\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 219, pp. 1--13.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/219\hfil Third-order operator-differential equations] {Third-order operator-differential equations with discontinuous coefficients and operators in the boundary conditions} \author[A. R. Aliev, N. L. Muradova \hfil EJDE-2013/219\hfilneg] {Araz R. Aliev, Nazila L. Muradova} % in alphabetical order \address{Araz R. Aliev \newline Baku State University, Institute of Mathematics and Mechanics of NAS of Azerbaijan, Baku, Azerbaijan} \email{alievaraz@yahoo.com} \address{Nazila L. Muradova \newline Nakhchivan State University, Nakhchivan, Azerbaijan} \email{nazilamuradova@gmail.com} \thanks{Submitted June 7, 2013. Published October 4, 2013.} \subjclass[2000]{47E05, 34B40, 34G10} \keywords{Operator-differential equation; discontinuous coefficient; \hfill\break\indent operator-valued boundary condition; self-adjoint operator; regular solvability; \hfill\break\indent Sobolev-type space; intermediate derivative operators} \begin{abstract} We study a third-order operator-differential equation on the semi-axis with a discontinuous coefficient and boundary conditions which include an abstract linear operator. Sufficient conditions for the well-posed and unique solvability are found by means of properties of the operator coefficients in a Sobolev-type space. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} It is known that many problems of partial differential equations can be reduced to problems for differential equations whose coefficients are unbounded operators in a Hilbert space. Many articles are dedicated to the study of problems with operators in the boundary conditions for operator-differential equations of second order (see, for example, \cite{a1,a7,f1,g3,m2,m3,m4,y2} and the references therein); however, these studies are far from the full completion. Note that only a few papers are dedicated to the study of such boundary-value problems for operator-differential equations of third order (see, for example, \cite{a5}). This article is dedicated to the study of boundary-value problem for a class of third-order operator-differential equations with a discontinuous coefficient; one of the boundary conditions includes an abstract linear operator. Such equations cover some non-classical problems of mathematical physics (see \cite{b1}), investigated in inhomogeneous environments. Let $H$ be a separable Hilbert space with the scalar product $(x,y)$, $x,y\in H$ and let $A$ be a self-adjoint positive-definite operator in $H$ ($A=A^{*} \ge cE$, $c>0$, $E$ is the identity operator). By $H_{\gamma } $ ($\gamma \ge 0$) we denote the scale of Hilbert spaces generated by the operator $A$; i.e., $H_{\gamma } =D(A^{\gamma } )$, $(x,y)_{\gamma } =(A^{\gamma } x,A^{\gamma } y)$, $x, y\in D(A^{\gamma } )$, for $\gamma =0$ we consider that $H_0 =H$, $(x,y)_0 =(x,y)$, $x,y\in H$. We denote by $L_2 ([a,b];H)$, $-\infty \le a0$, $K\in L(H_{5/2} ,H_{1/2} )$, $\rho (t)=\alpha $, if $0\le t\le 1$, $\rho (t)=\beta $, if $10$, $K\in L(H_{5/2},H_{1/2})$, $-\sqrt[3]{\alpha ^2 } \omega _2 \notin \sigma (B)$ and the operator $K_{\alpha ,\beta } $ have a bounded inverse operator in $H_{5/2}$. Then the equation $P_0 u=0$ has only the trivial solution in the space $W_{2,K}^3 (R_{+} ;H)$. \end{lemma} \begin{proof} The general solution of the equation $P_0 u(t)=0$ in the space $W_2^3 (R_{+} ;H)$ has the following form \cite{y1}: \[ u_0 (t)=\begin{cases} u_{0,1} (t)=e^{\sqrt[3]{\alpha } \omega _1 tA} \varphi _0 +e^{\sqrt[3]{\alpha } \omega _2 tA} \varphi _1 +e^{-\sqrt[3]{\alpha } (1-t)A} \varphi _2 , & 0\le t<1, \\ u_{0,2} (t)=e^{\sqrt[3]{\beta } \omega _1 (t-1)A} \varphi _3 +e^{\sqrt[3]{\beta } \omega _2 (t-1)A} \varphi _{4} ,&10$. Proceeding in a similar manner, we have \begin{equation} \label{e21} \begin{aligned} \| A^2 u'\| _{L_2 (R_{+} ;H)}^2 &=\int _0^{+\infty }(A^2 u',A^2 u')_{H} dt \\ &= (A^2 u,A^2 u')_{H}|_0^{+\infty } -\int _0^{+\infty }(A^2 u,A^2 u'')_{H} dt\\ & =-\int _0^{+\infty }(A^3 u,Au'')_{H} dt \\ &\le \| A^3 u\| _{L_2 (R_{+} ;H)} \| Au''\| _{L_2 (R_{+} ;H)} \\ &\le \max_{t} \rho ^{-1/2} (t)\| Au''\| _{L_2 (R_{+} ;H)} \| \rho ^{1/2} (t)A^3 u\| _{L_2 (R_{+} ;H)} \\ &\le \frac{\eta }{2} \frac{1}{\min (\alpha ;\beta )} \| Au''\| _{L_2 (R_{+} ;H)}^2 +\frac{1}{2\eta } \| \rho ^{1/2} (t)A^3 u\| _{L_2 (R_{+} ;H)}^2 , \end{aligned} \end{equation} with $\eta >0$. Taking into account inequality \eqref{e21} in \eqref{e20}: \begin{equation} \label{e22} \begin{aligned} \| Au''\| _{L_2 (R_{+} ;H)}^2 &\le \frac{\varepsilon }{2} \max (\alpha ;\beta )(\frac{\eta }{2} \frac{1}{\min (\alpha ;\beta )} \| Au''\| _{L_2 (R_{+} ;H)}^2\\ &\quad +\frac{1}{2\eta } \| \rho ^{1/2} (t)A^3 u\| _{L_2 (R_{+} ;H)}^2 ) +\frac{1}{2\varepsilon } \| \rho ^{-1/2} (t)u'''\| _{L_2 (R_{+} ;H)}^2 . \end{aligned} \end{equation} From this inequality we obtain \begin{equation} \label{e23} \begin{aligned} \big(1-\frac{\varepsilon \eta \max (\alpha ;\beta )}{4\min (\alpha ;\beta )} \big)\| Au''\| _{L_2 (R_{+} ;H)}^2 &\le \frac{\varepsilon \max (\alpha ;\beta )}{4\eta } \| \rho ^{1/2} (t)A^3 u\| _{L_2 (R_{+} ;H)}^2\\ &\quad +\frac{1}{2\varepsilon } \| \rho ^{-1/2} (t)u'''\| _{L_2 (R_{+} ;H)}^2 . \end{aligned} \end{equation} Choosing $\eta =\frac{\varepsilon ^2 \max (\alpha ;\beta )}{2} $, from inequality \eqref{e23} we have \begin{align*} &\| Au''\| _{L_2 (R_{+} ;H)}^2 \\ &\le \frac{4\min (\alpha ;\beta )}{8\varepsilon \min (\alpha ;\beta )-\varepsilon ^{4} \max ^2 (\alpha ;\beta )} \big[\| \rho ^{1/2} (t)A^3 u\| _{L_2 (R_{+} ;H)}^2 +\| \rho ^{-1/2} (t)u'''\| _{L_2 (R_{+} ;H)}^2 \big]. \end{align*} Then, by minimizing $\varepsilon $, we find $\varepsilon =\sqrt[3]{2\min (\alpha ;\beta )/\max ^2 (\alpha ;\beta )}$. Therefore, \begin{equation} \label{e24} \begin{aligned} &\| Au''\| _{L_2 (R_{+} ;H)}^2 \\ &\le \frac{2^{2/3} \max ^{2/3} (\alpha ;\beta )}{3\min ^{1/3} (\alpha ;\beta )} \big[\| \rho ^{1/2} (t)A^3 u\| _{L_2 (R_{+} ;H)}^2 +\| \rho ^{-1/2} (t)u'''\| _{L_2 (R_{+} ;H)}^2 \big]. \end{aligned} \end{equation} Now, taking into account inequality \eqref{e12}, from inequality \eqref{e24} we obtain \[ \| Au''\| _{L_2 (R_{+} ;H)}^2 \le \frac{2^{2/3} \max ^{2/3} (\alpha ;\beta )}{3\min ^{4/3} (\alpha ;\beta )} \| P_0 u\| _{L_2 (R_{+} ;H)}^2 . \] As a result, \[ \| Au''\| _{L_2 (R_{+} ;H)} \le \frac{2^{1/3} \max ^{1/3} (\alpha ;\beta )}{3^{1/2} \min ^{2/3} (\alpha ;\beta )} \| P_0 u\| _{L_2 (R_{+} ;H)} . \] To estimate the norm $\| A^2 u'\| _{L_2 (R_{+} ;H)} $, we take into account \eqref{e20} in \eqref{e21}: \begin{equation} \label{e25} \begin{aligned} &\big(1-\frac{\varepsilon \eta \max (\alpha ;\beta )}{4\min (\alpha ;\beta )} \big)\| A^2 u'\| _{L_2 (R_{+} ;H)}^2\\ &\le \frac{\eta }{4\varepsilon \min (\alpha ;\beta )} \| \rho ^{-1/2} (t)u'''\| _{L_2 (R_{+} ;H)}^2 +\frac{1}{2\eta } \| \rho ^{1/2} (t)A^3 u\| _{L_2 (R_{+} ;H)}^2 . \end{aligned} \end{equation} Choosing $\varepsilon =\eta ^2/(2\min (\alpha ;\beta )) $, from inequality \eqref{e25} we have \begin{align*} &\| A^2 u'\| _{L_2 (R_{+} ;H)}^2\\ & \le \frac{4\min ^2 (\alpha ;\beta )}{8\eta \min ^2 (\alpha ;\beta ) -\eta ^{4} \max (\alpha ;\beta )} \big[\| \rho ^{-1/2} (t)u'''\| _{L_2 (R_{+} ;H)}^2 +\| \rho ^{1/2} (t)A^3 u\| _{L_2 (R_{+} ;H)}^2 \big]. \end{align*} In this case, minimizing $\eta $, we find $\eta =\sqrt[3]{2\min ^2 (\alpha ;\beta )/\max (\alpha ;\beta )} $. Therefore, \begin{equation} \label{e26_} \begin{aligned} &\| A^2 u'\| _{L_2 (R_{+} ;H)}^2\\ & \le \frac{2^{2/3} \max ^{1/3} (\alpha ;\beta )}{3\min ^{2/3} (\alpha ;\beta )} [\| \rho ^{-1/2} (t)u'''\| _{L_2 (R_{+} ;H)}^2 +\| \rho ^{1/2} (t)A^3 u\| _{L_2 (R_{+} ;H)}^2 ]. \end{aligned} \end{equation} From this inequality, taking into account inequality \eqref{e12}, we obtain \[ \| A^2 u'\| _{L_2 (R_{+} ;H)}^2 \le \frac{2^{2/3} \max ^{1/3} (\alpha ;\beta )}{3\min ^{5/3} (\alpha ;\beta )} \| P_0 u\| _{L_2 (R_{+} ;H)}^2 . \] Thus, \[ \| A^2 u'\| _{L_2 (R_{+} ;H)} \le \frac{2^{1/3} \max ^{1/6} (\alpha ;\beta )}{3^{1/2} \min ^{5/6} (\alpha ;\beta )} \| P_0 u\| _{L_2 (R_{+} ;H)} . \] Now we estimate the norm $\| A^3 u\| _{L_2 (R_{+} ;H)} $. From inequality \eqref{e12} we have \[ \frac{1}{\min (\alpha ;\beta )} \| P_0 u\| _{L_2 (R_{+} ;H)}^2 \ge \| \rho ^{1/2} (t)A^3 u\| _{L_2 (R_{+} ;H)}^2 \ge \min (\alpha ;\beta )\| A^3 u\| _{L_2 (R_{+} ;H)}^2 . \] Hence, we obtain \[ \| A^3 u\| _{L_2 (R_{+} ;H)}^2 \le \frac{1}{\min ^2 (\alpha ;\beta )} \| P_0 u\| _{L_2 (R_{+} ;H)}^2 \] or \[ \| A^3 u\| _{L_2 (R_{+} ;H)} \le \frac{1}{\min (\alpha ;\beta )} \| P_0 u\| _{L_2 (R_{+} ;H)} . \] The proof is complete. \end{proof} Now, we prove the boundedness of the operator $P_1 :W_{2,K}^3 (R_{+} ;H)\to L_2 (R_{+} ;H)$. \begin{lemma} \label{lem4} Let $A_{j} A^{-j} \in L(H,H)$, $j=1,2,3$. Then $P_1 $ is a bounded operator from the space $W_{2,K}^3 (R_{+} ;H)$ into the space $L_2 (R_{+} ;H)$. \end{lemma} \begin{proof} For any $u(t)\in W_{2,K}^3 (R_{+} ;H)$ we have \begin{align*} \| P_1 u\| _{L_2 (R_{+} ;H)} &=\| A_1 u''+A_2 u'+A_3 u\| _{L_2 (R_{+} ;H)} \\ &\le \| A_1 A^{-1} \| _{H\to H} \| Au''\| _{L_2 (R_{+} ;H)} +\| A_2 A^{-2} \| _{H\to H} \| A^2 u'\| _{L_2 (R_{+} ;H)}\\ &\quad +\| A_3 A^{-3} \| _{H\to H} \| A^3 u\| _{L_2 (R_{+} ;H)} . \end{align*} Applying the theorem on intermediate derivatives \cite[ch. 1]{l1}, we obtain from the last inequality that \[ \| P_1 u\| _{L_2 (R_{+} ;H)} \le const\| u\| _{W_2^3 (R_{+} ;H)} . \] The proof is complete. \end{proof} Let us consider the question of regular solvability of problem \eqref{e1}, \eqref{e2}. \begin{theorem} \label{thm3} Let $A=A^{*} \ge cE$, $c>0$, $K\in L(H_{5/2} ,H_{1/2} )$, $-\sqrt[3]{\alpha ^2 } \omega _2 \notin \sigma (B)$, the operator $K_{\alpha ,\beta }$ has a bounded inverse in the space $H_{5/2}$, $\operatorname{Re}B\ge 0$ and $A_{j} A^{-j} \in L(H,H)$, $j=1,2,3$, moreover, the following inequality holds \[ a_1 \| A_1 A^{-1} \| _{H\to H} +a_2 \| A_2 A^{-2} \| _{H\to H} +a_3 \| A_3 A^{-3} \| _{H\to H} <1, \] where the numbers $a_{j} $, $j=1,2,3$, are defined in Theorem \ref{thm2}. Then the boundary value problem \eqref{e1}, \eqref{e2} is regularly solvable. \end{theorem} \begin{proof} Boundary value problem \eqref{e1}, \eqref{e2} can be represented in the operator form \[ P_0 u(t)+P_1 u(t)=f(t), \] where $f(t)\in L_2 (R_{+} ;H)$, $u(t)\in W_{2,K}^3 (R_{+} ;H)$. Under conditions $A=A^{*} \ge cE$, $c>0$, $K\in L(H_{5/2} ,H_{1/2} )$, $-\sqrt[3]{\alpha ^2 } \omega _2 \notin \sigma (B)$, the operator $K_{\alpha ,\beta } $ has a bounded inverse in the space $H_{5/2}$, by Theorem \ref{thm1} the operator $P_0$ has a bounded inverse $P_0^{-1} $ acting from the space $L_2 (R_{+} ;H)$ into the space $W_{2,K}^3 (R_{+} ;H)$. If we put $v(t)=P_0u(t)$ we obtain the following equation in $L_2 (R_{+} ;H)$: \[ (E+P_1 P_0^{-1} )v(t)=f(t). \] We show that under the conditions of the theorem, the norm of the operator $P_1 P_0^{-1} $ is less than unity. Taking into account inequalities \eqref{e19}, we have \begin{align*} &\| P_1 P_0^{-1} v\| _{L_2 (R_{+} ;H)}\\ & =\| P_1 u\| _{L_2 (R_{+} ;H)} \\ &\le \| A_1 u''\| _{L_2 (R_{+} ;H)} +\| A_2 u'\| _{L_2 (R_{+} ;H)} +\| A_3 u\| _{L_2 (R_{+} ;H)} \\ &\le \| A_1 A^{-1} \| _{H\to H} \| Au''\| _{L_2 (R_{+} ;H)} +\| A_2 A^{-2} \| _{H\to H} \| A^2 u'\| _{L_2 (R_{+} ;H)}\\ &\quad +\| A_3 A^{-3} \| _{H\to H} \| A^3 u\| _{L_2 (R_{+} ;H)} \\ &\le a_1 \| A_1 A^{-1} \| _{H\to H} \| P_0 u\| _{L_2 (R_{+} ;H)} +a_2 \| A_2 A^{-2} \| _{H\to H} \| P_0 u\| _{L_2 (R_{+} ;H)} \\ &\quad +a_3 \| A_3 A^{-3} \| _{H\to H} \| P_0 u\| _{L_2 (R_{+} ;H)} \\ &=\sum _{j=1}^3a_{j} \| A_{j} A^{-j} \| _{H\to H} \| v\| _{L_2 (R_{+} ;H)} . \end{align*} Thus, \[ \| P_1 P_0^{-1} \| _{L_2 (R_{+} ;H)\to L_2 (R_{+} ;H)} \le \sum _{j=1}^3a_{j} \| A_{j} A^{-j} \| _{H\to H} <1. \] Therefore, the operator $E+P_1 P_0^{-1} $ is invertible in the space $L_2 (R_{+} ;H)$ and $u(t)$ is defined by the formula \[ u(t)=P_0^{-1} (E+P_1 P_0^{-1} )^{-1} f(t), \] moreover \begin{align*} &\| u\| _{W_2^3 (R_{+} ;H)} \\ &\le \| P_0^{-1} \| _{L_2 (R_{+} ;H)\to W_2^3 (R_{+} ;H)} \| (E+P_1 P_0^{-1} )^{-1} \| _{L_2 (R_{+} ;H)\to L_2 (R_{+} ;H)} \| f\| _{L_2 (R_{+} ;H)} \\ &\le \text{const} \| f\| _{L_2 (R_{+} ;H)} . \end{align*} The proof is complete. \end{proof} \begin{corollary} \label{coro1} In the conditions of Theorem \ref{thm3}, the operator $P$ is an isomorphism between the spaces $W_{2,K}^3 (R_{+} ;H)$ and $L_2 (R_{+} ;H)$. \end{corollary} In conclusion, we remark that our solvability results imply the results of \cite{a4} when $K=0$ and $A_3 =0$, and the results of \cite{m1} when $K=0$ and $\alpha =\beta =1$. \subsection*{Acknowledgements} We are very grateful to the referees for their careful reading of the original manuscript, for their helpful comments which led to the improvement of this article. \begin{thebibliography}{00} \bibitem{a1} R. P. Agarwal, M. Bohner, V. B. Shakhmurov; Linear and nonlinear nonlocal boundary value problems for differential-operator equations, \textit{Applicable Analysis}, 2006, vol. 85, no. 6-7, pp. 701-716. \bibitem{a2} R. P. Agarwal, V. B. Shakhmurov; Multipoint problems for degenerate abstract differential equations, \textit{Acta Mathematica Hungarica}, 2009, vol. 123, no. 1-2, pp. 65-89. \bibitem{a3} A. R. Aliev; On a boundary-value problem for one class of differential equations of the fourth order with operator coefficients, \textit{Azerbaijan Journal of Mathematics}, 2011, vol. 1, no. 1, pp. 145-156. \bibitem{a4} A. R. Aliev; On the solvability of initial boundary-value problems for a class of operator-differential equations of third order, \textit{Matematicheskie Zametki}, 2011, vol. 90, no. 3, pp. 323-339. (in Russian) (English Transl.: \textit{Mathematical Notes}, 2011, vol. 90, no. 3-4, pp. 307-321.) \bibitem{a5} A. R. Aliev, S. F. Babayeva; On the boundary value problem with the operator in boundary conditions for the operator-differential equation of the third order, \textit{Journal of Mathematical Physics, Analysis, Geometry}, 2010, vol. 6, no. 4, pp. 347-361. \bibitem{a6} A. R. Aliev, A. L. Elbably; Well-posedness of a boundary value problem for a class of third order operator-differential equations, \textit{Boundary Value Problems}, 2013, vol. 2013:140, pp. 1-16. \bibitem{a7} B. A. Aliev, Ya. Yakubov; Second order elliptic differential-operator equations with unbounded operator boundary conditions in \textit{UMD} Banach spaces, \textit{Integral Equations and Operator Theory}, 2011, vol. 69, no. 2, pp. 269-300. \bibitem{b1} A. V. Bitsadze; Some classes of partial differential equations, \textit{Nauka, Moscow}, 1981. (in Russian) \bibitem{d1} Yu. A. Dubinskii; On some differential-operator equations of arbitrary order, \textit{Matematicheskii Sbornik}, 1973, vol. 90(132), no. 1, pp. 3-22. (in Russian) (English Transl.: \textit{Mathematics of the USSR-Sbornik}, 1973, vol. 19, no. 1, pp. 1-21.) \bibitem{f1} A. Favini, V. Shakhmurov, Ya. Yakubov; Regular boundary value problems for complete second order elliptic differential-operator equations in UMD Banach spaces, \textit{Semigroup Forum}, 2009, vol. 79, no. 1, pp. 22-54. \bibitem{g1} M. G. Gasymov; On the theory of polynomial operator pencils, \textit{Dokl. Akad. Nauk SSSR}, 1971, vol. 199, no. 4, pp. 747-750. (in Russian) (English Transl.: \textit{Soviet Math. Dokl.}, 1972, vol. 12, pp. 1143-1147.) \bibitem{g2} M. G. Gasymov; The multiple completeness of part of the eigen- and associated vectors of polynomial operator bundles, \textit{Izv. Akad. Nauk Armjan. SSR Ser. Mat.}, 1971, vol. 6, no. 2-3, pp. 131-147. (in Russian) \bibitem{g3} M. G. Gasymov, S. S. Mirzoev; Solvability of boundary value problems for second-order operator-differential equations of elliptic type, \textit{Differentsial'nye Uravneniya}, 1992, vol. 28, no. 4, pp. 651-661. (in Russian) (English Transl.: \textit{Differential Equations}, 1992, vol. 28, no. 4, pp. 528-536.) \bibitem{l1} J. L. Lions, E. Magenes; Non-homogeneous boundary value problems and applications, \textit{Dunod, Paris}, 1968; \textit{Mir, Moscow}, 1971; \textit{Springer-Verlag, Berlin}, 1972. \bibitem{m1} S. S. Mirzoev; Conditions for the well-defined solvability of boundary-value problems for operator differential equations, \textit{Dokl. Akad. Nauk SSSR}, 1983, vol. 273, no. 2, pp. 292-295. (in Russian) (English Transl.: \textit{Soviet Math. Dokl.}, 1983, vol. 28, pp. 629-632.) \bibitem{m2} S. S. Mirzoev, A. R. Aliev, L. A. Rustamova; Solvability conditions for boundary-value problems for elliptic operator-differential equations with discontinuous coefficient, \textit{Matematicheskie Zametki}, 2012, vol. 92, no. 5, pp. 789-793. (in Russian) (English Transl.: \textit{Mathematical Notes}, 2012, vol. 92, no. 5-6, pp. 722-726.) \bibitem{m3} S. S. Mirzoev, A. R. Aliev, L. A. Rustamova; On the boundary value problem with the operator in boundary conditions for the operator-differential equation of second order with discontinuous coefficients, \textit{Journal of Mathematical Physics, Analysis, Geometry}, 2013, vol. 9, no. 2, pp. 207-226. \bibitem{m4} S. S. Mirzoev and M. Yu. Salimov, On the solvability of the boundary-value problem for second-order equations in Hilbert space with an operator coefficient in the boundary condition, \textit{Matematicheskie Zametki}, 2012, vol. 91, no. 6, pp. 861--869. (in Russian) (English Transl.: \textit{Mathematical Notes}, 2012, vol. 91, no. 6, pp. 808-815.) \bibitem{n1} A. Nouar; On the solvability of a fourth order operator differential equations, \textit{Electronic Journal of Differential Equations}, 2007, vol. 2007, no. 137, pp. 1--9. \bibitem{s1} V. B. Shakhmurov; Separable anisotropic differential operators and applications, \textit{Journal of Mathematical Analysis and Applications}, 2007, vol. 327, no. 2, pp. 1182-1201. \bibitem{s2} V. B. Shakhmurov; Linear and nonlinear abstract elliptic equations with \textit{VMO} coefficients and applications, \textit{Fixed Point Theory and Applications}, 2013, vol. 2013, no. 6, pp. 1-21. \bibitem{s3} A. A. Shkalikov; Some problems in the theory of polynomial operator pencils, \textit{Uspekhi Matematicheskikh Nauk}, 1983, vol. 38, no. 3(231), pp. 189-190. (in Russian) (English Transl.: \textit{Russian Mathematical Surveys}, 1983, vol. 38, no. 3, pp. 151-152.) \bibitem{s4} A. A. Shkalikov; Elliptic equations in a Hilbert space and related spectral problems, \textit{Trudy Sem. Petrovsk.}, 1989, no. 14, pp. 140-224. (in Russian) (English Transl.: \textit{J. Soviet Math.}, 1990, vol. 51, no. 4, pp. 2399-2467.) \bibitem{y1} S. Y. Yakubov; Linear Differential-Operator Equations and Their Applications, \textit{Elm, Baku, Azerbaijan}, 1985. (in Russian) \bibitem{y2} S. Yakubov; Problems for elliptic equations with operator-boundary conditions, \textit{Integral Equations and Operator Theory}, 2002, vol. 43, no. 2, pp. 215-236. \end{thebibliography} \end{document}