamma}\geq cS_n^{\gamma}\delta_n^2\geq cS_n^{\gamma}S_n^{1-p}. \] We can choose a $\gamma>p-1$ such that $cS_n^{\gamma}S_n^{1-p}\to+\infty$. The proof of step 2 is complete. \smallskip \noindent\textbf{Step 3:} There exists a $y_0\in \Omega$ such that $u_n(y_0)\to\infty$. Notice that $\partial\Omega$ is $C^2$ and compact boundary , so we can find $\varepsilon>0$ independent of $n$ and $y_n\in\Omega$ such that: \begin{itemize} \item $d(y_n,\partial\Omega)=2\varepsilon$, for all $n\in \mathbb{N}$. \item $B(z_n,\frac{\delta_n}{2})\subset B(y_n,2\varepsilon)$, for all $n\in \mathbb{N}$. \end{itemize} By the weak Harnack inequality in \cite{Trudinger} and step 2, we conclude that \[ \min_{B(y_n,\varepsilon)} u_n\geq c\Big(\int_{B(y_n,2\varepsilon)}|u_n|^{\gamma}\Big)^{1/\gamma}\to+\infty. \] Taking a subsequence $\{\tilde{y}_n\}\subset \{y_n\}$ such that $\tilde{y}_n\to y_0\in \Omega$. For $n$ large enough, we have $y_0\in B(\tilde{y}_n,\varepsilon)$ and $u_n(y_0)\to\infty$, which contradicts with Theorem \ref{thm2.2}. Thus we obtain a priori estimate of solutions. \end{proof} \section{Existence of positive classical $C^{2,\beta}$-solutions} \begin{theorem} \label{thm3.1} Assume {\rm (D1), (F1)--(F3)} hold. Then \eqref{e1.1} admits an $(n-1)$-radial symmetric positive classical solution $u(r,x_n)\in C^{2,\beta}(\Omega)\cap C^{0}(\overline{\Omega})$. \end{theorem} The following lemma mentioned in \cite{Gilbarg} will be used in our proof. \begin{lemma}[{\cite[Theorem 12.4]{Gilbarg}}] \label{lem3.1} Let $u$ be a bounded $C^2(\Omega)$ solution of \[ Lu=a(x,y)u_{xx}+2b(x,y)u_{xy}+c(x,y)u_{yy}=f(x,y), \] where $L$ is uniformly elliptic in a domain $\Omega\subset\mathbb{R}^2$, satisfying \begin{gather*} \lambda(\xi^2+\eta^2)\leq a\xi^2+2b\xi\eta+c\eta^2\leq\Lambda(\xi^2+\eta^2), \quad \forall (\xi,\eta)\in \mathbb{R}^2, \\ \frac{\Lambda}{\lambda}\leq \gamma \end{gather*} for some constant $\gamma\geq 1$. Then for some $\alpha=\alpha(\gamma)>0$, we have \[ [u]_{1,\alpha}^{*}=\sup_{z_{1},z_{2}\in \Omega} d_{1,2}^{1+\alpha}\frac{|Du(z_{2})-Du(z_{1})|}{|z_{2}-z_{1}|^{\alpha}}\leq C(|u|_0+|\frac{f}{\lambda}|_0^{(2)}), \] where $C=C(\gamma)$, $|\frac{f}{\lambda}|_0^{(2)} =\sup_{z\in \Omega} d_{z}^2|\frac{f}{\lambda}|$, $d_{z}=\operatorname{dist}(z,\partial\Omega)$ and $d_{1,2}=min\{d_{z_{1}},d_{z_{2}}\}$. \end{lemma} Since the conditions imposed on $f$ in Theorem \ref{thm3.1} are different from those in \cite[Theorem 12.5]{Gilbarg}, it is necessary to give the proof, although similar to that of \cite[Theorem 12.5]{Gilbarg}. \begin{proof}[Proof of Theorem \ref{thm3.1}] We now proceed by truncation of $H$ to reduce \eqref{e1.4} to the case of bounded $H$. Namely, let $\psi_{N}$ denote the function given by \[ \psi_{N}(t)=\begin{cases} t, & |t|\leq N\\ N \operatorname{sign} t, &|t|>N, \end{cases} \] and define the truncation of $H$ by \[ H_{N}(r,x_n,u,u_{r},u_{x_n})=H(r,x_n,\psi_{N}(u),\psi_{N}(u_{r}), \psi_{N}(u_{x_n})). \] From (F2), we have $|H_{N}|\leq c_0N^{p}+MN^{\tau}+\frac{n-2}{\operatorname{dist} (0,\partial\Omega)}N=C_0$. Consider now the family of problems \begin{equation} \begin{gathered} -(u_{rr}+u_{x_nx_n})=H_{N}(r,x_n,u,u_{r},u_{x_n})\quad \text{in } \Omega ,\\ \ \ \ u(x)=0 , \quad \text{on } \partial\Omega. \end{gathered}\label{e3.1} \end{equation} By Theorem \ref{thm2.1}, any solution u of \eqref{e3.1} is subject to the bound $\tilde{M}$, independent of $N$, \begin{equation} \sup_{\Omega} |u|\leq \tilde{M}.\label{e3.2} \end{equation} Now we make the following observation. Let $v$ be any bounded function with locally H\"older continuous first derivatives in $\Omega$ and $\tilde{H_{N}}=H_{N}(r,x_n,v,v_{r},v_{x_n})$. Then the following linear problem \begin{equation} \begin{gathered} -(u_{rr}+u_{x_nx_n})=\tilde{H_{N}}\quad \text{in } \Omega ,\\ u(x)=0 , \quad \text{on } \partial\Omega, \end{gathered}\label{e3.3} \end{equation} has a unique solution $u\in C^2(\Omega)\cap C^{0}(\bar{\Omega})$. We observe from classical priori estimates that \[ |u|_0=\sup_{\Omega} |u|\leq M_0. \] Furthermore, if $\sup_{\Omega}|v|\leq M_0 $, from lemma 3.1, we have \[ |u|_{1,\alpha}^{*}\leq C(|u|_0+C_0(\operatorname{diam}(\Omega))^2)\leq C(M_0+C_0(\operatorname{diam}(\Omega))^2)=K, \] where $C$, $\alpha$ depend on $M_0$. So $K$ depends on $M_0, N$ and $\Omega$. Next, define the Banach space \[ C^{1,\alpha}_{*}(\Omega)=\{u\in C^{1,\alpha}(\Omega)||u|_{1,\alpha;\Omega}^{*}<+\infty\} \] and define a mapping $T$ on the set \[ \mathbb{S}=\{v\in C^{1,\alpha}_{*}:|v|_{1,\alpha}^{*}\leq K,|v|_0\leq M_0\}. \] So $u= Tv$ is the unique solution of the linear Dirichlet problem \eqref{e3.3}. It is easy to show that $\mathbb{S}$ is convex and closed in the Banach space, and $T$ is continuous in $C_{*}^1=\{u\in C^1(\Omega)||u|_{1;\Omega}^{*}<+\infty$ and $T\mathbb{S}$ is precompact. So we may conclude from the Schauder fixed point theorem and Schauder estimates that T has a fixed point, $u_{N}= Tu_{N}$, $u_{N}\in C^{1,\alpha}_{*}(\Omega)\cap C^{2,\beta}(\Omega)\cap C^{o}(\bar{\Omega})$. This will provide a solution of the problem \eqref{e3.1}. Furthermore, from lemma 3.1 we infer the estimate \[ [u_{N}]^{*}_{1,\alpha}\leq C(|u|_0+|G_{HN}|_0^{(2)}). \] By (F2) and \eqref{e3.2}, we obtain \[ [u_{N}]^{*}_{1,\alpha}\leq C(1+[u_{N}]_{1}^{*}), \] where $C=C(\tilde{M},M,c_0,p,\tau, \operatorname{diam}(\Omega))$. Furthermore, the interpolation inequality yields the uniform bound which is independent of $N$, \[ [u_{N}]^{*}_{1,\alpha}\leq C=C(\tilde{M},M,c_0,p,\tau, \operatorname{diam}(\Omega)). \] By similar arguments as in the proof of \cite[Theorem 12.5]{Gilbarg}, it is easy to show there is a subsequence $\{u_n\}$ of $\{u_{N}\}$ which converges to a solution u of \eqref{e1.4}, and $u$ also satisfies the boundary condition $u=0$ on $\partial\Omega$. Since $f$ is nonnegative, by comparison principles, $u$ is positive. This completes the proof. \end{proof} \begin{remark} \label{rmk1} \rm If $\Omega=\Omega_{1}\times\Omega_{2}\subset\mathbb{R}^{k}\times\mathbb{R}^{n-k}$, $\Omega_{1}$ and $\Omega_{2}$ are symmetric and $0\notin\overline{\Omega}$, $f(x,u,|\nabla u|)=f(r_{1},r_{2},u,|\nabla u|)$, where $r_{1}=\sqrt{x_{1}^2+x_{2}^2+\cdots+x_k^2}$, $r_{2}=\sqrt{x_{k+1}^2+x_{k+2}^2+\cdots+x_n^2}$. Under the conditions of (F2) and (F3), \eqref{e1.1} admits an $(n-1)$-radial symmetric positive classical solution $u(r_{1},r_{2})\in C^{2,\beta}(\Omega)\cap C^{0}(\overline{\Omega})$. The proof is left to readers. \end{remark} \subsection*{Acknowledgments} This work is partly supported by the National Natural Science Foundation of China (10971088) and Natural Science Foundation of Chizhou College (2013ZRZ002). \begin{thebibliography}{00} \bibitem{Abdellaoui} B. Abdellaoui, A. Dall Aglio, I. Peral; \emph{Some remarks on elliptic problems with critical growth in the gradient}, J. Differential Equations 222 (2006), 21--62. \bibitem{Alves} Claudianor O. Alves, Paulo C. Carriao, Luiz F. O. Faria; \emph{Existence of solutions to singular elliptic equations with convection terms via the Galerkin method}, Electronic Journal of Differential Equations Vol. 2010 (2010), No. 12, 1--12. \bibitem{Amann} H. Amann, M. G. Crandall; \emph{On some existence theorems for semilinear elliptic equations}, Indiana Univ. Math. J 27 (1978), 779--790. \bibitem{Bisci} Giovanni Molica Bisci, Vicentiu R\u{a}dulescu; \emph{Multiple symmetric solutions for a Neumann problem with lack of compactness}, C. R. Acad. Sci. Paris, Ser. I 351 (2013) 37--42. \bibitem{Chen Wenjing} Wenjing Chen, Jianfu Yang; \emph{Existence of positive solutions for quasilinear elliptic equation on Riemannian manifolds}, Differential Equations and Applications Vol 2 (2010), 569--574. \bibitem{Figueiredo1} D. G. de Figueiredo, M. Girardi, M. Matzeu; \emph{Semilinear ellptic equations with dependence on the gradient via mountain-pass techniques}, Differential and Integral Equations 17 (2004), 119--126. \bibitem{Figueiredo2} D. G. de Figueiredo, J. S\'anchez, P. Ubilla; \emph{Quasilinear equations with dependence on the gradient}, Nonlinear Analysis 71 (2009), 4862--4868. \bibitem{Ghergu1} M. Ghergu, V. R\u{a}dulescu; \emph{Bifurcation for a class of singular elliptic problems with quadratic convection term}, C. R. Acad. Sci. Paris, Ser. I 338 (2004), 831--836. \bibitem{Ghergu2} M. Ghergu, V.R\u{a}dulescu; \emph{On a class of sublinear singular elliptic problems with convection term}, J. Math. Anal. Appl. 311 (2005) 635--646. \bibitem{Gilbarg} D.Gilbarg, N. S. Trudinger; \emph{Elliptic Partial Differential Equations of Second Oder}, second ed. Springer-Verlag, Berlin, 1983. \bibitem{Girardi} M. Girardi, M. Matzeu; \emph{Positive and negative solutions of a quasilinear elliptic equation by a Mountain Pass method and truncature techniques}, Nonlinear Analysis T.M.A. 59 (2004), 199--210. \bibitem{Lieberman} G. M. Lieberman; \emph{Boundary regularity for solutions of degenerate elliptic equations}, Nonlinear Anal. 12 (1988) 1203--1219. \bibitem{Pohozaev} Pohozaev S; \emph{On equations of the type $\Delta u=f(x,u,Du)$}, Mat. Sb. 113 (1980), 324--338. \bibitem{Ruiz} D. Ruiz; \emph{A priori estimates and existence of positive solutions for strongly nonlinear problems}, J. Differential Equations 199 (2004), 96--114. \bibitem{Serrin} J. Serrin, H. Zou; \emph{Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities}, Acta Math. 189 (2002) 79--142. \bibitem{Trudinger} N. Trudinger; \emph{On Harnack type inequalities and their applications to quasilinear elliptic equations}, Comm. Pure Appl. Math. 20 (1967) 721--747. \bibitem{Wang} X. Wang, Y. Deng; \emph{Existence of multiple solutions to nonlinear elliptic equations in nondivergence form}, J. Math. Anal. and Appl. 189 (1995), 617--630. \bibitem{Xavier} J. B. M. Xavier; \emph{Some existence theorems for equations of the form $-\Delta u=f(x,u,Du)$}, Nonlinear Analysis T.M.A. 15 (1990), 59--67. \bibitem{Yan} Z. Yan; \emph{A note on the solvability in $W^{2,p}(\Omega)$ for the equation $-\Delta u=f(x,u,Du)$}, Nonlinear Analysis T.M.A. 24 (1995), 1413--1416. \bibitem{Zou} Henghui Zou; \emph{A priori estimates and existence for quasilinear elliptic equations} Calc. Var. Partial Differential Equations 33 (2008), no. 4, 417--437. \end{thebibliography} \end{document}