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HOMOGENIZATION OF A SYSTEM OF SEMILINEAR
DIFFUSION-REACTION EQUATIONS IN AN H1,p SETTING

HARI SHANKAR MAHATO, MICHAEL BÖHM

Abstract. In this article, homogenization of a system of semilinear multi-

species diffusion-reaction equations is shown. The presence of highly nonlinear
reaction rate terms on the right-hand side of the equations make the model

difficult to analyze. We obtain some a-priori estimates of the solution which

give the strong and two-scale convergences of the solution. We homogenize this
system of diffusion-reaction equations by passing to the limit using two-scale

convergence.

1. Introduction

The existence of a unique global positive weak solution u that belongs the space
[H1,p((0, T );H1,q(Ω)∗)∩Lp((0, T );H1,p(Ω))]I is shown in [15] (by taking ~q = 0) for
a system of semilinear diffusion-reaction equations

∂u

∂t
−∇( D∇u− ~qu) = SR(u) in (0, T )× Ω, (1.1)

−D∇u · ~n = 0 on (0, T )× ∂Ω, (1.2)

u(0, x) = u0(x) in Ω (1.3)

under the assumptions:

(i) p > n+ 2;
(ii) u0 ≥ 0, i.e., u0i

≥ 0 for i = 1, 2, . . . , I;
(iii) u0i

∈ (H1,q(Ω)∗, H1,p(Ω))1− 1
p ,p

for i = 1, 2, . . . , I,
(iv) all reactions are linearly independent such that the stoichiometric matrix

S = (sij)1≤j≤J, 1≤i≤I has maximal column rank; i.e., rank(S) = J ,

where I ∈ Z+, 1
p + 1

q = 1, Ω ⊂ Rn a bounded domain with sufficiently smooth
boundary, D > 0 a constant (see remark 1.1) and SR(u) the reaction rate vector
(see (1.5)). Here u := (u1, u2, . . . , uI) is the concentration vector of I chemical
species involved in J reactions given by

τ1jX1 + τ2jX2 + · · ·+ τIjXI 
 ν1jX1 + ν2jX2 + · · ·+ νIjXI , for 1 ≤ j ≤ J, (1.4)
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where Xi, 1 ≤ i ≤ I, denotes the chemical species and the stoichiometric coefficients
−τij ∈ Z−0 and νij ∈ Z+

0 respectively. Set sij = νij − τij . The reaction rate for the
i-th species is given by

(SR(u))i =
J∑
j=1

sij

(
kfj

I∏
m=1
smj<0

u−smj
m − kbj

I∏
m=1
smj>0

usmj
m

)
for i = 1, 2, . . . , I, (1.5)

where kfj (> 0) and kbj (> 0) are the forward and backward reaction rate factors
respectively. cf. [11, 14, 15].

Remark 1.1. The modeling of transport processes in a porous medium very often
lead to the equations of type (1.1)-(1.3). In some situations the advective flux
dominates diffusion and even though diffusion coefficients actually vary from species
to species, we can consider the same value of the diffusion coefficients for all the
species. However in this paper (also in [15, 11]), due to mathematical technicality
we have considered the same diffusion coefficients for all the species.

In this article, we consider (1.1)-(1.3), assuming ~q = 0, in the context of a porous
medium and upscale the model via periodic homogenization in an appropriate func-
tion space setting (see section 4). The global existence of the solution of (1.1)-(1.3)
for ~q = 0 considered at the micro scale follows by the techniques used in [15] (see
theorem 3.1).

To fix the ideas, let Y := (0, 1)n ⊂ Rn be a unit representative cell which
is composed of a solid part Y s with boundary Γ and a pore part Y p such that
Y = Y s ∪ Y p, Ȳ s ⊂ Y and Ȳ s ∩ Ȳ p = Γ. Suppose that Ω is a porous medium
with pore space Ωp and solid parts Ωs such that Ω := Ωp ∪ Ωs. The boundary of
Ωs is denoted by Γ∗ and the outer boundary of Ω is denoted by ∂Ω. Γ, Γ∗ and ∂Ω
are assumed to be sufficiently smooth. Assume further that Ω is periodic (the solid
parts in Ω are periodically distributed) and covered by a finite union of the cell Y .
To avoid technical difficulties, we postulate:

• solid parts do not touch the boundary ∂Ω,
• solid parts do not touch each other,
• solid parts do not touch the boundary of Y .

We use the standard notation (cf. [16, 20], e.g.). Let ε > 0 be the scale parameter
and Ω be covered by a finite union of translated versions of εYk cells such that
εYk ⊂ Ω for k ∈ Zn. We also define

Ωpε := ∪k∈Zn{εY pk : εY pk ⊂ Ω}, (1.6)

Ωsε := ∪k∈Zn{εY sk : εY sk ⊂ Ω}, (1.7)

Γε := ∪k∈Zn{εΓk : εΓk ⊂ Ω}, (1.8)

∂Ωpε := ∂Ω ∪ Γε. (1.9)

We denote by dx and dy the volume elements in Ω and Y , and by dσy and dσx the
surface elements on Γ and Γε respectively. The characteristic (indicator) function
of Ωpε in Ω denoted by

χε(x) = χ(
x

ε
) (1.10)

is defined as

χε(x) =

{
1 for x ∈ Ωpε ,
0 for x ∈ Ω− Ωpε .

(1.11)
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For T > 0, [0, T ) denotes the time interval. Following the above notation, the
system of diffusion-reaction equations in the pore space at the micro scale is given
by

∂uε
∂t
−∇ ·D∇uε = SR(uε) in (0, T )× Ωpε , (1.12)

uε(0, x) = u0(x) in Ωpε , (1.13)

−D∇uε · ~n = 0 on (0, T )× ∂Ω, (1.14)

−D∇uε · ~n = 0 on (0, T )× Γε. (1.15)

We denote the problem (1.12)-(1.15) by (Pε). The derivation of (Pε) at the micro
scale is motivated from the nondimensionalization of (1.1)-(1.3), for details see
[27, 20]. Before we begin with the analysis of (1.12)-(1.15), we make the following
assumptions:

p > n+ 2; (1.16)

u0 ≥ 0, i.e., u0i
≥ 0 for all i = 1, 2, . . . , I; (1.17)

u0i ∈ (H1,q(Ωpε)
∗, H1,p(Ωpε))1− 1

p ,p
for i = 1, 2, . . . , I. (1.18)

all reactions are linearly independent such that the stoichiometric matrix

S = (sij)1≤j≤J, 1≤i≤I has maximal column rank, i.e., rank(S) = J ; (1.19)

sup
ε>0
‖u0i‖(H1,q(Ωp

ε)∗,H1,p(Ωp
ε))1− 1

p
,p
<∞ for i = 1, 2, . . . , I. (1.20)

2. Mathematical Preliminaries

2.1. Function Spaces.

2.1.1. Function Spaces on Ω. Let 1 < r, s < ∞ be such that 1
r + 1

s = 1. Assume
that Ω ⊂ Rn (n ≥ 2) is a bounded domain with sufficiently smooth boundary ∂Ω.
As usual, Lr(Ω) is the set of all equivalence classes of real-valued functions u(.) such
that u(x) is defined for almost every x ∈ Ω, is measurable and |u(·)|r is Lebesgue
integrable. Lr(Ω) is a Banach space with the norm

‖u‖Lr(Ω) =

{[ ∫
Ω
|u(x)|r dx

]1/r for 1 ≤ r <∞,
ess supx∈Ω |u(x)| for r =∞.

(2.1)

The space H1,r(Ω) is the usual Sobolev space with the norm

‖u‖H1,r(Ω) =

{[
‖u‖rLr(Ω) + ‖∇u‖rLr(Ω)

]1/r for 1 ≤ r <∞,
ess supx∈Ω[|u(x)|+ |∇u(x)|] for r =∞.

(2.2)

For a Banach space X, X∗ denotes its dual and the duality pairing is denoted by
〈·, ·〉X∗×X . Let 1 < p, q <∞ be such that p > n+ 2 and 1

p + 1
q = 1. We define the

continuous embedding Lp(Ω) ↪→ H1,q(Ω)∗ as

〈f, v〉H1,q(Ω)∗×H1,q(Ω) = 〈f, v〉Lp(Ω)×Lq(Ω) for f ∈ Lp(Ω), v ∈ H1,q(Ω). (2.3)

The symbols ↪→ and ↪→↪→ will denote the continuous and compact embeddings
respectively. The Sobolev-Bochner space is

F :=
{
u ∈ Lp((0, T );H1,p(Ω)) :

du

dt
∈ Lp((0, T );H1,q(Ω)∗)

}
= H1,p((0, T );H1,q(Ω)∗) ∩ Lp((0, T );H1,p(Ω))

(2.4)
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and for any u ∈ F ,

‖u‖F := ‖u‖Lp((0,T );H1,p(Ω)) + ‖u‖Lp((0,T );H1,q(Ω)∗) + ‖du
dt
‖Lp((0,T );H1,q(Ω)∗), (2.5)

where du
dt is the distributional time derivative of u. For 0 < θ < 1, let

(H1,q(Ω)∗, H1,p(Ω))θ,p be the real-interpolation space between

H1,q(Ω)∗ and H1,p(Ω),
(2.6)[

H1,q(Ω)∗, H1,p(Ω)
]
θ

be the complex-interpolation space between

H1,q(Ω)∗ and H1,p(Ω)
(2.7)

endowed with one of the usual norms (cf. [4, 26, 13, 9]). Now we introduce the
norms on the vector-valued function spaces. Let I ∈ N and u : Ω→ RI . We define

[Lp(Ω)]I := Lp(Ω)× Lp(Ω)× · · · × Lp(Ω)︸ ︷︷ ︸
I−times

(2.8)

and for u ∈ [Lp(Ω)]I the corresponding norm is

‖|u‖|[Lp(Ω)]I :=
[ I∑
i=1

‖ui‖pLp(Ω)

]1/p
. (2.9)

Similarly,

‖|u‖|[L∞(Ω)]I := max
1≤i≤I

‖ui‖L∞(Ω), (2.10)

‖|u‖|[H1,p(Ω)]I = [
I∑
i=1

‖ui‖pH1,p(Ω)]
1/p, (2.11)

‖|u‖|[H1,∞(Ω)]I = max
1≤i≤I

‖ui‖H1,∞(Ω), (2.12)

‖|u‖|[H1,q(Ω)∗]I = [
I∑
i=1

‖ui‖pH1,q(Ω)∗ ]
1/p. (2.13)

We also define

F I := [H1,p((0, T );H1,q(Ω)∗) ∩ Lp((0, T );H1,p(Ω))]I (2.14)

and for u ∈ F I ,

‖|u‖|F I := [
I∑
i=1

‖ui‖pF ]1/p. (2.15)

Similarly,
XI
p := [(H1,q(Ω)∗, H1,p(Ω))1− 1

p ,p
]I (2.16)

and for u ∈ XI
p

‖|u‖|XI
p

:= [
I∑
i=1

‖u‖p(H1,q(Ω)∗,H1,p(Ω))1− 1
p

,p
]1/p. (2.17)

Theorem 2.1. Let p > n+ 2, then F ↪→↪→ L∞((0, T )× Ω).

For a proof of the above theorem, see [15, Theorem 2.2].

Theorem 2.2. Let p > n+ 2. Then (H1,q(Ω)∗, H1,p(Ω))1− 1
p ,p

↪→↪→ L∞(Ω).
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For a proof of the above theorem, see [15, Theorem 2.3]. Let V , H and V ∗ be a
Gelfand triple, where V a Banach space, H a Hilbert space and V ∗ is the dual of V .

Let H be identified with its own dual (H ∼= H∗) and V
d
⊂ H, then H

d
⊂ V ∗. Denote

Ξ = {u ∈ Lp((0, T );V ) : dudt ∈ L
q((0, T );V ∗)}. We have the following theorem.

Theorem 2.3. Let V , H and V ∗ be as above. Then Ξ ⊂ C([0, T ];H) and the
following rule of integration holds for any u, v ∈ Ξ and any 0 ≤ t1 ≤ t2 ≤ T :∫ t2

t1

d

dt
(u(t), v(t))H dt =

∫ t2

t1

〈du
dt
, v(t)〉V ∗×V dt+

∫ t2

t1

〈u(t),
dv

dt
〉V×V ∗ dt. (2.18)

For a proof of the above theorem, see [24, lemma 7.3].

2.1.2. Function Spaces on Ωpε. The function spaces on the domain Ωpε are defined
in an analogous way as in section 2.1.1: we replace Ω by Ωpε in the definitions of the
function spaces. The spaces on Ωpε are endowed with their usual norms as given in
(2.1)-(2.7).

From section 1, we notice that the surface area of Γε increases proportionally to
1/ε; i.e., |Γε| → ∞ as ε→ 0. Keeping this in mind, the Lp − Lq duality on Γε can
be defined as

(u, v)Lp(Γε)×Lq(Γε) := ε

∫
Γε

u(x)v(x) dσx for u ∈ Lp(Γε) and v ∈ Lq(Γε), (2.19)

and the space Lp(Γε) is furnished with the norm

‖ · ‖pLp(Γε) = ε

∫
Γε

| · |pdσx and ‖ · ‖L∞(Γε) = ess sup
x∈Γε

| · |. (2.20)

The vector-valued functions and their respective norms on Ωpε can be defined in
the similar way as in (2.8)-(2.17). For the sake of simplicity, we use the following
notation:

F Iε := [H1,p((0, T );H1,q(Ωpε)
∗) ∩ Lp((0, T );H1,p(Ωpε))]

I , (2.21)

XI
p,ε :=

[
(H1,q(Ωpε)

∗, H1,p(Ωpε))1− 1
p ,p

]I
, (2.22)

C and Ci are generic nonnegative constants which may be different at different
steps of the inequalities to come.

2.2. Weak formulation of (Pε).

Definition 2.4. A function uε ∈ F Iε is said to be a weak solution of the problem
(1.12)-(1.15) if it satisfies〈∂uε(t)

∂t
, φ
〉

[H1,q(Ωp
ε)∗]I×[H1,q(Ωp

ε)]I
+
∫

Ωp
ε

〈D∇uε(t, x),∇φ(x)〉I dx

= 〈SR(uε(t)), φ〉[H1,q(Ωp
ε)∗]I×[H1,q(Ωp

ε)]I

for every φ ∈ [H1,q(Ωpε)]
I and for a.e. t ,

(2.23)

uε(0, x) = u0(x) in Ωpε . (2.24)

2.3. Some theorems and lemmas.
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2.3.1. Trace theorems.

Lemma 2.5. Let Γε be as in (1.8). Then

ε|Γε| = |Γ|
|Ω|
|Y |

. (2.25)

The proof of the above lemma can be found in [2, section 2].

Theorem 2.6. Let 1 ≤ p < ∞. Let Ωpε and Γε be defined as in section 1. Then
there exists a bounded linear operator T ε : H1,p(Ωpε)→ Lp(Γε) such that

T εu = u|Γε
for u ∈ H1,p(Ωpε) ∩ C(Ω̄pε) (2.26)

ε

∫
Γε

|T εu(x)|p dσx ≤ C
(∫

Ωp
ε

|u(x)|p dx+ εp
∫

Ωp
ε

|∇xu(x)|p dx
)
, (2.27)

where the constant C is independent of ε and u.

For a proof of the above theorem, see [10, Lemma 5.3 (b)], and [19, Lemma
2.7.2].

2.3.2. Extension theorems.

Theorem 2.7. Let 1 ≤ p ≤ ∞. Suppose that Ωpε and Ω are defined as in section 1.
For u ∈ H1,p(Ωpε), there exists a bounded linear operator Qε : H1,p(Ωpε)→ H1,p(Ω)
such that

Qεu := u in Ωpε , (2.28)

‖Qεu‖pH1,p(Ω) ≤ C‖u‖
p
H1,p(Ωp

ε)
, (2.29)

where the constant C is independent of ε and u but depends on p.

For a proof of the above theorem see [10, Theorem 5.2], also [25].
Now we prove a theorem similar to theorem 2.7 for the functions depending on

both t and x. Let 1 ≤ p ≤ ∞. For u ∈ Lp((0, T );H1,p(Ωpε)), we define an operator
Rε : Lp((0, T );H1,p(Ωpε))→ Lp((0, T );H1,p(Ω)) such that

Rεu(t, x) := [Qεu(t, .)](x) for u ∈ Lp((0, T );H1,p(Ωpε)), (2.30)

where Qε is the extension operator from theorem 2.7. Then

∂

∂t
[Rεu(t, x)] =

∂

∂t
[Qεu(t, .)](x) = [Qε(

∂u

∂t
(t, .))](x) = Rε(

∂u

∂t
)(t, x).

Based on the above definition we have the following extension theorem for the
functions depending on t and x.

Theorem 2.8. Let Ω and Ωpε be defined as in section 1 and 1 ≤ p, q ≤ ∞. Then
there exists a bounded linear operator

Rε : Lq((0, T );H1,p(Ωpε)) ∩H1,q((0, T );Lp(Ωpε))

→ Lq((0, T );H1,p(Ω)) ∩H1,q((0, T );Lp(Ω))

such that for all u ∈ Lq((0, T );H1,p(Ωpε)) ∩H1,q((0, T );Lp(Ωpε)),

‖Rεu‖Lq((0,T );H1,p(Ω)) ≤ C‖u‖Lq((0,T );H1,p(Ωp
ε)), (2.31)

where the constant C is independent of ε and u.
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Proof. Here we only show the measurability of Rεu. The inequality (2.31) follows
by scaling. Since we know that every continuous function is measurable, we show
Rεu is continuous. But by theorem 2.7 it can be shown Qεu(t) is continuous on Ω̄.
The continuity of Rεu on [0, T ]× Ω̄ follows from the definition (2.30). �

Theorem 2.9. Let 1 < p, q <∞ such that 1
p + 1

q = 1 and

u ∈ (H1,q(Ωpε)
∗, H1,p(Ωpε))1− 1

p ,p
.

Then there exists an extension ū of u such that ū ∈ (H1,q(Ω)∗, H1,p(Ω))1− 1
p ,p

.

Proof. Let θ = 1 − 1
p . We use the K-functional definition for real interpolation

space (H1,q(Ωpε)
∗, H1,p(Ωpε))θ,p. To begin with, let v ∈ H1,q(Ωpε), then by theorem

2.11 there exists an extension Qεv of v such that

Qεv = v in Ωpε , (2.32)

‖Qεv‖H1,q(Ω) ≤ C‖v‖H1,q(Ωp
ε), (2.33)

where C is independent of ε and v. Let a0 ∈ H1,q(Ωpε)
∗, then we define an extension

ā0 of a0 as

〈ā0, Q
εv〉H1,q(Ω)∗×H1,q(Ω) := 〈a0, v〉H1,q(Ωp

ε)∗×H1,q(Ωp
ε). (2.34)

Therefore,

‖ā0‖H1,q(Ω)∗ = sup
‖Qεv‖H1,q(Ω)≤1

|〈ā0, Q
εv〉H1,q(Ω)∗×H1,q(Ω)|

= sup
‖v‖H1,q(Ωp

ε )≤1

|〈a0, v〉H1,q(Ωp
ε)∗×H1,q(Ωp

ε)| by (2.33) and (2.34)

≤ ‖a0‖H1,q(Ωp
ε)∗

which implies
‖ā0‖H1,q(Ω)∗ ≤ ‖a0‖H1,q(Ωp

ε)∗ . (2.35)

Again assume that b0 ∈ H1,p(Ωpε). Let b̄0 ∈ H1,p(Ω) denote the extension of b0
such that

‖b̄0‖H1,p(Ω) ≤ C‖b0‖H1,p(Ωp
ε) for b0 ∈ H1,p(Ωpε), (2.36)

where C is independent of ε and b0. Let t > 0. Then

‖ā0‖H1,q(Ω)∗ + t‖b̄0‖H1,p(Ω) ≤ ‖a0‖H1,q(Ωp
ε)∗ + Ct‖b0‖H1,p(Ωp

ε)

≤ max(1, C)(‖a0‖H1,q(Ωp
ε)∗ + t‖b0‖H1,p(Ωp

ε)) .

Taking the infimum on both sides, we get successively

inf
ā0∈H1,q(Ω)∗

b̄0∈H1,p(Ω)

ū = ā0 + b̄0

(
‖ā0‖H1,q(Ω)∗ + t‖b̄0‖H1,p(Ω)

)
≤ max(1, C) inf

u=a0+b0
a0∈H1,q(Ωp

ε )∗

b0∈H1,p(Ωp
ε )

(
‖a0‖H1,q(Ωp

ε)∗ + t‖b0‖H1,p(Ωp
ε)

)
,

t−θ inf
ū=ā0+b̄0

ā0∈H1,q(Ω)∗

b̄0∈H1,p(Ω)

(
‖ā0‖H1,q(Ω)∗ + t‖b̄0‖H1,p(Ω)

)
︸ ︷︷ ︸

positive
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≤ max(1, C) t−θ inf u = a0 + b0
a0∈H1,q(Ωp

ε)∗

b0∈H1,p(Ωp
ε )

(
‖a0‖H1,q(Ωp

ε)∗ + t‖b0‖H1,p(Ωp
ε)

)
︸ ︷︷ ︸

positive

,

∣∣∣t−θ inf
ū=ā0+b̄0

ā0∈H1,q(Ω)∗

b̄0∈H1,p(Ω)

(‖ā0‖H1,q(Ω)∗ + t‖b̄0‖H1,p(Ω))
∣∣∣p

≤ [max(1, C)]p
∣∣∣t−θ inf

u=a0+b0
a0∈H1,q(Ωp

ε )∗

b0∈H1,p(Ωp
ε )

(
‖a0‖H1,q(Ωp

ε)∗ + t‖b0‖H1,p(Ωp
ε)

)∣∣∣p .
Thus∫ ∞

0

∣∣∣t−θ inf
ū=ā0+b̄0

ā0∈H1,q(Ω)∗

b̄0∈H1,p(Ω)

(
‖ā0‖H1,q(Ω)∗ + t‖b̄0‖H1,p(Ω)

)∣∣∣p dt
t

≤ [max(1, C)]p
∫ ∞

0

|t−θ inf
u=a0+b0

a0∈H1,q(Ωp
ε )∗

b0∈H1,p(Ωp
ε )

(
‖a0‖H1,q(Ωp

ε)∗ + t‖b0‖H1,p(Ωp
ε)

)∣∣∣p dt
t
,

∫ ∞
0

∣∣t−θK(t, ū,H1,q(Ω)∗, H1,p(Ω))
∣∣p dt
t

≤ [max(1, C)]p
∫ ∞

0

∣∣t−θK(t, u,H1,q(Ωpε)
∗, H1,p(Ωpε))

∣∣p dt
t
,

‖ū‖(H1,q(Ω)∗,H1,p(Ω))1− 1
p

,p
≤ max(1, C)‖u‖(H1,q(Ωp

ε)∗,H1,p(Ωp
ε))1− 1

p
,p
,

where the constant max(1, C) is independent of ε and u. �

2.3.3. Embedding Theorems.

Theorem 2.10. Let Ω and Ωpε be as in section 1. Assume that 1 ≤ p < n and
u ∈ H1,p(Ωpε). Then u ∈ Lp∗(Ωpε) and there is a constant C

‖u‖Lp∗ (Ωp
ε) ≤ C‖u‖H1,p(Ωp

ε), (2.37)

where p∗ = np/(n−p) and C is independent of ε and u. In other words, H1,p(Ωpε) ↪→
Lp
∗
(Ωpε) with embedding constant independent of ε.

Proof. Let u ∈ H1,p(Ωpε). Then from theorem 2.7, there exists an extension Qεu of
u from H1,p(Ωpε) to H1,p(Ω) such that

‖Qεu‖H1,p(Ω) ≤ C‖u‖H1,p(Ωp
ε). (2.38)

Let v := Qεu. By assumption Ω is a bounded domain with sufficiently smooth
boundary, then from [8, Theorem 2 of section 5.6.1] we obtain

‖v‖Lp∗ (Ω) ≤ C‖v‖H1,p(Ω) for v ∈ H1,p(Ω), (2.39)

where p∗ = np
n−p and C depends only on p, n and Ω but is independent of v.

Therefore by (2.38) and (2.39) we obtain

‖u‖Lp∗ (Ωp
ε) ≤ ‖v‖Lp∗ (Ω) ≤ C‖v‖H1,p(Ω) ≤ C‖u‖H1,p(Ωp

ε),

where C is independent of ε and u. �
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Theorem 2.11. Let 1 < p, q <∞ be such that p > n+ 2 and 1
p + 1

q = 1. Assume
that u ∈ (H1,q(Ωpε)

∗, H1,p(Ωpε))1− 1
p ,p

such that supε>0 ‖u‖(H1,q(Ωp
ε)∗,H1,p(Ωp

ε))1− 1
p

,p
<

∞. Then u ∈ L∞(Ωpε) and

sup
ε>0
‖u‖L∞(Ωp

ε) <∞. (2.40)

Proof. From theorem 2.2, we know that for u ∈ (H1,q(Ω)∗, H1,p(Ω))1− 1
p ,p

, u ∈
L∞(Ω) and

‖u‖L∞(Ω) ≤ C‖u‖(H1,q(Ω)∗,H1,p(Ω))1− 1
p

,p
, (2.41)

where the constant C is independent of u. Let u ∈ (H1,q(Ωpε)
∗, H1,p(Ωpε))1− 1

p ,p
,

then

‖u‖L∞(Ωp
ε) ≤ ‖u‖L∞(Ω)

≤ C‖u‖(H1,q(Ω)∗,H1,p(Ω))1− 1
p

,p
by(2.41)

≤ C‖u‖(H1,q(Ωp
ε)∗,H1,p(Ωp

ε))1− 1
p

,p
by theorem 2.9

≤ C sup
ε>0
‖u‖(H1,q(Ωp

ε)∗,H1,p(Ωp
ε))1− 1

p
,p
<∞ ∀ε > 0,

where the constant C is independent of ε and u. Therefore supε>0 ‖u‖L∞(Ωp
ε) <

∞. �

From this theorem we notice that for 1 ≤ p <∞,

‖u‖p
Lp(Ωp

ε)
=
∫

Ωp
ε

|u(x)|p dx ≤ |Ωpε |‖u‖
p
L∞(Ωp

ε)
≤ |Ω| sup

ε>0
‖u‖p

L∞(Ωp
ε)
<∞ ∀ε.

(2.42)

2.4. Two-scale Convergence.

Definition 2.12. A sequence of functions (uε)ε>0 in Lp((0, T ) × Ω) is said to
two-scale convergent to a limit u ∈ Lp((0, T )× Ω× Y ) if

lim
ε→0

∫ T

0

∫
Ω

uε(t, x)φ(t, x,
x

ε
) dx dt =

∫ T

0

∫
Ω

∫
Y

u(t, x, y)φ(t, x, y) dx dy dt (2.43)

for all φ ∈ Lq((0, T )× Ω;Cper(Y )).

We quote the following theorems whose proofs can be found in [3, 19, 6].

Theorem 2.13. For every bounded sequence, (uε)ε>0, in Lp((0, T )×Ω) there exist
a subsequence and a u ∈ Lp((0, T ) × Ω × Y ) such that the subsequence two-scale
converges to u.

Theorem 2.14. Let (uε)ε>0 be strongly convergent to u ∈ Lp((0, T ) × Ω), then
(uε)ε>0 is two-scale convergent to u1(t, x, y) = u(t, x).

Theorem 2.15. Let (uε)ε>0 be a sequence in Lp((0, T );H1,p(Ω)) such that uε → u
weakly in Lp((0, T );H1,p(Ω)). Then (uε)ε>0 two-scale converges to u and there exist
a subsequence ε, still denoted by same symbol, and a u1 ∈ Lp((0, T )× Ω;H1,p

per(Y ))

such that ∇xuε
2
⇀ ∇u+∇yu1.
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3. Global existence and uniqueness of solution to (Pε)

The main result of this section is the following existence theorem:

Theorem 3.1. Suppose that the assumptions (1.16)-(1.20) are satisfied. Then
there exists a unique positive global weak solution uε ∈ F Iε of the problem (Pε).

Theorem 3.1 is proved in [15, heorem 2.4] or [14, Theorem 4.1.1.1]. The ingredi-
ents of the proof are a Lyapunov functional, Schaefer’s fixed point theorem and [22,
Theorem 2.5] which is based on the maximal regularity of differential operators.
In [15] it is also shown that with the help of a Lyapunov functional we can obtain
global in time a-priori estimates of the type

‖uε(t)‖Lr(Ωp
ε)I ≤ C1 <∞ for all r ≥ 2 and for a.e. t, (3.1)

‖uε(t)‖L∞(Ωp
ε)I ≤ C2 <∞ for a.e. t, (3.2)

where C1 and C2 are independent of i, t, ε and uεi . The constant C1 depends only
on r ∈ N (cf. [15], see also [14]).

PAGE 10

4. Homogenization of Problem (Pε)

4.1. A-priori estimates. In this section, we obtain ε-independent a-priori esti-
mates for the solution uε of (Pε) and extend these estimates to all of (0, T ) × Ω.
The major theorem of this section reads as follows.

Theorem 4.1. Let r ∈ N (r ≥ 2). There exists a constant C > 0 independent of
ε such that the extension of uε (denoted by the same symbol) to all of (0, T ) × Ω
satisfies

sup
ε>0

(
‖|uε‖|Lr((0,T );Lr(Ω))I + ‖|uε‖|L∞((0,T );L∞(Ω))I

+ ‖|∇uε‖|L2((0,T );L2(Ω))I

)
≤ C <∞.

(4.1)

We start with the following lemma.

Lemma 4.2. Let r ∈ N (r ≥ 2). There exists a constant C > 0 independent of ε
such that the solution uε of (Pε) satisfies

sup
ε>0

(
‖|uε‖|Lr((0,T );Lr(Ωp

ε))I + ‖|uε‖|L∞((0,T );L∞(Ωp
ε))I

+ ‖|∇uε‖|L2((0,T );L2(Ωp
ε))I

)
≤ C <∞.

(4.2)

Proof. By (3.1) we obtain

‖|uε‖|rLr((0,T );Lr(Ωp
ε))I =

I∑
i=1

∫ T

0

‖uεi(t)‖rLr(Ωp
ε) dt ≤ C1

I∑
i=1

∫ T

0

dt

= C1IT =: C3 <∞ ∀ε.
(4.3)

Equation (3.2) gives

‖|uε‖|L∞((0,T );L∞(Ωp
ε))I = ess supt∈(0,T ) ‖|uε(t)‖|L∞(Ωp

ε)I

≤ ess supt∈(0,T ) C2 = C2 ∀ε. (4.4)
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Testing the i-th PDE of (1.12) with uεi
, we obtain1∫ T

0

〈∂uεi(t)
∂t

, uεi
(t)〉H1,q(Ωp

ε)∗×H1,q(Ωp
ε) dx dt

−
∫ T

0

〈∇ ·D∇uεi(t), uεi(t)〉H1,q(Ωp
ε)∗×H1,q(Ωp

ε) dx dt

=
∫ T

0

〈SR(uε(t))i, uεi(t)〉H1,q(Ωp
ε)∗×H1,q(Ωp

ε) dt;

i.e.,

1
2

∫ T

0

d

dt
‖uεi(t)‖2L2(Ωp

ε) dt+
∫ T

0

D‖∇uεi(t)‖2L2(Ωp
ε) dt

=
∫ T

0

〈SR(uε(t))i, uεi(t)〉Lp(Ωp
ε)×Lq(Ωp

ε) dt

≤ 1
p

∫ T

0

‖SR(uε(t))i‖pLp(Ωp
ε)
dt+

1
q

∫ T

0

‖uεi
(t)‖q

Lq(Ωp
ε)
dt;

i.e.,

1
2
‖uεi(T )‖2L2(Ωp

ε) +
∫ T

0

D‖∇uεi(t)‖2L2(Ωp
ε) dt

≤ 1
2
‖u0i
‖2L2(Ωp

ε) +
1
p

∫ T

0

‖SR(uε(t))i‖pLp(Ωp
ε)
dt+

1
q

∫ T

0

‖uεi
(t)‖q

Lq(Ωp
ε)
dt.

(4.5)

Therefore the right-hand side of (4.5) is bounded by a constant independent of ε,
i and t. Let us call this constant by C̄. This gives∫ T

0

D‖∇uεi
(t)‖2L2(Ωp

ε) dt ≤ C̄ for all ε, i and for a.e. t

which implies

I∑
i=1

∫ T

0

‖∇uεi
(t)‖2L2(Ωp

ε) dt ≤
I∑
i=1

C̄

D
=: C4 <∞ ∀ε. (4.6)

Note that D > 0 is constant in (4.6). Adding (4.3), (4.4) and (4.6) yields

‖|uε‖|Lr((0,T );Lr(Ωp
ε))I + ‖|uε‖|L∞((0,T );L∞(Ωp

ε))I + ‖|∇uε‖|L2((0,T );L2(Ωp
ε))I

≤ C1/r
3 + C2 + C

1/2
4 = C <∞ for all ε.

This completes the proof. �

Proof of theorem 4.1. The estimate (4.2) from lemma 4.2 and theorem 2.8 accom-
plish the proof. �

1From (3.1), we have ‖uεi (t)‖Lr(Ω
p
ε) ≤ C1 for all i and for a.e. t, where C1 is independent

of ε. This gives supε>0 ‖SR(uε)i‖Lp(Ω
p
ε) ≤ C. Since Lp(Ωp

ε) ↪→ H1,q(Ωp
ε)∗, from the definition

(2.3) we get 〈SR(uε)i, φi〉H1,q(Ω
p
ε)∗×H1,q(Ω

p
ε) = 〈SR(uε)i, φi〉Lp(Ω

p
ε)×Lq(Ω

p
ε) for φi ∈ H1,q(Ωp

ε).
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4.2. Convergence of uε. In this section, we show the weak, strong and two-scale
convergences of the solution of (Pε).

Theorem 4.3. There exists a constant C independent of ε such that the solution
uε of the problem (Pε) satisfies the estimate

sup
ε>0

(
‖|uε‖|L∞((0,T );L2(Ω))I + ‖|uε‖|L2((0,T );H1,2(Ω))I

+ ‖|χε ∂uε
∂t
‖|L2((0,T );H1,2(Ω)∗)I

)
≤ C <∞,

(4.7)

where the function χε is defined in (1.11).

Proof. From (4.1), we have

‖|uε‖|2L∞((0,T );L2(Ω))I

≤ |Ω|‖|uε‖|2L∞((0,T );L∞(Ω))I ≤ |Ω| sup
ε>0
‖|uε‖|2L∞((0,T );L∞(Ω))I

=: C5 <∞ ∀ε.

(4.8)

Again,

‖|uε‖|2L2((0,T );H1,2(Ω))I

=
I∑
i=1

‖uεi
‖2L2((0,T );H1,2(Ω))

=
I∑
i=1

(
‖∇uεi

‖2L2((0,T );L2(Ω)) + ‖uεi
‖2L2((0,T );L2(Ω))

)
≤ sup

ε>0

I∑
i=1

(‖∇uεi
‖2L2((0,T );L2(Ω)) + (T |Ω|)1− 2

r ‖uεi
‖2Lr((0,T );Lr(Ω))) <∞,

by (4.1); i.e.,
‖|uε‖|L2((0,T );H1,2(Ω))I ≤ C6 <∞ ∀ε. (4.9)

Now, let φ ∈ H1,2
0 (0, T ) and ψ ∈ H1,2(Ω). Then the weak formulation of the i-th

PDE of the problem (1.12)-(1.15) is∫ T

0

〈χε ∂uεi(t)
∂t

, φ(t)ψ〉H1,2(Ω)∗×H1,2(Ω) dt+
∫ T

0

∫
Ω

φ(t)χε(x)∇uεi(t, x)∇ψ(x) dx dt

=
∫ T

0

〈χεSR(uε(t))i, φ(t)ψ〉H1,2(Ω)∗×H1,2(Ω) dt dt;

i.e., ∣∣∣ ∫ T

0

〈χε ∂uεi(t)
∂t

, φ(t)ψ〉H1,2(Ω)∗×H1,2(Ω) dt
∣∣∣

≤
∫ T

0

∫
Ω

|χε(x)||∇uεi(t, x)||∇ψ(x)||φ(t)| dx dt

+
1
2

∫ T

0

[‖χεSR(uε(t))i‖2L2(Ω) + ‖φ(t)ψ‖2L2(Ω)] dt.



EJDE-2013/210 HOMOGENIZATION OF A SYSTEM 13

Note that |χε(x)| ≤ 1. From (4.1) the terms supε>0 ‖∇uεi
‖2L2((0,T );L2(Ω)) and

supε>0 ‖SR(uε)i‖2L2((0,T );L2(Ω)) are finite. This gives∣∣ ∫ T

0

〈χε ∂uεi(t)
∂t

, φ(t)ψ〉H1,2(Ω)∗×H1,2(Ω) dt
∣∣

≤ C +
1
2
‖φ(t)‖2L2(0,T )[‖∇ψ‖

2
L2(Ω) + ‖ψ‖2L2(Ω)]

= C + ‖φ‖2L2(0,T )‖ψ‖
2
H1,2(Ω).

Note that φ ∈ H1,2
0 (0, T ) implies ‖φ‖L2(0,T ) ≤ C̄‖φ‖H1,2

0 (0,T ); i.e., ‖ φ
C̄
‖L2(0,T ) ≤

‖φ‖H1,2
0 (0,T ), where C̄ > 0 is the embedding constant. Taking the supremum, over

all ‖ψ‖2H1,2(Ω) ≤ 1, ‖ φ
C̄
‖2L2(0,T ) ≤ 1, ψ ∈ H1,2(Ω), φ

C̄
∈ L2(0, T ), on both sides of

the above inequality yields

C̄ sup
∣∣∣ ∫ T

0

〈χε ∂uεi
(t)

∂t
,
φ(t)
C̄

ψ〉H1,2(Ω)∗×H1,2(Ω) dt|

≤ C + C̄2 sup ‖ψ‖2H1,2(Ω)‖
φ

C̄
‖2L2(0,T ).

This implies

‖χε ∂uεi

∂t
‖L2((0,T );H1,2(Ω)∗) ≤ C7

which implies
I∑
i=1

‖χε ∂uεi

∂t
‖2L2((0,T );H1,2(Ω)∗) ≤ I C2

7

which implies

‖|χε ∂uε
∂t
‖|L2((0,T );H1,2(Ω)∗)I ≤ (I C2

7 )1/2 ∀ε. (4.10)

Adding (4.8), (4.9) and (4.10), we obtain

‖uε‖L∞((0,T );L2(Ω))I + ‖uε‖L2((0,T );H1,2(Ω))I + ‖χε ∂uε
∂t
‖L2((0,T );H1,2(Ω)∗)I

≤ C5 + C6 + (I C2
7 )1/2 =: C <∞ ∀ε.

Hence the proof is complete. �

The next statement is crucial. It gives the strong convergence of the subsequence
of the sequence (uεi)ε>0. This is the main result of Meirmanov & Zimin in [18].

Lemma 4.4 ([18, Theorem 2.1]). Let (cε)ε>0 be a bounded sequence in the space
L∞((0, T );L2(Ω))∩L2((0, T );H1,2(Ω)) and weakly convergent in L2((0, T );L2(Ω))∩
L2((0, T );H1,2(Ω)) to a function c. Suppose further that the sequence (χε ∂∂tcε)ε>0

is bounded in L2((0, T );H1,2(Ω)∗). Then the sequence (cε)ε>0 is strongly convergent
to the function c in L2((0, T );L2(Ω)).

Theorem 4.5. Let (uε)ε>0 satisfy the estimates (4.1) and (4.7). Then there exists
a function u ∈ L2((0, T );H1,2(Ω))I and a function u1 ∈ L2((0, T )×Ω;H1,2

per(Y )/R)I

such that up to a subsequence, still denoted by same subscript, the following con-
vergence results hold:

(uε)ε>0 is weakly convergent to u in L2((0, T );H1,2(Ω))I . (4.11)

(uε)ε>0 is strongly convergent to u in L2((0, T );L2(Ω))I . (4.12)
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(uε)ε>0 and (∇xuε)ε>0 are two-scale convergent to u and ∇xu+∇yu1

in the sense of (2.43) respectively. (4.13)

Proof. Statement (4.11) follows from estimate (4.7), we note that the sequence
(uε)ε>0 is bounded in L2((0, T );H1,2(Ω))I . This implies that, up to a subsequnce,
still indexed by the same subscript, (uε)ε>0 is weakly convergent to a function u in
L2((0, T );H1,2(Ω))I .

For statement (4.12), from (4.7), it follows that, up to a subsequence, still
denoted by the same subscript, (uε)ε>0 is weakly convergent to u in the space
L2((0, T );L2(Ω))I ∩ L2((0, T );H1,2(Ω))I and is bounded in L∞((0, T );L2(Ω))I ∩
L2((0, T );H1,2(Ω))I . Also note that from (4.7) the function ( ∂∂tχ

εuε)ε>0 is bounded
in L2((0, T );H1,2(Ω)∗)I . Therefore the subsequence (uε)ε>0, still denoted by the
same subscript, is strongly convergent to u in L2((0, T );L2(Ω))I .

Statement (4.12)follows from estimate (4.7) and theorem 2.15. �

Theorem 4.6. The limit function u belongs to L∞((0, T ) × Ω × Y )I . (Note that
the function u is independent of the variable y.)

Proof. Since (uε)ε>0 is strongly convergent to u in L2((0, T );L2(Ω))I , there exists
a subsequence (uε′)ε′>0 which is pointwise convergent [28, Corollary on page 53] to
u almost everywhere in (0, T )× Ω; i.e.,

lim
ε′→0

uε′(t, x) = u(t, x) a.e. (t, x) ∈ (0, T )× Ω.

By theorem 4.1, we have ‖uεi‖L∞((0,T );L∞(Ω)) ≤ C for all i, therefore

|ui(t, x)|2 ≤
I∑
i=1

|ui(t, x)|2 = lim
ε′→0

I∑
i=1

|uε′i(t, x)|2

≤
I∑
i=1

lim sup
ε′→0

ess supt∈(0,T ) ess supx∈Ω |uε′i(t, x)|2

≤
I∑
i=1

lim sup
ε′→0

C2 = C2I for a.e. t and x

which implies

ess supt∈(0,T ) ess supx∈Ω |ui(t, x)|2 ≤ C2I <∞ for all i.

This gives

‖|u‖|2L∞((0,T )×Ω×Y )I ≤ max
1≤i≤I

ess supy∈Y ess supt∈(0,T ) ess supx∈Ω |ui(t, x)|2

≤ ess supy∈Y C
2I <∞.

�

Corollary 4.7. For all 1 ≤ p ≤ ∞, the sequence (uε)ε>0 is strongly convergent to
u in Lp((0, T )× Ω)I .

Proof. This follows from the straightforward application of Lyapunov’s interpola-
tion inequality (cf. lemma 5.2) and L∞-estimates of uε and u (cf. Lemma 4.1 and
Theorem 4.6). �

Theorem 4.8. The sequence (SR(uε))ε>0 is strongly convergent to SR(u) in space
L2((0, T )× Ω)I as ε→ 0.
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Proof. Note that

‖|SR(uε)− SR(u)‖|2L2((0,T )×Ω)I =
I∑
i=1

‖SR(uε)i − SR(u)i‖2L2((0,T )×Ω) (4.14)

From (1.5), we have

SR(uε)i =
J∑
j=1

sij

(
kfj

I∏
m=1
smj<0

u−smj
εm

− kbj
I∏

m=1
smj>0

usmj
εm

)
(4.15)

SR(u)i =
J∑
j=1

sij

(
kfj

I∏
m=1
smj<0

u−smj
m − kbj

I∏
m=1
smj>0

usmj
m

)
. (4.16)

From (4.15) and (4.16),

‖SR(uε)i − SR(u)i‖L2((0,T )×Ω)

=
∥∥∥ J∑
j=1

sij

(
kfj

I∏
m=1
smj<0

u−smj
εm

− kfj
I∏

m=1
smj<0

u−smj
m

)

−
J∑
j=1

sij

(
kbj

I∏
m=1
smj>0

usmj
εm
− kbj

I∏
m=1
smj>0

usmj
m

)∥∥∥
L2((0,T )×Ω)

≤
J∑
j=1

sijk
f
j

∥∥∥ I∏
m=1
smj<0

u−smj
εm

−
I∏

m=1
smj<0

u−smj
m

∥∥∥
L2((0,T )×Ω)

+
J∑
j=1

sijk
b
j

∥∥∥ I∏
m=1
smj>0

usmj
εm
−

I∏
m=1
smj>0

usmj
m

∥∥∥
L2((0,T )×Ω)

.

(4.17)

By using the strong convergence of uε and L∞-estimates of uε and u, it follows that

‖
I∏

m=1
smj<0

u−smj
εm

−
I∏

m=1
smj<0

u−smj
m ‖L2((0,T )×Ω) and ‖

I∏
m=1
smj>0

usmj
εm
−

I∏
m=1
smj>0

usmj
m ‖L2((0,T )×Ω)

are convergent to 0 as ε → 0. Therefore ‖SR(uε)i − SR(u)i‖L2((0,T )×Ω) → 0 as
ε→ 0. From (4.14), the theorem follows. �

Remark 4.9. The strong convergence of (SR(uε))ε>0 implies that it is two-scale
convergent to SR(u) in the sense of (2.43).

4.3. Passage to the limit as ε → 0. Let us consider the two functions φ0 ∈
C∞0 ((0, T )× Ω)I and φ1 ∈ C∞0 (((0, T ) × Ω);C∞per(Y ))I such that φ(t, x, xε ) :=
φ0(t, x) + εφ1(t, x, xε ) ∈ C∞0 (((0, T )×Ω);C∞per(Y ))I . Using φ as test function in the
weak formulation of (1.12) one obtains∫ T

0

〈∂uε(t)
∂t

, φ(t)〉[H1,2(Ωp
ε)∗]I×[H1,2(Ωp

ε)]I dt
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−
∫ T

0

〈∇ ·D∇uε(t), φ(t)〉[H1,2(Ωp
ε)∗]I×[H1,2(Ωp

ε)]I dt

=
∫ T

0

〈SR(uε(t)), φ(t)〉[H1,2(Ωp
ε)∗]I×[H1,2(Ωp

ε)]I dt;

i.e.,

I∑
i=1

∫ T

0

〈∂uεi(t)
∂t

, φi(t)〉H1,2(Ωp
ε)∗×H1,2(Ωp

ε) dt

−
I∑
i=1

∫ T

0

〈∇ ·D∇uεi
(t), φi(t)〉H1,2(Ωp

ε)∗×H1,2(Ωp
ε) dt

=
I∑
i=1

∫ T

0

〈SR(uε(t))i, φi(t)〉H1,2(Ωp
ε)∗×H1,2(Ωp

ε) dt;

i.e.,
I∑
i=1

∫ T

0

〈∂uεi
(t)

∂t
, φi(t)〉H1,2(Ωp

ε)∗×H1,2(Ωp
ε) dt

+
I∑
i=1

∫ T

0

∫
Ωp

ε

D∇uεi
(t, x)∇φi(t, x,

x

ε
) dx dt

=
I∑
i=1

∫ T

0

〈SR(uε(t))i, φi(t)〉H1,2(Ωp
ε)∗×H1,2(Ωp

ε) dx dt.

(4.18)

Now we pass to the two-scale limit in (4.18) term by term.

lim
ε→0

PI
i=1

∫ T

0

〈∂uε(t)
∂t

, φi(t)〉H1,2(Ωp
ε)∗×H1,2(Ωp

ε) dt

= − lim
ε→0

I∑
i=1

∫ T

0

∫
Ωp

ε

uεi
(t, x)(

∂φ0i(t, x)
∂t

+ ε
∂φ1i

(t, x, xε )
∂t

) dx dt

= − lim
ε→0

I∑
i=1

∫ T

0

∫
Ω

χ(
x

ε
)uεi

(t, x)
∂φ0i

∂t
dx dt

− lim
ε→0

ε

I∑
i=1

∫ T

0

∫
Ω

χ(
x

ε
)uεi

(t, x)
∂φ1i

∂t
dx dt︸ ︷︷ ︸

=0

= −
I∑
i=1

∫ T

0

∫
Ω

∫
Y

χ(y)ui(t, x)
∂φ0i(t, x)

∂t
dx dy dt

= −
I∑
i=1

∫ T

0

∫
Ω

∫
Y p

ui(t, x)
∂φ0i

(t, x)
∂t

dx dy dt, since χ(y) = 1 in Y p

= |Y p|
I∑
i=1

∫ T

0

〈∂ui(t)
∂t

, φ0i
(t)〉H1,2(Ωp

ε)∗×H1,2(Ωp
ε) dt
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= |Y p|
∫ T

0

〈∂u(t)
∂t

, φ0(t)〉[H1,2(Ωp
ε)∗]I×[H1,2(Ωp

ε)]I dt. (4.19)

Again,

lim
ε→0

I∑
i=1

∫ T

0

∫
Ωp

ε

D∇xuεi(t, x)∇xφi(t, x,
x

ε
) dx dt

= lim
ε→0

I∑
i=1

∫ T

0

∫
Ωp

ε

D∇xuεi(t, x)∇x(φ0i(t, x) + εφ1i(t, x,
x

ε
)) dx dt

= lim
ε→0

[ I∑
i=1

∫ T

0

∫
Ω

χ(
x

ε
)D∇xuεi(t, x)(∇xφ0i(t, x) +∇yφ1i(t, x,

x

ε
)) dx dt

+ ε

I∑
i=1

∫ T

0

∫
Ω

χ(
x

ε
)D∇xuεi(t, x)∇xφ1i(t, x,

x

ε
) dx dt

]
= lim
ε→0

I∑
i=1

∫ T

0

∫
Ω

χ(
x

ε
)D∇xuεi

(t, x)(∇xφ0i
(t, x) +∇yφ1i

(t, x,
x

ε
)) dx dt

+ lim
ε→0

ε

I∑
i=1

∫ T

0

∫
Ω

χ(
x

ε
)D∇xuεi

(t, x)∇xφ1i
(t, x,

x

ε
) dx dt︸ ︷︷ ︸

=0

=
I∑
i=1

∫ T

0

∫
Ω

∫
Y

χ(y)D(∇xui(t, x) +∇yu1i
(t, x, y))(∇xφ0i

(t, x)

+∇yφ1i
(t, x, y)) dx dy dt

=
I∑
i=1

∫ T

0

∫
Ω

∫
Y p

D(∇xui(t, x) +∇yu1i
(t, x, y))(∇xφ0i

(t, x)

+∇yφ1i
(t, x, y)) dx dy dt

(4.20)

By (3.1), supε>0 ‖uεi
(t)‖Lr(Ωp

ε) ≤ C1 for all i and for a.e. t. Then we have
‖SR(uε)i‖L2(Ωp

ε) ≤ C. Since L2(Ωpε) ↪→ H1,2(Ωpε)
∗, from (2.3),

〈SR(uε)i, φi〉H1,2(Ωp
ε)∗×H1,2(Ωp

ε) = 〈SR(uε)i, φi〉L2(Ωp
ε)×L2(Ωp

ε), φi ∈ H1,2(Ωpε).

Thus

lim
ε→0

I∑
i=1

∫ T

0

〈SR(uε(t))i, φi(t)〉H1,2(Ωp
ε)∗×H1,2(Ωp

ε) dt

= lim
ε→0

I∑
i=1

∫ T

0

〈SR(uε(t))i, φi(t)〉L2(Ωp
ε)×L2(Ωp

ε) dt

= lim
ε→0

I∑
i=1

∫ T

0

∫
Ωp

ε

SR(uε(t, x))iφi(t, x) dx dt

= lim
ε→0

I∑
i=1

∫ T

0

∫
Ω

χ(
x

ε
)SR(uε)iφ0i

(t, x) dx dt



18 H. S. MAHATO, M. BÖHM EJDE-2013/210

+ lim
ε→0

ε

I∑
i=1

∫ T

0

∫
Ω

χ(
x

ε
)SR(uε)iφ1i

(t, x,
x

ε
) dx dt︸ ︷︷ ︸

=0

=
I∑
i=1

∫ T

0

∫
Ω

∫
Y

χ(y)SR(u(t, x))iφ0i(t, x) dx dy dt

=
I∑
i=1

∫ T

0

∫
Ω

∫
Y p

SR(u(t, x))iφ0i(t, x) dx dy dt

= |Y p|
∫ T

0

〈SR(u(t)), φ0(t)〉[H1,2(Ω)∗]I×[H1,2(Ω)]I dt. (4.21)

Combining (4.19)-(4.21), we obtain

|Y p|
∫ T

0

〈∂u(t)
∂t

, φ0(t)〉[H1,2(Ω)∗]I×[H1,2(Ω)]I dt+
I∑
i=1

∫ T

0

∫
Ω

∫
Y p

D(∇xui(t, x)

+∇yu1i
(t, x, y))(∇xφ0i

(t, x) +∇yφ1i
(t, x, y)) dx dy dt

= |Y p|
∫ T

0

〈SR(u(t)), φ0(t)〉[H1,2(Ω)∗]I×[H1,2(Ω)]I dt.

(4.22)
Now choosing φ0(t, x) ≡ 0, i.e., φ0i(t, x) ≡ 0 for all i = 1, 2, . . . , I, then φ(t, x) =
φ1(t, x, xε ) and the equation (4.22) reduces to

I∑
i=1

∫ T

0

∫
Ω

∫
Y p

D(∇xui(t, x) +∇yu1i
(t, x, y))∇yφ1i

(t, x, y) dx dy dt = 0. (4.23)

Let us choose u1i(t, x, y) =
∑n
j=1

∂ui(t,x)
∂xj

aj(t, x, y) + ci(x), for all i = 1, 2, . . . , I,
where c(x) is any arbitrary function of x. The equation (4.23) is satisfied by each
u1i

if aj , for j = 1, 2, . . . , n, is the solution of the Cell-Problem

−∇y · (D(∇yaj(t, x, y) + ej)) = 0 for (t, x, y) ∈ (0, T )× Ω× Y P , (4.24)

−D(∇yaj(t, x, y) + ej) · ~n = 0 for (t, x, y) ∈ (0, T )× Ω× Γ, (4.25)

y 7→ aj(y) is Y − periodic. (4.26)

On the other hand, if aj is the solution of the cell-problem (4.24)-(4.26), the
equation (4.23) is satisfied if u1i

(t, x, y) =
∑n
j=1

∂ui(t,x)
∂xj

aj(t, x, y) + ci(x). Set-
ting φ1(t, x, xε ) ≡ 0; i.e., φ1i(t, x,

x
ε ) ≡ 0 for all i. Then the equation (4.22) reduces

to

|Y p|
∫ T

0

〈∂u(t)
∂t

, φ0(t)〉[H1,2(Ω)∗]I×[H1,2(Ω)]I dt+
I∑
i=1

∫ T

0

∫
Ω

∫
Y p

D(∇xui(t, x)

+∇yu1i
(t, x, y))(∇xφ0i

(t, x) +∇yφ1i
(t, x, y)) dx dy dt

= |Y p|
∫ T

0

〈SR(u(t)), φ0(t)〉[H1,2(Ω)∗]I×[H1,2(Ω)]I dt;
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i.e.,
I∑
i=1

∫ T

0

〈∂ui(t)
∂t

, φ0i
(t)〉H1,2(Ω)∗×H1,2(Ω) dt

+
I∑
i=1

∫ T

0

∫
Ω

∫
Y p

D

|Y p|
(∇xui(t, x) +∇yu1i

(t, x, y))∇xφ0i
(t, x) dx dy dt

=
I∑
i=1

∫ T

0

〈SR(u(t))i, φ0i
(t)〉H1,2(Ω)∗×H1,2(Ω) dt.

(4.27)

Substituting u1i(t, x, y) = ~a(t, x, y) · ∇xui(t, x) + c(x); i.e., ∇yu1i =
∑n
j=1∇yaj

∂ui

∂xj

in (4.27), then we obtain

I∑
i=1

∫ T

0

〈∂ui(t)
∂t

, φ0i
(t)〉H1,2(Ω)∗×H1,2(Ω) dt

+
I∑
i=1

∫ T

0

∫
Ω

∫
Y p

D

|Y p|

(
∇xui(t, x) +

n∑
j=1

∇yaj
∂ui(t, x, y)

∂xj

)
∇xφ0i

(t, x) dx dy dt

=
I∑
i=1

∫ T

0

〈SR(u(t))i, φ0i
(t)〉H1,2(Ω)∗×H1,2(Ω) dt,

i.e.,

I∑
i=1

∫ T

0

〈∂ui(t)
∂t

, φ0i(t)〉H1,2(Ω)∗×H1,2(Ω) dt

+
I∑
i=1

∫ T

0

∫
Ω

n∑
j,k=1

{ D

|Y p|

∫
Y p

(δjk +
∂aj
∂yk

) dy
}∂ui(t, x)

∂xj

∂φ0i
(t, x)

∂xk
dx dt

=
I∑
i=1

∫ T

0

〈SR(u(t))i, φ0i
(t)〉H1,2(Ω)∗×H1,2(Ω) dt;

i.e.,
I∑
i=1

∫ T

0

〈∂ui(t)
∂t

, φ0i
(t)〉H1,2(Ω)∗×H1,2(Ω) dt+

I∑
i=1

∫ T

0

∫
Ω

Υ ∇xui(t, x)∇φ0i
(t, x) dx dt

=
I∑
i=1

∫ T

0

〈SR(u(t))i, φ0i
(t)〉H1,2(Ω)∗×H1,2(Ω) dt,

(4.28)
where Υ is a second order tensor whose components are given as

ρjk =
∫
Y p

D

|Y p|
(δjk +

∂aj
∂yk

) dy for all j, k = 1, 2, . . . , n, (4.29)

where aj is the solution of the cell-problem (4.24)-(4.26). Similarly the boundary
condition simplifies to

Υ∇u · ~n = 0 on (0, T )× ∂Ω. (4.30)
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Therefore the strong form of the complete homogenized problem is

∂u

∂t
−∇Υ∇u = SR(u) in (0, T )× Ω, (4.31)

−Υ∇u · ~n = 0 on (0, T )× ∂Ω, (4.32)

u(0, x) = u0(x) in Ω. (4.33)

Let us denote this problem by (P ).

Proposition 4.10 ([10]). The tensor Υ = (ρjk)1≤j≤n
1≤k≤n

is a second-order positive

definite symmetric tensor.

Theorem 4.11. There exists a unique solution u ∈ F I ∩ L∞((0, T );L∞(Ω))I of
the homogenized problem (4.31)–(4.33).

Proof. From (4.1) and (4.7), it follows that the two-scale limit u belongs to the
space [H1,2((0, T );H1,2(Ω)∗) ∩ L2((0, T );H1,2(Ω)) ∩ L∞((0, T ) × Ω)]I . It remains
to prove

• Uniqueness of the solution of (4.31)–(4.33) and
• u ∈ F I .

Given the positive definiteness of Υ and the L∞-estimate of u, the uniqueness
follows by a straightforward application of Gronwall’s inequality. Now, the refor-
mulation of problem (4.31)-(4.33) is given by

du(t)
dt

+Au(t) = f(t), (4.34)

u(0, x) = u0(x), (4.35)

where f(t) = SR(u(t))+κu(t), κ > 0 and the operator A : H1,p(Ω)I → [H1,q(Ω)∗]I

is defined as Auε := (A1uε1 , A2uε2 , . . . , AIuεI
) such that for 1 ≤ i ≤ I,

〈Aiui, wi〉 :=
∫

Ω

∇ui(x)Υ∇wi(x) dx+ κ

∫
Ω

ui(x)wi(x) dx

for ui ∈ H1,p(Ω) and wi ∈ H1,q(Ω). Operator A has maximal parabolic regu-
larity on [H1,q(Ω)∗]I by section 5.1. Since u ∈ L∞((0, T ) × Ω)I , SR(u) + κu ∈
Lp((0, T );Lp(Ω))I . The embedding Lp(Ω) ↪→ H1,q(Ω)∗ implies SR(u) + κu ∈
Lp((0, T );H1,q(Ω)∗)I . Furthermore, theorem 2.9 shows that u0 is in XI

p . There-
fore, by [22, Theorem 2.5], there exists a unique solution u in F I of the problem
(4.34)-(4.35) such that

‖|u‖|F I ≤ C̃
(
‖|u0‖|XI

p
+ ‖|f‖|Lp((0,T );H1,q(Ω)∗)I

)
, (4.36)

where C̃ > 0 depends only on p but independent of u, u0 and f . In other words,
the problem (P ) has a unique positive global weak solution u in F I . �

5. Appendix

5.1. Maximal regularity.

Definition 5.1. Let 1 < p <∞, X be a Banach space and A : X → X be a closed,
not necessarily bounded, operator, where the domain D(A) of A is dense in X. A
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is said to have the maximal Lp-regularity if for every f ∈ Lp((0, T );X) there exists
a unique solution u ∈ Lp((0, T );D(A)) ∩H1,p((0, T );X) of the problem

du(t)
dt

+Au(t) = f(t) for t > 0, (5.1)

u(0) = 0, (5.2)

which satisfies

‖u‖Lp((0,T );X) + ‖ut‖Lp((0,T );X) + ‖u‖Lp((0,T );D(A)) ≤ C‖f‖Lp((0,T );X), (5.3)

where C > 0 is a constant independent of f .

For a detailed overview on maximal regularity, we refer to [1, 17, 21, 23, 12]
and references therein. Now we set D(A) := H1,p(Ω) and X := H1,q(Ω)∗. Clearly,

D(A)
d
⊆ X. (A

d
⊆ B means that A is dense in B.) Let µ = (µij)1≤j≤n, 1≤i≤n be a

positive definite symmetric matrix-field, where µij ∈ C(Ω̄) and there is a constant
C > 0

n∑
i,j=1

µij(x)ζiζj ≥ C|ζ|2 for all ζ ∈ Rn and x ∈ Ω. (5.4)

We define a sesquilinear form a(u, v) : H1,p(Ω)×H1,q(Ω)→ R by

a(u, v) :=
∫

Ω

µ∇u · ∇v dx+ κ

∫
Ω

uv dx for u ∈ H1,p(Ω) and v ∈ H1,q(Ω), (5.5)

where κ > 0. We further define an operator A : H1,p(Ω) → H1,q(Ω)∗ associated
with the form a(u, v) by

〈Au, v〉 := a(u, v) for u ∈ H1,p(Ω) and v ∈ H1,q(Ω). (5.6)

In [5] and [23], it is shown that: (i) ‖Ais‖L(X) ≤ Keθ|s| for some 0 < θ < π
2 , s ∈ R,

where K > 0, and (ii) (−∞, 0] ⊂ ρ(A) (resolvent of A) and ‖(λ+A)−1‖L(X) ≤ C
1+|λ|

for every λ ∈ [0,∞), where C > 0. By a theorem of Dore and Venni (cf. [7]), A
has maximal Lp-regularity on H1,q(Ω)∗.

5.2. Some Inequalities.

Lemma 5.2 (Lyapunov’s interpolation inequality). Let 1 ≤ p ≤ q ≤ r ≤ ∞ and
0 < θ < 1 be such that 1

q = θ
p + 1−θ

r . Assume also that u ∈ Lp(Ω) ∩ Lr(Ω). Then
u ∈ Lq(Ω) and satisfies

‖u‖Lq(Ω) ≤ ‖u‖θLp(Ω)‖u‖
1−θ
Lr(Ω). (5.7)

The prof of the above lemma can be found in [8, Inequality B.2.h].
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