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ASYMPTOTIC BEHAVIOUR OF BRANCHES FOR GROUND
STATES OF ELLIPTIC SYSTEMS

VLADIMIR BOBKOV, YAVDAT IL’YASOV

Abstract. We consider the behaviour of solutions to a system of homoge-

neous equations with indefinite nonlinearity depending on two parameters
(λ, µ). Using spectral analysis a critical point (λ∗, µ∗) of the Nehari manifolds

and fibering methods is introduced. We study a branch of a ground state and
its asymptotic behaviour, including the blow-up phenomenon at (λ∗, µ∗). The

differences in the behaviour of similar branches of solutions for the prototype

scalar equations are discussed.

1. Introduction

In this article, we discuss the ground state branch to the following system of
equations of variational form

−∆pu = λ|u|p−2u+ αf(x)|u|α−2|v|βu, x ∈ Ω,

−∆qv = µ|v|q−2v + βf(x)|u|α|v|β−2v, x ∈ Ω,

u|∂Ω = v|∂Ω = 0,

(1.1)

where Ω ⊂ Rn, n ≥ 1 is a bounded domain with C1-boundary ∂Ω, λ, µ ∈ R,
1 < p < +∞, 1 < q < +∞ and

α, β > 0,
α

p
+
β

q
> 1,

α

p∗
+
β

q∗
< 1. (1.2)

Here p∗ and q∗ are the standard critical Sobolev exponents. We suppose f ∈ L∞(Ω)
and that the function f may change sign on Ω; i.e., the problem (1.1) has indefinite
nonlinearity (cf. [1, 7]). Hereinafter we will always assume f 6≡ 0 in Ω.

The problem (1.1) is actually a generalization of the problem with a single equa-
tion

−∆pw = λ|w|p−2w + f(x)|w|γ−2w, x ∈ Ω,

w|∂Ω = 0,
(1.3)

where γ = α + β and p < γ < p∗. This and similar problems with indefinite
nonlinearities have received a lot of attention that is mainly due to the interesting
and complicated structure of its solutions set; see e.g. Alama, Tarantello [1], Bandle,
Pozio, Tesei [6], Berestycki, Capuzzo-Dolcetta, Nirenberg [8], Del Pino, Felmer
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[15], Drábek, Pohozaev [17], Ouyang [31, 32]. From these investigations much
is known about the existence, nonexistence and multiplicity of solutions of (1.3).
Furthermore, the structure of the branches of positive solutions of (1.3), including
the existence of turning points and the blow up behaviour of the branches at limit
values of λ has been also investigated [1, 22, 24, 27, 31, 32].

The system (1.1) can also be often found in literature relating to the system of
elliptic equations; see e.g. [3, 5, 9, 10, 11, 13, 18] and surveys [19, 20]. In these
works under different assumptions, including the cases of critical exponents, the
existence, nonexistence and multiplicity of solutions to (1.1) have been obtained.
However, in the case of systems of equations there are not so many works dedicated
to the systematical study of the branches of solutions and the analysis of their
behaviour. Such research is particularly difficult if the problem depends on more
than one parameter as in the case of system (1.1). The purpose of the present paper
is to shed some light in this direction.

It seems that (1.3) and its simplest generalization (1.1) must have a similar
properties of solutions and structure of ground states branches. Furthermore, in
the particular case p = q, λ = µ, to any solution wλ of (1.3) corresponds a solution
(uλ, vλ) of (1.1) with uλ = c1wλ, vλ = c2wλ for some constants c1, c2 > 0 (see
Remark 10.1 in Section 10). However, in the present paper we show, on the example
of (1.3) and (1.1) (in the case p = q, λ = µ), that there is an essential distinction
in geometrical structure for the sets of positive solutions of scalar elliptic equations
and its corresponding vector generalizations. To this end we study the ground states
of (1.1) and its behaviour with respect to parameter λ = µ and compare it with
known results on (1.3). The distinctions can be seen in Figs. 2 and 3 below, where
under different assumptions about the function f a level lines of the corresponding
energy functional E(λ, µ) = Eλ,µ(uλ̄, vλ̄) are shown for (1.3) and (1.1), respectively.
Note that the results for p = q are a corollary of our main Theorems 2.2–2.5, where
the common cases are considered.

The ground state of (1.1) will be obtained using Nehari manifolds method [29, 35]
with its fibering approach [33, 34]. It should be noted that the direct application of
these methods is impossible, since sufficient conditions to this end have to be satis-
fied. To overcome these difficulties we follow [21, 23, 24], where in the investigation
of one-parameter problems it has been proposed to find critical values of parame-
ter λ, which separate intervals where sufficient conditions of Nehari manifold and
fibering method are satisfied.

As in the investigation of the one-parameter problem (1.3) (see [21, 24]) it can be
shown that one of the critical points of (1.1) is determined by the first eigenvalues
λ1 and µ1 of the Dirichlet operators −∆p and −∆q, respectively. This point (λ1, µ1)
divides the plane (λ, µ) into four quadrants I-IV (see Fig.1). Actually the existence
of ground states in the positive part of quadrant I follows from [10]. However, our
research in this quadrant provide a previously unknown properties of the solutions.
The main novelty in the present paper is the investigation of the existence and
nonexistence of ground states in quadrant IV, that is why special attention is paid
to investigation along the line (σλ1, σµ1), σ ∈ R (see Figure 1).

The article is organized as follows. In Section 2 we present the main results of
the paper. In Section 3 we give some preliminaries on the Nehari manifold and
fibering method of (1.1). In Section 4 we study critical values of Nehari manifold
and fibering method. In Section 5 we prove the existence of ground states of (1.1)
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Figure 1. The plane (λ, µ)

in quadrant I. In Section 6 we discuss the existence of ground states in quadrant IV.
In Section 7 we explore a continuity of the ground states with respect to parameters
(λ, µ). In Section 8 we study the behaviour of the energy levels of ground state
branches at boundaries of domain of their definition. In Section 9 we obtain some
blow-up results for the ground state branches. Section 10 is devoted to final remarks
and open problems.

2. Main results

Henceforth we will use the short notation λ̄ = (λ, µ) and

Ω+ := {x ∈ Ω : f(x) > 0}, Ω0 := {x ∈ Ω : f(x) = 0}.
We mean that a subset U of Ω is nonempty if the Lebesgue measure of U is nonzero.
By W 1,p

0 and W 1,q
0 we denote the standard Sobolev spaces on Ω with the norms

‖u‖p :=
(∫

Ω

|∇u|p dx
)1/p

, ‖v‖q :=
(∫

Ω

|∇v|q dx
)1/q

,

respectively. We will use the symbols (λ1, ϕ1) and (µ1, ψ1) for the first eigenpairs
of the operators −∆p and −∆q in Ω with zero boundary conditions, respectively.
It is known that the eigenvalues λ1, µ1 are positive, simple and isolated, and the
corresponding eigenfunctions ϕ1, ψ1 are positive and can be normalized so that
‖ϕ1‖p = 1, ‖ψ1‖q = 1 [4, 16, 30].

Problem (1.1) has a variational form with the energy functional

Eλ̄(u, v) =
1
p
Pλ(u) +

1
q
Qµ(v)− F (u, v),

which is well defined on W := W 1,p
0 ×W 1,q

0 under assumption (1.2), and where

Pλ(u) :=
∫

Ω

|∇u|p dx− λ
∫

Ω

|u|p dx,

Qµ(v) :=
∫

Ω

|∇v|q dx− µ
∫

Ω

|v|q dx,

F (u, v) :=
∫

Ω

f(x)|u|α|v|β dx.
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We obtain solutions of (1.1) using the constrained minimization problem

nλ̄ := inf{Eλ̄(u, v) : (u, v) ∈ Nλ̄}, (2.1)

where Nλ̄ is the Nehari manifold

Nλ̄ := {(u, v) ∈W \ {0} : Pλ(u)− αF (u, v) = 0, Qµ(v)− βF (u, v) = 0}.
In the case Nλ̄ = ∅ we assume nλ̄ = +∞.

We say that a weak solution of (1.1) is a ground state if it provides minimum
in (2.1). Our definition is slightly different from the standard one (see [12]). In
particular, we allow the ground state to be zero when nλ̄ = 0.

In the article following critical value plays a crucial role:

σ∗ = inf
u,v

[
max

{ 1
λ1

∫ |∇u|p dx∫ |u|p dx ,
1
µ1

∫ |∇v|q dx∫ |v|q dx } : F (u, v) ≥ 0
]
. (2.2)

The main properties of σ∗ are given in the following lemma.

Lemma 2.1. Assume (1.2) is satisfied, p, q ∈ (1,+∞) and f ∈ L∞(Ω). Then
(I) 1 ≤ σ∗ < +∞;

(II) 1 < σ∗ if and only if F (ϕ1, ψ1) < 0.

Let us denote λ∗ := σ∗λ1, µ∗ := σ∗µ1 and

Σ1 := {λ̄ = (λ, µ) ∈ R2 : −∞ < λ < λ1, −∞ < µ < µ1},
Σ∗ := {λ̄ = (λ, µ) ∈ R2 : λ1 < λ < λ∗, µ1 < µ < µ∗}.

In fact, Σ1 is the quadrant I, and Σ∗ is a subset of quadrant IV (see Figure 1).
Our first main result is the following.

Theorem 2.2. Assume (1.2) is satisfied, p, q ∈ (1,+∞) and f ∈ L∞(Ω).
(I) If Ω+ 6= ∅, then (1.1) possesses a ground state (uλ̄, vλ̄) for all λ̄ ∈ Σ1 such

that Eλ̄(uλ̄, vλ̄) > 0 and uλ̄, vλ̄ > 0 in Ω;
(II) if F (ϕ1, ψ1) < 0, then (1.1) possesses a ground state (uλ̄, vλ̄) for all λ̄ ∈

Σ∗such that Eλ̄(uλ̄, vλ̄) < 0 and uλ̄, vλ̄ > 0 in Ω;

This result can be clarified by obtaining some continuity properties of ground
states with respect to λ̄ and its asymptotic properties at the boundaries of Σ1 and
Σ∗. To this end we study levels of the energy functional Eλ̄ on the solutions of
(1.1) and consider

E(λ̄) := Eλ̄(uλ̄, vλ̄), λ̄ ∈ R2.

Theorem 2.3. Assume (1.2) is satisfied, p, q ∈ (1,+∞) and f ∈ L∞(Ω).
(I) If Ω+ 6= ∅, then

(a) the function E(λ̄) in Σ1 is continuous;
(b) E(λ̄)→ 0 as λ ↑ λ1 and µ ↑ µ1,
(c) E(λ̄) → 0 as λ̄ → (λ1, µ0) for any µ0 < µ1, and E(λ̄) → 0 as λ̄ →

(λ0, µ1) for any λ0 < λ1;
(II) If F (ϕ1, ψ1) < 0, then

(a) the function E(λ̄) in Σ∗ is continuous;
(b) E(λ̄)→ 0 as λ ↓ λ1 and µ ↓ µ1;
(c) E(λ̄) → 0 as λ̄ → (λ1, µ0) for any µ0 ∈ (µ1, µ

∗), and E(λ̄) → 0 as
λ̄→ (λ0, µ1) for any λ0 ∈ (λ1, λ

∗);
(III) If f(x) ≤ 0, p, q ≥ 2 and max{p, q} > 2, then E(λ̄)→ −∞ as λ̄→ (λ∗, µ∗).
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The statements of Theorems 2.2, 2.3 should be supplemented by the fact that in
quadrants II and III, i.e. for λ < λ1, µ > µ1 and λ > λ1, µ < µ1, we have nλ̄ = 0
(see Remark 10.2 in Section 10).

Our next results deal with the blow-up behaviour of ground states (uλ̄, vλ̄) at
the boundaries of Σ1 and Σ∗.

Theorem 2.4. Assume (1.2) is satisfied, p, q ∈ (1,+∞), f ∈ L∞(Ω) and Ω+ 6= ∅.
(1) Let q < β. Then ‖uλ̄‖p → +∞ and ‖vλ̄‖q → 0 as λ ↑ λ1, µ → µ0 for any

µ0 < µ1.
(2) Let p < α. Then ‖uλ̄‖p → 0 and ‖vλ̄‖q → +∞ as λ → λ0, µ ↑ µ1 for any

λ0 < λ1.
(3) Let p < α, q < β, F (ϕ1, ψ1) < 0 and (λ̄m), m ∈ N be a sequence in Σ1

such that λm → λ1 and µm → µ1 as m → ∞. Then up to a subsequence
one of the following convergences hold:
• ‖uλ̄m‖p →∞ and ‖vλ̄m‖q → 0 as m→∞, or
• ‖uλ̄m‖p → 0 and ‖vλ̄m‖q →∞ as m→∞.

Theorem 2.5. Assume (1.2) is satisfied, f ∈ L∞(Ω), f(x) ≤ 0, p, q ≥ 2 and
max{p, q} > 2. Then ‖uλ̄‖p → +∞ and ‖vλ̄‖q → +∞ as λ̄→ (λ∗, µ∗).

It is relevant to remark that in this theorem and in statement III of Theorem 2.3
the assumption f(x) ≤ 0 includes the case f(x) < 0 in Ω. Notice that for the scalar
problem (1.3) in the case f(x) < 0 the corresponding ground states wλ cannot blow
up at any finite value of parameter λ (see Section 10).

It is interesting to consider a special case of (1.1), with p = q and λ = µ. Note
that in this case λ∗ = µ∗. From Lemma 2.1 and Theorem 2.2 we have the following
result.

Corollary 2.6. Assume p = q, λ = µ, p < α+ β < p∗ and f ∈ L∞(Ω). Then

(I) λ∗ < +∞;
(II) λ1 < λ∗ if and only if F (ϕ1, ϕ1) < 0;

(III) the problem (1.1) has two sets of ground states:
(1) (uλ, vλ) for λ ∈ (−∞, λ1) in the case Ω+ 6= ∅;
(2) (uλ, vλ) for λ ∈ (λ1, λ

∗) in the case F (ϕ1, ϕ1) < 0.

From Theorem 2.3 we have he following corollary.

Corollary 2.7. Assume p = q, λ = µ, p < α+ β < p∗ and f ∈ L∞(Ω).

(I) If Ω+ 6= ∅, then
(a) the function E(λ) on (−∞, λ1) is continuous;
(b) E(λ)→ 0 as λ→ λ1;

(II) If F (ϕ1, ϕ1) < 0, then the function E(λ) on (λ1, λ
∗) is continuous and

E(λ)→ 0 as λ ↓ λ1.
(III) If f(x) ≤ 0 and p > 2, then E(λ)→ −∞ as λ→ λ∗.

3. Nehari manifold and fibering method

According to the fibering method [33, 34] consider

Eλ̄(tu, sv) =
tp

p
Pλ(u) +

sq

q
Qµ(v)− tαsβF (u, v), t, s > 0,
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for (u, v) ∈W , and the system of equations
∂

∂t
Eλ̄(tu, sv) ≡ tp−1Pλ(u)− αtα−1sβF (u, v) = 0,

∂

∂s
Eλ̄(tu, sv) ≡ sq−1Qµ(v)− βtαsβ−1F (u, v) = 0.

(3.1)

Simple analysis shows that only if (u, v) belongs to one of the following sets

A := {(u, v) ∈W : Pλ(u) > 0, Qµ(v) > 0, F (u, v) > 0},
B := {(u, v) ∈W : Pλ(u) < 0, Qµ(v) < 0, F (u, v) < 0},

the system (3.1) has a unique nontrivial solution s = s(u, v), t = t(u, v) and

tpqd =
αβ−q

ββ
|Pλ(u)|q−β |Qµ(v)|β

|F (u, v)|q , (3.2)

spqd =
βα−p

αα
|Pλ(u)|α|Qµ(v)|p−α

|F (u, v)|p , (3.3)

where we denote
d :=

α

p
+
β

q
− 1.

Substituting these roots to Eλ̄(tu, sv) we obtain the function

Jλ̄(u, v) := Eλ̄(t(u, v)u, s(u, v)v) = C
|Pλ(u)|α/(pd)|Qµ(v)|β/(qd)

|F (u, v)|1/d sign(F (u, v)),

(3.4)
where

C =
( 1
ααqββp

)1/(pqd)

d.

Observe that Jλ̄(u, v) is zero-homogeneous and weak lower semicontinuous function
on W \ {0}.

Consider the Nehari manifold corresponding to (1.1),

Nλ̄ := {(u, v) ∈W \ {0} : Pλ(u)− αF (u, v) = 0, Qµ(v)− βF (u, v) = 0},
and the Hessian of Eλ̄(u, v),

Γλ̄(u, v) =
(
DuuEλ̄(u, v) DuvEλ̄(u, v)
DuvEλ̄(u, v) DvvEλ̄(u, v)

)
,

where

DuuEλ̄(u, v) = (p− 1)Pλ(u)− α(α− 1)F (u, v), DuvEλ̄(u, v) = −αβF (u, v),

DvvEλ̄(u, v) = (q − 1)Qµ(v)− β(β − 1)F (u, v) .

Lemma 3.1. Let λ̄ ∈ R2 and (u0, v0) be a solution of (2.1) such that

det Γλ̄(u0, v0) 6= 0.

Then (u0, v0) is a critical point of Eλ̄(u, v); i.e., a weak solution of (1.1).

Proof. Let λ̄ ∈ R2 and (u0, v0) be a solution of (2.1). Then by the Lagrange
multiplier rule there exist µ0, µ1, µ2 such that |µ0|+ |µ1|+ |µ2| 6= 0 and

µ0DuEλ̄(u0, v0)(ξ) + µ1[DuEλ̄(u0, v0)(ξ) +DuuEλ̄(u0, v0)(u0, ξ)]

+ µ2DuvEλ̄(u0, v0)(v0, ξ) = 0;

µ0DvEλ̄(u0, v0)(ζ) + µ2[DvvEλ̄(u0, v0)(ζ, v0) +DvEλ̄(u0, v0)(ζ)]
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+ µ1DuvEλ̄(u0, v0)(u0, ζ) = 0,

for all ξ ∈W 1,p
0 and ζ ∈W 1,q

0 .
The proof will be obtained if we show that µ1 = µ2 = 0. Let ξ = u0 and ζ = v0.

Then taking into account that (u0, v0) ∈ Nλ̄ we obtain

µ1DuEλ(u0, v0)(u0, u0) + µ2DuvEλ(u0, v0)(v0, u0) = 0,

µ1DuvEλ(u0, v0)(v0, u0) + µ2DvvEλ(u0, v0)(v0, v0) = 0.

But under the assumption det Γλ(u0, v0) 6= 0 this is possible if and only if µ1 =
µ2 = 0. �

It is not hard to see that on Nλ̄ one has

Γλ̄(u, v) =
(
α(p− α)F (u, v) −αβF (u, v)
−αβF (u, v) β(q − β)F (u, v)

)
Hence

det Γλ(u, v) = αβpq
(
1− α

p
− β

q

)
F 2(u, v). (3.5)

Under assumptions α, β > 0 and F (u, v) 6= 0 it can be highlighted three cases:
α

p
+
β

q
= 1,

α

p
+
β

q
< 1,

α

p
+
β

q
> 1,

that corresponds to the cases when det Γλ(u, v) is zero, positive and negative, re-
spectively. Note that in the present paper we deal only with the last case with
negative determinant det Γλ(u, v) < 0 that corresponds in the case p = q, λ = µ to
the super-linear problem (1.3).

4. On critical values of Nehari manifolds and fibering methods

As it has been noted above we study (1.1) using constrained minimization
method with Nehari manifold Nλ̄ as a constraint. However, the application of
this method is restricted by the assumption of Lemma 3.1. The critical value σ∗

in (2.2) is introduced to separate the domains in the plane (λ, µ) where this as-
sumption is satisfied. A general approach of finding such kind of values has been
introduced in [23, 24] and has been developed in [25, 26, 28] with applications to
different problems. However, the direct application of this theory to the system
(1.1) is complicated. Moreover, the full theoretical introduction to this approach
would lead us away from the main aims of the present paper. We leave it to our
forthcoming paper.

The proof of Lemma 2.1 will be a consequence of the next three propositions.

Proposition 4.1. 1 ≤ σ∗ < +∞.

Proof. The first estimate easily follows from observation

σ∗ ≥ inf
u,v

[
max

{ 1
λ1

∫ |∇u|p dx∫ |u|p dx ,
1
µ1

∫ |∇v|q dx∫ |v|q dx }] = 1,

which holds for (ϕ1, ψ1).
The second estimate is also true, since one can find u ∈ W 1,p

0 \ {0} and v ∈
W 1,q

0 \ {0} such that supp u ∩ supp v = ∅. Then F (u, v) = 0 and

σ∗ ≤ max
{ 1
λ1

∫ |∇u|p dx∫ |u|p dx ,
1
µ1

∫ |∇v|q dx∫ |v|q dx } < +∞.
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�

Proposition 4.2. There exists a nonzero minimizer (u∗, v∗) ∈ W of (2.2) such
that u∗, v∗ ≥ 0 in Ω.

Proof. Let (uk, vk) be a minimizing sequence for (2.2). We may assume that ‖uk‖ =
1 and ‖vk‖ = 1 for all k ∈ N, since (2.2) is zero-homogeneous. Hence by the
Eberlein-Shmulyan theorem and the Sobolev embedding theorem there exists a
subsequence of (uk, vk) (which we denote again (uk, vk)) and (u∗, v∗) ∈ W such
that

uk ⇀ u∗ weakly in W 1,p
0 , vk ⇀ v∗ weakly in W 1,q

0 ,

uk → u∗ in Lr, r < p∗, vk → v∗ in Lr, r < q∗.

This implies F (u∗, v∗) ≥ 0. From Proposition 4.1 we know that σ∗ < c < +∞ for
some c > 0. Consequently∫

Ω

|u∗|p dx = lim
k→+∞

∫
Ω

|uk|p dx > 1/c > 0,∫
Ω

|v∗|q dx = lim
k→+∞

∫
Ω

|vk|q dx > 1/c > 0,

and therefore, u∗, v∗ 6≡ 0. By the weak lower semicontinuity we have∫
Ω
|∇u∗|p∫

Ω
|u∗|p ≤ lim inf

k→+∞

∫
Ω
|∇uk|p∫

Ω
|uk|p ,

∫
Ω
|∇v∗|q∫

Ω
|v∗|q ≤ lim inf

k→+∞

∫
Ω
|∇vk|q∫

Ω
|vk|q .

Now arguing by contradiction we conclude that (u∗, v∗) is a minimizer of (2.2).
Since the functionals in (2.2) are even, we may assume that u∗, v∗ ≥ 0. �

Proposition 4.3. σ∗ > 1 if and only if F (ϕ1, ψ1) < 0.

Proof. Assume first σ∗ > 1. Conversely, suppose that F (ϕ1, ψ1) ≥ 0. Then (ϕ1, ψ1)
is an admissible point for minimization problem (2.2). But then σ∗ = 1, which
contradicts the assumption σ∗ > 1.

Assume now F (ϕ1, ψ1) < 0. Suppose, contrary to our claim, that σ∗ = 1. By
Proposition 4.2 there exists a nonzero minimizer (u∗, v∗) ∈ W of (2.2). Then it
follows easily that

1
λ1

∫ |∇u∗|p dx∫ |u∗|p dx = 1,
1
µ1

∫ |∇v∗|q dx∫ |v∗|q dx = 1.

These equalities are true only if u∗ = ϕ1 and v∗ = ψ1 up to multipliers, but it is
impossible, since F (ϕ1, ψ1) < 0. �

Proposition 4.4. Assume F (ϕ1, ψ1) < 0. Let λ < λ∗ and µ < µ∗. Then for any
(u, v) ∈W \ {0} the following implication is true:

Pλ(u) ≤ 0, Qµ(v) ≤ 0 =⇒ F (u, v) < 0.

Proof. Let λ < λ∗ and µ < µ∗. On the contrary, suppose that Pλ(u) ≤ 0, Qµ(v) ≤ 0
and F (u, v) ≥ 0. Then there exist λ0 ≤ λ < λ∗ and µ0 ≤ µ < µ∗ such that
Pλ0(u) = 0 and Qµ0(v) = 0. From here it follows

1
λ1

∫ |∇u|p dx∫ |u|p dx =
λ0

λ1
<
λ∗

λ1
= σ∗,

1
µ1

∫ |∇v|q dx∫ |v|q dx =
µ0

µ1
<
µ∗

µ1
= σ∗.
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Hence we obtain

max
{ 1
λ1

∫ |∇u|p dx∫ |u|p dx ,
1
µ1

∫ |∇v|q dx∫ |v|q dx } < σ∗,

which contradicts the definition of σ∗. �

For further applications of Lemma 3.1 we need the next result.

Corollary 4.5. Assume (1.2) is satisfied, p, q ∈ (1,+∞) and f ∈ L∞(Ω). Let
λ < λ∗ and µ < µ∗. Then det Γλ̄(u, v) 6= 0, for any (u, v) ∈ Nλ̄.

Proof. By (3.5) we know that

det Γλ(u, v) = αβdpqF 2(u, v).

Hence, the proof will be obtained if we show that F (u, v) 6= 0. Suppose, contrary
to our claim, that F (u, v) = 0 for (u, v) ∈ Nλ̄ and λ < λ∗ and µ < µ∗. Then the
constraints of the Nehari manifold entail Pλ(u) = 0 and Qµ(v) = 0. However, this
contradicts the definition of σ∗. �

5. Solutions of (1.1) in Σ1

In this section we prove statement (I) of Theorem 2.2. First we prove the fol-
lowing proposition.

Proposition 5.1. Assume that Ω+ 6= ∅. Then Nλ̄ 6= ∅ for all λ̄ ∈ R2.

Proof. Let λ̄ ∈ R2. Consider the first eigenpairs (λ1(B), ϕ1(B)) and (µ1(B), ψ1(B))
of operators −∆p and −∆q in a ball B ⊂ Ω+ with zero boundary conditions,
respectively. Evidently, we can choose B such that λ < λ1(B) and µ < µ1(B).
Then

Pλ(ϕ1(B)) > 0, Qµ(ψ1(B)) > 0, F (ϕ1(B), ψ1(B)) > 0.
Thus (ϕ1(B), ψ1(B)) ∈ A and (tϕ1(B), sψ1(B)) ∈ Nλ̄, where t, s are given by (3.2)
and (3.3). �

Lemma 5.2. Let Ω+ 6= ∅ and λ̄ ∈ Σ1. Then problem (1.1) has a ground state
(uλ̄, vλ̄) such that Eλ̄(uλ̄, vλ̄) > 0 and uλ̄, vλ̄ > 0.

Proof. Assume Ω+ 6= ∅ and λ̄ ∈ Σ1. Let us consider constrained minimization
problem (2.1). By Proposition 5.1 we know that Nλ̄ 6= ∅. This yields nλ̄ < +∞.
Notice that Nλ̄ ⊂ A for λ̄ ∈ Σ1, since Pλ(u) > 0, Qµ(v) > 0 for (u, v) ∈W \ {0} in
case λ < λ1 and µ < µ1. Then

Eλ̄(u, v) =
α

p
F (u, v) +

β

q
F (u, v)− F (u, v) =

(α
p

+
β

q
− 1
)
F (u, v) > 0. (5.1)

for any (u, v) ∈ Nλ̄. This implies that nλ̄ ≥ 0.
Let (un, vn) be a minimizing sequence of (2.1). Let us verify the boundedness

of (un, vn). Suppose, contrary to our claim, that for instance ‖un‖p → +∞. Then
Pλ(un)→ +∞, because for λ < λ1 we have

Pλ(un) = ‖un‖pp − λ
∫
|un|p dx ≥ C0(λ)‖un‖pp, (5.2)

where C0(λ) = 1 − λ/λ1 if λ ∈ (0, λ1), and C0(λ) = 1 if λ ≤ 0. Since Pλ(un) −
αF (un, vn) = 0, it follows F (un, vn) → +∞. Thus by (5.1) we have Eλ̄(un, vn) →
+∞. But it is impossible, since nλ̄ < +∞. Thus, (un, vn) is bounded.
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This implies the existence of subsequence of (un, vn) (which we denote again
(un, vn)) and (u, v) ∈W such that

un ⇀ u weakly in W 1,p
0 , vn ⇀ v weakly in W 1,q

0 ,

un → u in Lr, r < p∗, vn → v in Lr, r < q∗.

Let us show that u, v 6≡ 0. Note first that similar to (5.2) we have the following
estimate

Pλ(un) ≤ C1(λ)‖un‖pp, (5.3)
where C1(λ) = 1 if λ > 0 and C1(λ) = 1−λ/λ1 if λ ≤ 0. Further, from assumptions
(1.2) it follows the existence of p′ ∈ (p, p∗) and q′ ∈ (q, q∗) such that α

p′ + β
q′ = 1.

Hence, applying Hölder’s inequality and the Sobolev embedding theorem we obtain

F (un, vn) ≤ C2

(∫
|un|p′ dx

)α/p′(∫
|vn|q′ dx

)β/q′
≤ C3‖un‖αp ‖vn‖βq , (5.4)

where C2 and C3 are some constants in (0,+∞) which do not depend on n ∈ N and
λ, µ. Since (un, vn) ∈ Nλ̄, we have tn, sn = 1. Let q ≥ β. Substituting estimates
(5.2) and (5.4) to (3.2) we obtain

1 =
αβ−q

ββ
Pλ(un)q−βQµ(vn)β

F (un, vn)q
≥ αβ−q

ββ
C0(λ)q−βC0(µ)β

Cq3

‖un‖qp−βpp ‖vn‖βqq
‖un‖αqp ‖vn‖βqq

,

and consequently

‖un‖pq(
α
p+ β

q−1)
p ≥ αβ−q

ββ
C0(λ)q−βC0(µ)β

Cq3
> 0,

for all n ∈ N. Let q < β. Using (5.3) instead of (5.2), for all n ∈ N we derive

‖un‖pq(
α
p+ β

q−1)
p ≥ αβ−q

ββ
C1(λ)q−βC0(µ)β

Cq3
> 0.

At the same time, we have
F (u, v) = lim

n→+∞
F (un, vn)

=
1
α

lim
n→+∞

Pλ(un)

≥ C0(λ)
α

lim
n→+∞

‖un‖pp > C4(λ, µ) > 0,

(5.5)

for some constant C4(λ, µ) which does not depend on n. But this is possible if and
only if u, v 6≡ 0.

From here and using (3.2), (3.3) we can find s, t > 0 such that (tu, sv) ∈ Nλ̄.
Since Jλ̄(u, v) is a weak lower semicontinuous and zero-homogeneous functional,
we have

Eλ̄(tu, sv) = Jλ̄(u, v) ≤ lim inf
n→+∞

Jλ̄(un, vn) = lim inf
n→+∞

Eλ̄(un, vn) = nλ̄.

By the definition of nλ̄ here is only equality possible. Thus (tu, sv) is a solution of
(2.1). Applying Lemma 3.1 and Corollary 4.5 we deduce that (uλ̄ := tu, vλ̄ := sv)
is a weak solution of (1.1). Furthermore, (uλ̄, vλ̄) is a ground state, since it is a
minimizer of (2.1). Notice that Eλ̄(uλ̄, vλ̄) is even function with respect to both
variables. Therefore, we may assume that uλ̄, vλ̄ ≥ 0. Applying the arguments of
[17] we obtain that uλ̄, vλ̄ > 0 in Ω. Finally, (5.5) and (5.1) entail Eλ̄(uλ̄, vλ̄) >
0. �
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6. Solutions of (1.1) in Σ∗

In this section we prove statement (II) of Theorem 2.2. Below we always suppose
that F (ϕ1, ψ1) < 0.

Proposition 6.1. Let λ > λ1 and µ > µ1. Then Nλ̄ 6= ∅. Moreover, there is
(u, v) ∈ Nλ̄ such that Eλ̄(u, v) < 0.

Proof. Consider (ϕ1, ψ1). Since λ > λ1 and µ > µ1, we have Pλ(ϕ1) < 0, Qλ(ψ1) <
0, and by the assumption F (ϕ1, ψ1) < 0. Thus (ϕ1, ψ1) ∈ B and (tϕ1, sψ1) ∈ Nλ̄,
where t, s are given by (3.2) and (3.3). Furthermore by (3.4) we have Eλ̄(tϕ1, sψ1) =
Jλ̄(ϕ1, ψ1) < 0. �

Lemma 6.2. Let λ̄ ∈ Σ∗. Then problem (1.1) has a ground state (uλ̄, vλ̄) such
that Eλ̄(uλ̄, vλ̄) < 0 and uλ̄, vλ̄ > 0.

Proof. Let λ̄ ∈ Σ∗. As above in the proof of Lemma 5.2, we will obtain the ground
state by the finding of a minimizer of (2.1). By Proposition 6.1 we know that
Nλ̄ 6= ∅ and nλ̄ < 0. Let (un, vn) ∈ Nλ̄ be a minimizing sequence for (2.1). Then
Eλ̄(un, vn) < 0 and by (3.1), (3.4) it easy follows that

Pλ(un) < 0, Qµ(vn) < 0, F (un, vn) < 0.

Let us consider un = tnûn and vn = snv̂n, where ‖ûn‖p = 1 and ‖v̂n‖q = 1. Then
the boundedness of (ûn) and (v̂n) in W implies the existence of (û, v̂) ∈ W and a
subsequence of (ûn, v̂n) (which we denote again (ûn, v̂n)) such that

ûn ⇀ û weakly in W 1,p
0 , v̂n ⇀ v̂ weakly in W 1,q

0 ,

ûn → û in Lr, r < p∗, v̂n → v̂ in Lr, r < q∗.

Observe that
F (ûn, v̂n) < C0 < 0, (6.1)

where C0 does not depend on n ∈ N. Indeed, suppose conversely that F (û, v̂) =
limn→+∞ F (ûn, v̂n) = 0. Note that by the weak lower semicontinuity we have

Pλ(û) ≤ lim inf
n→+∞

Pλ(ûn) ≤ 0, Qλ(v̂) ≤ lim inf
n→+∞

Qλ(v̂n) ≤ 0.

Hence applying Proposition 4.4 we obtain a contradiction.
Let us show that nλ̄ > −∞. By (3.4) we have

Eλ̄(tnûn, snv̂n) = −C
( |Pλ(ûn)|αq|Qµ(v̂n)|βp

|F (ûn, v̂n)|pq
)1/(pqd)

. (6.2)

Taking into account that ‖ûn‖p = 1 and ‖v̂n‖q = 1 we see that Eλ̄(tnûn, snv̂n) →
−∞ if and only if F (ûn, v̂n) → 0. By (6.1) the last is impossible and therefore,
nλ̄ > −∞.

Let us prove the boundedness of (tn, sn). Assume for example that tn → +∞.
In view of (3.2) and by (6.1) it is possible only in case q < β when Pλ(ûn) → 0.
However by (6.2) this implies that Eλ̄(tnûn, snv̂n)→ 0, which contradicts nλ̄ < 0.
By the similar arguments it can be shown that sn, tn 6→ 0.

Thus, (un, vn) is bounded and up to subsequence we have

un ⇀ u weakly in W 1,p
0 , vn ⇀ v weakly in W 1,q

0 ,

un → u in Lr, r < p∗, vn → v in Lr, r < q∗.
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Since u, v 6≡ 0, by (3.2) and (3.3), we can find s, t > 0 such that (tu, sv) ∈ Nλ̄.
Since Jλ̄(u, v) is a weak lower semicontinuous and zero-homogeneous functional,
we have

Eλ̄(tu, sv) = Jλ̄(u, v) ≤ lim inf
n→+∞

Jλ̄(un, vn) = nλ̄.

But by the definition of nλ̄ here is only equality possible. Thus (uλ̄ := tu, vλ̄ := sv)
is a solution of (2.1) and by Lemma 3.1 and Corollary 4.5 it follows that (uλ̄, vλ̄)
is a weak solution of (1.1). Arguing as in the proof of Lemma 5.2 we derive that
uλ̄, vλ̄ > 0 and (uλ̄, vλ̄) is a ground state. Obviously Eλ̄(uλ̄, vλ̄) < 0. �

7. Continuity of the set of ground states

In this section we prove statements (I):(a) and (II):(a) of Theorem 2.3. Observe
first that by the construction of (uλ̄, vλ̄) we have

nλ̄ = Eλ̄(uλ̄, vλ̄) = Jλ̄(uλ̄, vλ̄),

for λ̄ ∈ Σ1 and Σ∗. Therefore to confirm (I):(a) and (II):(a) in Theorem 2.3 it is
sufficient to establish the following result.

Lemma 7.1. The function Jλ̄(uλ̄, vλ̄) is continuous in Σ1 and Σ∗.

Proof. Fix λ̄0 in Σ1 or Σ∗ and the ball B correspondingly in Σ1 or Σ∗ with the
center λ̄0. Let λ̄ ∈ B. Denote ∆λ := λ−λ0, ∆µ := µ−µ0. The proof of the lemma
will follows from the next proposition. �

Proposition 7.2. For sufficiently small |λ̄− λ̄0| the following inequalities are sat-
isfied

−∆λ
1
p
Gp(uλ̄)−∆µ

1
q
Gq(vλ̄) + r1(∆λ,∆µ)

≤ Jλ̄(uλ̄, vλ̄)− Jλ̄0
(uλ̄0

, vλ̄0
)

≤ −∆λ
1
p
Gp(uλ̄0

)−∆µ
1
q
Gq(vλ̄0

) + r2(∆λ,∆µ),

(7.1)

where ri(∆λ,∆µ) = o(|λ̄ − λ̄0|), i = 1, 2; i.e., ri(∆λ,∆µ)

|λ̄−λ̄0|
→ 0 as |λ̄ − λ̄0| → 0

uniformly on B, and

Gp(u) :=
∫

Ω

|u|p dx, Gq(v) :=
∫

Ω

|v|q dx, (u, v) ∈W.

Proof. Note first that
Jλ̄(uλ̄0

, vλ̄0
) ≥ Jλ̄(uλ̄, vλ̄), (7.2)

since Jλ̄(uλ̄, vλ̄) = nλ̄. Furthermore, by (3.4)

Jλ̄(uλ̄0
, vλ̄0

) = C
(Pλ0(uλ̄0

)−∆λGp(uλ̄0
))α/(pd)(Qµ0(vλ̄0

)−∆µGq(vλ̄0
))β/(qd)

F (uλ̄0
, vλ̄0

)1/d
.

(7.3)
Using Taylor’s theorem with Lagrange form of the remainder we obtain

(Qµ0(vλ̄0
)−∆µGq(vλ̄0

))β/(qd)

= Qµ0(vλ̄0
)β/(qd) −∆µ

β

qd
Qµ0(vλ̄0

)
β
qd−1Gq(vλ̄0

)

− (∆µ)2

2!
β

qd

( β
qd
− 1
)
(Qµ0(vλ̄0

)−∆µθGq(vλ̄0
))

β
qd−2Gq(vλ̄0

)2,

(7.4)
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where θ ∈ (0, 1). Similar formula is true for (Pλ0(uλ̄0
)−∆λGp(uλ̄0

))α/(pd). Substi-
tuting these in (7.2) and using (3.2), (3.3) with tλ̄, sλ̄ = 1 we obtain

Jλ̄(uλ̄, vλ̄)− Jλ̄0
(uλ̄0

, vλ̄0
) ≤ −∆λ

1
p
Gp(uλ̄0

)−∆µ
1
q
Gq(vλ̄0

) + r2(∆λ,∆µ),

where r2(∆λ,∆µ) is a sum of the reminder terms which orders with respect to
|λ̄− λ̄0| are great or equal two. Thus we obtain the second inequality in (7.1). The
first one is obtained by the same way.

To complete the proof of the proposition it remains to show that ri(∆λ,∆µ) =
o(|λ̄− λ̄0|), i = 1, 2 uniformly on B. To this end (see (7.3) and (7.4)) it is sufficient
to show that ‖uλ̄‖p, ‖vλ̄‖q are uniformly bounded on B and

|F (uλ̄, vλ̄)| ≥ c0 > 0, |Pλ(uλ̄)| ≥ c0 > 0, |Qµ(vλ̄)| ≥ c0 > 0, (7.5)

with constant c0 which does not depend on λ̄ ∈ B.
First consider the case B ⊂ Σ1. Let us show the boundedness of ‖uλ̄‖p and

‖vλ̄‖q. Suppose, contrary to our claim, that there is a sequence λ̄m such that
‖uλ̄m‖p → +∞ as λ̄m → λ̄ for some λ̄ ∈ B. Arguing as in the proof of Theorem
2.2 (see (5.2)) we obtain that in this case Pλm(uλ̄m)→ +∞ and Eλ̄m(uλ̄m)→ +∞
as m → +∞. But the last is impossible, since Eλ̄(uλ̄, vλ̄) is uniformly bounded
in B. Indeed, consider the first eigenfunctions ϕ1(U) and ψ1(U) of operators −∆p

and −∆q with zero boundary conditions on a smooth subset U ⊂ Ω+. Then for all
λ̄ ∈ B we have

nλ̄ ≤ Jλ̄(ϕ1(U), ψ1(U)) < c3 < +∞,
where c3 does not depend on λ̄ ∈ B.

By (5.5) we have

F (uλ̄, vλ̄) ≥ C4(λ, µ) > 0, λ̄ ∈ B,
where by the construction C4(λ, µ) is continuous nonzero function on the compact
set B. This implies the first estimate in (7.5). At the same time we have the Nehari
constraints Pλ(uλ̄) = αF (uλ̄, vλ̄) and Qµ(vλ̄) = βF (uλ̄, vλ̄), which imply the last
two estimates in (7.5).

Now consider the case B ⊂ Σ∗. Arguing as in (6.1) we obtain the first inequality
in (7.5). Then again using Nehari constraints we obtain the last two estimates in
(7.5). The boundedness of ‖uλ̄‖p and ‖vλ̄‖q is shown similar to the proof of Lemma
6.2 using Proposition 4.4. �

Corollary 7.3. Assume (1.2) is satisfied and p, q ∈ (1,+∞), f ∈ L∞(Ω). Let
(uλ̄, vλ̄) be a ground state in Σ1 and Σ∗. Then the function E(λ̄) = Eλ̄(uλ̄, vλ̄) is
differentiable at any point λ̄ ∈ Σ1 and Σ∗. Furthermore

∂

∂λ
Eλ̄(uλ̄, vλ̄) = −1

p

∫
Ω

|uλ̄|p dx,
∂

∂µ
Eλ̄(uλ̄, vλ̄) = −1

q

∫
Ω

|vλ̄|q dx.

Proof. Let λ̄ ∈ Σ1 or Σ∗. Consider the sequence λ̄i → λ̄. From the continuity
of Eλ̄(uλ̄, vλ̄) it follows that (Eλ̄i(uλ̄i , vλ̄i)) is uniformly bounded. Using this and
the fact that (uλ̄i , vλ̄i) are weak solutions of (1.1) it easily follows that there is a
strong convergence in W subsequence of (uλ̄i , vλ̄i) with limit point (uλ̄, vλ̄). This
and (7.1) yield the required. �
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8. Asymptotic behaviour of the energy level of ground states of
(1.1)

In this section we prove statements (I): (b), (c), (II): (b), (c) and (III) of Theorem
2.3. The proofs will follow from three lemmas below.

Lemma 8.1. Let Ω+ 6= ∅. Then
• E(λ̄)→ 0 as λ ↑ λ1 and µ ↑ µ1,
• E(λ̄)→ 0 as λ̄→ (λ1, µ0) for any µ0 < µ1, ,
• E(λ̄)→ 0 as λ̄→ (λ0, µ1) for any λ0 < λ1.

Proof. All statements are proved in a similar way. We give the proof only for the
first statement. Since nλ̄ = Eλ̄, it is sufficient to show that nλ̄ → 0 as λ→ λ1 and
µ→ µ1.

Consider the first eigenfunction ϕ1. Using the assumption Ω+ 6= ∅ it is not hard
to find w ∈W 1,q

0 such that

Qµ(w) > 0, F (ϕ1, w) > 0,

for all µ ∈ (−∞, µ1]. This and the fact that Pλ(ϕ1) > 0 for λ < λ1 yield (ϕ1, w) ∈ A
and (tϕ1, sw) ∈ Nλ̄, where t, s are given by (3.2) and (3.3). At the same time

Pλ(ϕ1) = (λ1 − λ)
∫

Ω

|ϕ1|p → 0, as λ→ λ1.

From here it follows that

nλ̄ ≤ Jλ̄(ϕ1, w) = C
Pλ(ϕ1)α/(pd)Qµ(w)β/(qd)

F (ϕ1, w)1/d
→ 0,

as λ→ λ1 and µ→ µ1. This completes the proof. �

The proof of the next lemma can be obtained in the standard way using statement
II: (a) of Theorem 2.3.

Lemma 8.2. Let F (ϕ1, ψ1) < 0. Then
• E(λ̄)→ 0 as λ ↓ λ1 and µ ↓ µ1,
• E(λ̄) → 0 as λ̄ → (λ1, µ0) for any µ0 ∈ (µ1, µ

∗) and E(λ̄) → 0 as λ̄ →
(λ0, µ1) for any λ0 ∈ (λ1, λ

∗).

Lemma 8.3. If f(x) ≤ 0, p, q ≥ 2 and max{p, q} > 2, then E(λ̄) → −∞ as
λ̄→ (λ∗, µ∗).

Proof. Let (u∗, v∗) be a minimizer of (2.2) such that u∗, v∗ ≥ 0. Observe that
F (u∗, v∗) = 0, since by the assumption f(x) ≤ 0. This implies that

Ω 6= suppu∗ ∩ supp v∗ ⊂ Ω0 = {x ∈ Ω : f(x) = 0}. (8.1)

Assume first that for every minimizer (u∗, v∗) of (2.2) it holds

σ∗ =
1
λ1

∫
Ω
|∇u∗|p∫

Ω
|u∗|p =

1
µ1

∫
Ω
|∇v∗|q∫

Ω
|v∗|q .

Since f(x) ≤ 0, by Proposition 4.3 we know that σ∗ > 1 and therefore, λ∗ > λ1

and µ∗ > µ1. This fact, as well as u∗, v∗ ≥ 0 and (8.1) imply that the equations
DuPλ∗(u∗) = 0 and DvQµ∗(v∗) = 0 cannot be satisfied on Ω. Hence there exist
θ1, θ2 ∈ C∞0 (Ω) such that

〈DuPλ∗(u∗), θ1〉 < 0, 〈DvQµ∗(v∗), θ2〉 < 0.
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Consider the functions

ur := u∗ + rθ1, vr := v∗ + rδθ2,

for r > 0 and some constant δ > 0 which will be defined below. Then by Taylor’s
theorem we obtain

Pλ∗(ur) = Pλ∗(u∗) + r〈DuPλ∗(u∗), θ1〉+R1(r), (8.2)

Qµ∗(vr) = Qµ∗(v∗) + rδ〈DvQµ∗(v∗), θ2〉+R2(r), (8.3)

for sufficiently small r > 0, where R1(r) and R2(r) are reminders, for instance, in
the Lagrange form; i.e.,

R1(r) = r2 p(p− 1)
2!

(∫
Ω

|∇(u∗ + rκθ1)|p−2|∇θ1|2dx

− λ
∫

Ω

|(u∗ + rκθ1)|p−2|θ1|2dx
)
,

for some κ ∈ (0, 1), and similar equality for R2(r). Since p, q ≥ 2 by assumption, we
guarantee that R1(r) = o(r) and R2(r) = o(rδ). Using this fact and the observation
that Pλ∗(u∗) = 0, Qµ∗(v∗) = 0, from (8.2) and (8.3) we obtain

Pλ∗(ur) = r〈DuPλ∗(u∗), θ1〉+ o(r) < 0, (8.4)

Qµ∗(vr) = rδ〈DvQµ∗(v∗), θ2〉+ o(rδ) < 0, (8.5)

for sufficiently small r > 0. On the other hand, we have

F (ur, vr) = rδβF1 + rαF2

:= rδβ
∫

Ωu∗\Ω0

f |u∗ + rθ1|α|θ2|β dx+ rα
∫

Ωv∗\Ω0

f |θ1|α|v∗ + rδθ2|β dx

< 0.

Here it holds a strong inequality. Indeed, if one suppose F1 = 0 and F2 = 0, then
(ur, vr) would be an admissible point for (2.2) but by (8.4), (8.5) Pλ∗(ur) < 0,
Qµ∗(vr) < 0 that contradicts the definition of σ∗.

Let tr and sr are given by (3.2) and (3.3). Then (trur, srvr) ∈ N(λ∗,µ∗) and

J(λ∗,µ∗)(ur, vr)

= −C |Pλ∗(ur)|
α/(pd)|Qµ∗(vr)|β/(qd)

|F (ur, vr)|1/d

= −C r
α
pd+ δβ

qd |〈DuPλ∗(u∗), θ1〉+ o(r)/r|α/(pd)|〈DvQµ∗(v∗), θ2〉+ o(rδ)/rδ|β/(qd)

|rδβF1 + rαF2|1/d .

(8.6)
We will prove the theorem, if we find δ > 0, for which the system

δβ − α

p
− δβ

q
> 0,

α− α

p
− δβ

q
> 0,

will be consistent. Expressing δ from the first and second inequalities, we obtain
αq

βp

1
(q − 1)

< δ <
αq

βp
(p− 1).
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From the assumptions p, q ≥ 2 and max{p, q} > 2 we conclude that such δ exists
and therefore,

E(λ∗,µ∗)(trur, srvr) = J(λ∗,µ∗)(ur, vr)→ −∞ as r → 0, (8.7)

Hence n(λ∗,µ∗) = −∞.
Assume now that there exists a minimizer (u∗, v∗) of (2.2) such that

σ∗ =
1
λ1

∫
Ω
|∇u∗|p∫

Ω
|u∗|p >

1
µ1

∫
Ω
|∇v∗|q∫

Ω
|v∗|q .

In this case the proof is actually the same as in the previous case except that now
we have to take into account that Qµ∗(v∗) < 0 and therefore (8.6) will be changed.

Let us indicate the proof briefly. Since λ∗ > λ1, we can find θ such that
〈DuPλ∗(u∗), θ〉 < 0. Consider the function ur := u∗ + rθ, for r > 0. Then, in
view of assumption p ≥ 2, we have

Pλ∗(ur) = Pλ∗(u∗) + r〈DuPλ∗(u∗), θ〉+ o(r) = r〈DuPλ∗(u∗), θ〉+ o(r) < 0,

for sufficiently small r > 0. Furthermore, we have

F (ur, v∗) = rαF3 := rα
∫

Ω\Ω0

f |θ|α|v∗|β dx < 0.

Thus, we obtain

J(λ∗,µ∗)(ur, v∗) =
|Qλ∗(v∗)|β/(qd)|Pλ∗(ur)|α/(pd)

|F (ur, v∗)|1/d

=
rα/(pd)|〈DuPλ∗(u∗), θ〉+ o(r)/r|α/(pd)|Qλ∗(v∗)|β/(qd)

rα/d|F3|1/d .

Hence we again get (8.7). Note that in this case we have not used the assumption
max{α, β} > 2.

To conclude the proof, we observe that for any fixed (u, v) ∈ W the function
Jλ̄(u, v) is a continuous map with respect to λ̄. Furthermore Eλ̄ ≤ Jλ̄(ur, vr) for
any λ̄ ∈ Σ∗. These and (8.7) imply that Eλ̄ → −∞ as λ→ λ∗, µ→ µ∗. �

9. Blow-up results

In this Section we prove Theorems 2.4 and 2.5.

Proof of Theorem 2.4. The proofs of statements (1) and (2) are similar; so we give
the proofs of (1) and (3) only.
Proof of statement (1). Let (uλ̄, vλ̄) be a solution of (1.1) and λ̄→ (λ1, µ0), where
µ0 < µ1. Let

uλ̄ = tλ̄ûλ̄, vλ̄ = sλ̄v̂λ̄,

where ‖ûλ̄‖q = 1, ‖v̂λ̄‖q = 1 and tλ̄ = ‖uλ̄‖q, sλ̄ = ‖vλ̄‖q. From (3.4) and Lemma
8.1 we know that

Jλ̄(uλ̄, vλ̄) = Jλ̄(ûλ̄, v̂λ̄) = C
Pλ(ûλ̄)α/(pd)Qµ(v̂λ̄)β/(qd)

F (ûλ̄, v̂λ̄)1/d
→ 0, (9.1)

as λ̄→ (λ1, µ0). At the same time, since µ0 < µ1, we have

Qµ(v̂λ̄) = 1− µ
∫

Ω

|v̂λ̄|q dx > 1− µ

µ1
> 0



EJDE-2013/212 BRANCHES FOR GROUND STATES 17

uniformly by λ̄. Therefore from (9.1) it follows that

Pλ(ûλ̄)α/(pd)

F (ûλ̄, v̂λ̄)1/d
=
( Pλ(ûλ̄)α

F (ûλ̄, v̂λ̄)p
)1/(pd)

→ 0. (9.2)

Hence, from (3.3) we obtain that sλ̄ → 0 and consequently ‖vλ̄‖q → 0 as λ̄ →
(λ1, µ0).

From (9.2) it follows that Pλ(ûλ̄) → 0, since F (ûλ̄, v̂λ̄) is bounded. This, (3.2)
and the assumption q < β imply that tλ̄ → +∞ and consequently ‖uλ̄‖p → +∞ as
λ̄→ (λ1, µ0).
Proof of statement (3). Suppose (λ̄m), m ∈ N is a sequence in Σ1 such that λm → λ1

and µm → µ1 as m → ∞. As above, consider uλ̄m = tλ̄m ûλ̄m and vλ̄m = sλ̄m v̂λ̄m ,
m = 1, 2, . . . .

Since ‖ûλ̄m‖p = 1 and ‖v̂λ̄m‖q = 1 for m ∈ N, we can apply the Eberlein-
Shmulyan theorem and the Sobolev embedding theorem. Thus, there exist (û0, v̂0) ∈
W and a subsequence, which we denote again (λ̄m), such that (ûλ̄m , v̂λ̄m)→ (û0, v̂0)
as m→∞ weakly in W and strongly in Lr(Ω)× Ls(Ω) as r ∈ (1, p∗), s ∈ (1, q∗).

For (uλ̄m , vλ̄m) ∈ Nλ̄m we have

Eλ̄m(uλ̄m , vλ̄m) = tp
λ̄m

d

α
Pλm(ûλ̄m) = sq

λ̄m

d

β
Qλm(v̂λ̄m)→ 0 as m→∞. (9.3)

Suppose, for instance, that v̂0 = 0. Then Qµ(v̂λ̄m) → 1. This allows us to apply
the arguments from the proof of statement (1). Indeed, (9.3) implies that sλ̄m → 0
as m→∞. Furthermore, similar to (9.2) it is deduced that

Pλm(ûλ̄m)α

F (ûλ̄m , v̂λ̄m)p
→ 0.

Then Pλm(ûλ̄m)→ 0 and due to (3.2) and the assumption q < β we have tλ̄ → +∞.
Thus in this case statement (3) is true.

Consider now the case û0 6= 0 and v̂0 6= 0. Suppose that simultaneously
Pλm(ûλ̄m) → 0 and Qλm(v̂λ̄m) → 0 as m → ∞. Then by the weak lower semi-
continuity of Pλ(u), Qλ(v) it follows that Pλ1(û0) ≤ 0 and Qµ1(v̂0) ≤ 0. This
is possible only if û0 = ϕ1 and v̂0 = ψ1 up to nonzero multiplier. Hence we have
0 ≤ F (û0, v̂0) = F (ϕ1, ψ1). However this contradicts the assumption F (ϕ1, ψ1) < 0.
Thus we can assume without loss of generality that Qλm(v̂λ̄m)→ c1 > 0 as m→∞.
However we are again in the position to apply the arguments from the proof of
statement (1) and therefore we obtain anew the desired sλ̄m → 0, tλ̄m → +∞ as
m→∞. �

Proof of Theorem 2.5. Note that for (uλ̄, vλ̄) ∈ Nλ̄ we have

Eλ̄(uλ̄, vλ̄) =
(α
p

+
β

q
− 1
) 1
α
Pλ(uλ̄).

From here it follows that

Eλ̄(uλ̄, vλ̄)→ −∞⇐⇒ Pλ(uλ̄)→ −∞, (9.4)

as λ̄→ (λ∗, µ∗). On the other hand

Pλ(uλ̄) = ‖uλ̄‖pp − λ
∫

Ω

|uλ̄|p dx ≥ −
λ

λ1
‖uλ̄‖pp.

From here and (9.4) we obtain ‖uλ̄‖p → +∞. By the same arguments it also follows
that ‖vλ̄‖q → +∞. �
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10. Final remarks

Let us compare the obtained results for (1.1) in the special case p = q, λ = µ
with known results for (1.3) when γ = α+ β.

In [23, 24] to study (1.3) the following critical value is introduced

λ∗sing = inf
u

{∫ |∇u|p dx∫ |u|p dx : F (u) :=
∫
f |u|γ dx ≥ 0, u ∈W 1

p (Ω)
}
,

and under the same assumptions of Corollary 2.6 the following is proven:

(I) λ∗sing < +∞ if and only if Ω0 ∪ Ω+ 6= ∅;
(II) λ1 < λ∗sing if and only if F (φ1) < 0;

(III) problem (1.3) has two sets of positive solutions:
(1) w1

λ for λ ∈ (−∞, λ∗sing) in the case Ω+ 6= ∅, such that Eλ(w1
λ) > 0;

(2) w2
λ for λ ∈ (λ1, λ

∗
sing) in the case F (φ1) < 0, such that Eλ(w2

λ) < 0;
(IV) the solutions w1

λ on (−∞, λ1) and w2
λ on (λ1, λ

∗
sing) are the ground states of

(1.3) and the functions E1(λ) := Eλ(w1
λ), E2(λ) := Eλ(w2

λ) are continuous
in the intervals of their determination.

To compare (1.3) and (1.1) it is necessary also to take into consideration that
the critical values λ∗ and λ∗sing are essentially the same objects but for different
problems. For instance, both of them define a threshold of the applicability of
Nehari manifold method (see Section 4, and [21, 23, 24]). Moreover, they can be
obtained as a consequence of a general approach (see [23, 24]).

First, we see that in contrast to (1.3) we always have λ∗ < +∞ for (1.1). The
next distinction is that in the case F (φ1) < 0, Ω+ 6= ∅ the ground state level of
(1.3) has a discontinuity at the point λ1. Furthermore, in the interval (λ1, λ

∗
sing)

one has a multiplicity of solutions to (1.3); i.e., there are two branches positive
solutions w1

λ and w2
λ, whereas this property is not observed for (1.1) (see Figure 2).

λ∗λ1

E(λ)
(1.1)

λ∗
singλ1

E(λ)
(1.3)

Figure 2. p = q, λ = µ, F (ϕ1, ϕ1) < 0, Ω+ 6= ∅

For (1.3) similar results like in Theorem 2.3 are known [24]. In particular,
E1(λ) → 0 as λ ↑ λ∗sing and E2(λ) → 0 as λ ↓ λ1. Additionally, E2(λ) → −∞
as λ→ λ∗sing if and only if Ω+ = ∅, where λ∗sing < +∞ if and only if Ω0 6= ∅.

Thus, we see that in case f(x) < 0 and p > 2 ground states of the system (1.1)
blow up at the finite value λ∗, whereas this phenomenon for the scalar equation
(1.3) is impossible (see Figure 3).
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λ∗λ1

E(λ)
(1.1)

+∞λ1

E(λ)
(1.3)

Figure 3. p = q, p > 2, λ = µ, f(x) < 0

Remark 10.1. Consider the positive solutions w1
λ and w2

λ of (1.3) for λ ∈ (−∞, λ∗)
and λ ∈ (λ1, λ

∗), respectively. Then it easy to verify that the following pairs of
functions u1

λ = c1w
1
λ, v1

λ = c2w
1
λ and u2

λ = c1w
2
λ, v2

λ = c2w
2
λ, where

c1 =
α(β−p)/(p2d)

ββ/(p2d)
, c2 =

β(α−p)/(p2d)

αα/(p2d)
,

satisfy the system (1.1) with p = q, λ = µ, α + β = γ in the intervals (−∞, λ∗)
and (λ1, λ

∗), respectively. It is interesting to compare these solutions with those
obtained in Corollary 2.6. The properties of the corresponding energy functionals Eλ
(see Corollary 2.7 and Figures 2 and 3) show that these solutions are different. The
differences can be seen also from the blow-up behaviour of the ground state branches
of (1.1) obtained in Theorem 2.4,2.5, which, as it is easy to see, is impossible for
the ground state branches of (1.3) under the same assumptions.

Remark 10.2. Observe that nλ̄ = 0 when λ̄ belongs to quadrant II or III (see
Figure 1). This can be seen from the following. First of all, note that the set B
is empty when λ̄ lies in quadrants II and III. Further, if we consider, for example,
quadrant III; i.e., λ > λ1, µ < µ1, then one can find a sequence of functions
(ξk, ζk) ∈ W such that Pλ(ξk) > 0, Qµ(ζk) > 0, F (ξk, ζk) > c0 > 0 uniformly by
k ∈ N and Pλ(ξk)→ 0.

Remark 10.3. As it was noted above, the scalar problem (1.3) in case F (φ1) < 0
has multiple positive solutions w1

λ, w2
λ for λ ∈ (λ1, λ

∗
sing). On the other hand it

is known (see [27, 32]) that this problem possesses a turning point (λ0, w0), where
λ0 > λ∗sing and w0 is a positive solution of (1.3). Thus we can assume up to
the uniqueness of positive branches (w1

λ), (w2
λ) that they are linked at the point

(λ0, w0). However, we did not find for (1.1) the second branch of solutions which
could be considered as a contender to link with the branch of ground states (uλ, vλ)
found in Theorems 2.2, 2.3. In view of this, we conjecture that there are only two
scenarios of the behaviour of the ground state branch of (1.1): it continues on the
whole quadrant IV or there is a threshold in IV where it blows up.

Remark 10.4. It is known that for the scalar problem (1.3), the assumption
F (φ1) < 0 is necessary and sufficient for the existence of positive solutions for
λ > λ1. We cannot prove the similar statement for (1.1). In particular it is an
open question whether (1.1) has positive solutions outside of the quadrant I, if
F (ϕ1, ψ1) ≥ 0.
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Remark 10.5. In this paper we consider only the case d = α
p + β

q − 1 > 0 which
corresponds to the case when Hessian Γλ̄(u, v) is indefinite. The cases d = 0 and
d < 0 for (1.1) have been investigated in the literature (see e.g. [9, 18, 19, 20]).
However, in these cases, to our knowledge, there are no investigations similar to
those obtained in the present paper.
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