\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 237, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/237\hfil Inverse scattering problems] {Inverse scattering problems for energy-dependent Sturm-Liouville equations with point $\delta $-interaction and eigenparameter-dependent boundary condition} \author[M. Dzh. Manafov, A. Kablan \hfil EJDE-2013/237\hfilneg] {Manaf Dzh. Manafov, Abdullah Kablan} % in alphabetical order \dedicatory{In memory of M. G. Gasymov, one of the pioneers of this subject}\emph{} \address{Manaf Dzh. Manafov \newline Faculty of Arts and Sciences, Department of Mathematics, Adiyaman University, Adiyaman, 02040, Turkey} \email{mmanafov@adiyaman.edu.tr} \address{Abdullah Kablan \newline Faculty of Arts and Sciences, Department of Mathematics, Gaziantep University, \newline Gaziantep, 27310, Turkey} \email{kablan@gantep.edu.tr} \thanks{Submitted July 29, 2013. Published October 24, 2013.} \subjclass[2000]{34A55, 34B24, 47E05} \keywords{Inverse scattering; scattering data; point delta-interaction; \hfill\break\indent eigenvalue-dependent boundary condition} \begin{abstract} We consider an inverse problem of the scattering theory for energy-dependent Sturm-Liouville equations on the half line $[0,+\infty )$ with point $\delta $-interaction and eigenparameter-dependent boundary condition. We define the scattering data of the problem first, then consider the basic equation and study an algorithm for finding the potentials with the given scattering data. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \allowdisplaybreaks \section{Introduction} We consider inverse scattering problem for the equation \begin{equation} -y''+q(x)y=\lambda ^{2}y,\quad x\in (0,a)\cup (a,+\infty ) \label{a1} \end{equation} with the boundary condition \begin{equation} U(y):=\lambda ^{2}( y'(0)-hy(0)) -( h_1y'(0)-h_2y(0)) =0 \label{a2} \end{equation} and conditions at the point $x=a$, \begin{equation} I(y):=\begin{cases} y(a+0)=y(a-0)=y(a), \\ y'(a+0)-y'(a-0)=2i\alpha \lambda y(a), \end{cases} \label{a3} \end{equation} where $\lambda $ is a spectral parameter, $q(x)$ is real-valued function satisfying the condition \begin{equation*} \int_0^\infty (1+x)| q(x)| dx<\infty , \end{equation*} and $\alpha <0$, $h$, $h_1$, $h_2$ are real numbers such that \begin{equation*} \delta :=hh_1-h_2>0. \end{equation*} Notice that, we can understand problem \eqref{a1} and \eqref{a3} as one of the study of the equation \begin{equation} y''+( \lambda ^{2}-2i\lambda p(x)-q(x)) y=0,\quad x\in (0,+\infty ), \label{a1'} \end{equation} when $p(x)=\alpha \delta (x-a)$, where $\delta (x)$ is the Dirac function, (see \cite{Albeverio}). Sturm-Liouville spectral problems with potentials depending on the spectral parameter arise in various models of quantum and classical mechanics. For instance, to this form can be reduced the corresponding evolution equations (such as the Klein-Gordon equation \cite{Jonas}, \cite{Najman}) that are used to model interactions between colliding relativistic spinless particles. Then $\lambda ^{2}$ is related to the energy of the system, this explaining the term ``energy-dependent'' in \eqref{a1'}. Problems of the form \eqref{a1'} have also appeared in the physical literature in the context of scattering of waves and particles. In particular, in \cite{Jaulent1}-\cite{Jaulent3} the inverse scattering problems for energy-dependent Schr\"{o}dinger operators on the line are studied, see also \cite{Aktosun1,Hryniv,Kamimura,Maksudov,Mee,Nabiyev}. The non-linear dependence of equation \eqref{a1'} on the spectral parameter $\lambda $ should be regarded as a spectral problem for a quadratic operator pencil. The problem with $p(x)\in W_2^{1}(0,1)$ and $q(x)\in L_2(0,1)$ and with Robin boundary conditions was discussed in \cite{Gasymov}. Such problems for separated and nonseparated boundary conditions were considered (see \cite{Akhtyamov,Guseinov1,Yang,Yurko} and the references therein). The inverse scattering problem for equation \eqref{a1} (in the case $\alpha=0$) with boundary condition $y'(0)-hy(0)=0$ was completely solved in \cite{Marchenko} (in the case $h=\infty $), in \cite{Levitan} (for arbitrary real number $h$). Similar problems were dealt with in \cite {Aktosun2} and references in these works. The inverse scattering problem for equation \eqref{a1'} (in the case $\alpha =0$) with spectral parameter in the boundary condition on the half line were examined in \cite{Mamedov1}, \cite{Mamedov2}. In this paper we consider the inverse problem scattering theory on the half line $[0,\infty )$ for the \eqref{a1'}, \eqref{a2} boundary-value problem. \section{Integral representation for the Jost solution and scattering data} In this section, we will find an integral representation for the Jost solution and study some properties of scattering data of the problem. Let us denote by $e_0(x,\lambda)$ the solution of \eqref{a1}, when $q(x)\equiv 0$, satisfying conditions \eqref{a3} and the condition at infinity \begin{equation*} \lim_{x\to \infty } e_0(x,\lambda )e^{-i\lambda x}=1\,. \end{equation*} This function is called the Jost solution. It is obvious that the function $e_0(x,\lambda )$ can be written as \begin{equation*} e_0(x,\lambda )=\begin{cases} (1-\alpha )e^{i\lambda x}+\alpha e^{i\lambda (2a-x)},& 0a \end{cases} \end{equation*} Analogously to \cite{Guseinov2} the following theorem can be proved. \begin{theorem} \label{thm2.1} Let $\int_0^\infty (1+x)| q(x)| dx<\infty $. Then the Jost solution of \eqref{a1} has the form \begin{equation} e(x,\lambda )=e_0(x,\lambda )+\int_x^\infty K(x,t)e^{i\lambda t}dt\quad (\operatorname{Im}\lambda \geq 0), \label{b1} \end{equation} where for each fixed $x\neq a$ the kernel $K(x,\cdot )$ belong to the $L_1(x,\infty )$ and \begin{equation*} \int_x^\infty | K(x,t)| dt\leq e^{c\sigma _1(x)}-1, \end{equation*} where $\sigma _1(x)=\int_0^\infty t| q(t)| dt$, $c=1-\frac{\alpha }{2}$. \end{theorem} If the function $q(x)$ is differentiable then the kernel $K(x,t)$ satisfies the following properties: \begin{equation} \label{b2} \begin{gathered} K_{xx}(x,t)-q(x)K(x,t)=K_{tt}(x,t),\quad 0x, \\ K(x,x)= \begin{cases} \frac{1}{2}\int_x^\infty q(s)ds,& x>a \\ \frac{1}{2}(1-\alpha )\int_x^\infty q(s)ds, & x0$. Moreover, all these zeros are simple and lie in the imaginary axis. \label{t1} \end{lemma} \begin{proof} Since for real values of $\lambda \neq 0$ the inequality $\psi (\lambda )\neq 0$ holds, the only possible real zero of the function $\psi (\lambda )$ is $\lambda =0$. Since the function $\psi (\lambda )$ is analytic on the upper half-plane it follows that its zeros form a (finite or countable) set. Let us show that this set is bounded. Assume the converse and suppose that there exist $\lambda _k$ such that $| \lambda _k| \to \infty $, with $\operatorname{Im}$ $\lambda _k>0$ and \begin{equation*} (\lambda _k^{2}-h_1)e'(0,\lambda _k)=(\lambda _k^{2}h-h_2)e(0,\lambda _k). \end{equation*} Then as $| \lambda _k| \to \infty $ yields $\lim_{k\to \infty } e(0,\lambda _k)=0$. On the other hand, it follows from \eqref{c1} that $\lim_{k\to \infty}e(0,\lambda _k)=1$. The resulting contradiction shows that the set $\{ \lambda _k\} $ is bounded. Thus, the zeros of the function $\psi (\lambda )$ form a bounded finite or countable set whose unique limiting point can only be zero. Now let us show that all the zeros of the function $\psi (\lambda )$ lie on the imaginary axis. Suppose that $\lambda _1$ and $\lambda _2$ are some zeros of the function $\psi (\lambda )$. Since \begin{equation*} -e''(x,\lambda _1)+q(x)e(x,\lambda _1)=\lambda _1^{2}e(x,\lambda _1),\quad -\overline{e''(x,\lambda _2)}+q(x)\overline{e(x,\lambda _2)}=\lambda _2^{2}\overline{ e(x,\lambda _2)}. \end{equation*} If the first equation is multiplied by $\overline{e(x,\lambda _2)}$, second equation is multiplied by $e(x,\lambda _1)$ and subtracting them side by side and finally integrating over the interval $[0,+\infty )$, the equality \begin{equation*} (\lambda _1^{2}-\overline{\lambda }_2^{2}) \int_0^\infty e(x,\lambda _1)\overline{e(x,\lambda _2)}dx +W\{e(x,\lambda _1),\overline{e(x,\lambda _2)}\} (|_0^{a}+|_{a}^{+\infty }) =0 \end{equation*} is attained. If conditions \eqref{a3} and \begin{equation*} W\{ e(x,\lambda _1),\overline{e(x,\lambda _2)}\} _{x=a-0}=W\{ e(x,\lambda _1),\overline{e(x,\lambda _2)}\} _{x=a+0} \end{equation*} are considered, then \begin{equation} (\lambda _1^{2}-\overline{\lambda }_2^{2}) \int_0^\infty e(x,\lambda _1)\overline{e(x,\lambda _2)}dx +W\{e(x,\lambda _1),\overline{e(x,\lambda _2)}\} _{x=0}=0 \label{c6} \end{equation} is obtained. On the other hand, according to the definition of the function $\psi (\lambda )$, the following relation holds \begin{equation*} \psi (\lambda _{j})=(\lambda _{j}^{2}-h_1)e'(0,\lambda _{j})-(\lambda _{j}^{2}h-h_0)e(0,\lambda _{j})=0,\quad j=1,2. \end{equation*} Also, by \eqref{a2} we can write \begin{equation} W\{ e(x,\lambda _1),\overline{e(x,\lambda _2)}\} _{x=0} =\frac{[e'(0,\lambda _1)-he(0,\lambda _1)] [\overline{e'(0,\lambda _2)}-h\overline{e(0,\lambda _2)}]}{\delta }(\lambda _2^{-2}-\lambda _1^{2}). \label{c7} \end{equation} Therefore, using \eqref{c6} and \eqref{c7} we have \begin{equation} (\lambda _1^{2}-\lambda _2^{-2})\{ \int_0^\infty e(x,\lambda _1)\overline{e(x,\lambda _2)}dx+\frac{1}{\delta } [e'(0,\lambda _1)-he(0,\lambda _1)][\overline{e'(0,\lambda _2)} -h\overline{e(0,\lambda _2)}]\} =0. \label{c8} \end{equation} In particular, the choice $\lambda _2=\lambda _1$ at \eqref{c8} implies that $\lambda _1=ik_1$, where $k_1\geq 0$. Therefore, zeros of the function $\psi (\lambda )$ can lie only on the imaginary axis. Now, let us prove that function $\psi (\lambda )$ has zeros in finite numbers. Since we can give an estimate for the distance between the neighboring zeros of the function $\psi (\lambda )$, it follows that the number of zeros is finite, (see \cite[p. 186]{Marchenko}). \end{proof} Let \begin{equation} m_{p}^{-2}\equiv \int_0^\infty | e(x,ik_{p})| ^{2}dx+\frac{1}{\delta }| e'(0,ik_{p})-he(0,ik_{p})| ^{2},\quad p=1,2,\ldots ,n. \label{c9} \end{equation} These numbers are called the \textit{norming constants} for the boundary problem \eqref{a1'}, \eqref{a2}. The collections $\{ S(\lambda ), (-\infty <\lambda <+\infty ); k_{p}, m_{p} (p=1,2,\ldots ,n)\} $ are called the \textit{scattering data} of the boundary value problem \eqref{a1}-\eqref{a2}-\eqref{a3} or \eqref{a1'}-\eqref{a2}. \section{Basic equation of the inverse scattering problem} To derive the basic equation for the kernel $K(x,t)$ of the solution \eqref{b1}, we use equality \eqref{c3}. Substituting expression \eqref{b1} for $e(x,\lambda )$ into this equality, we get \begin{equation} \label{d1} \begin{aligned} &\frac{2i\lambda \varphi (x,\lambda )}{\psi (\lambda )}-\overline{ e_0(x,\lambda )}+S_0(\lambda )e_0(x,\lambda ) \\ &= \int_x^\infty K(x,t)e^{-i\lambda t}dt+[ S_0(\lambda )-S(\lambda )] e_0(x,\lambda )-S_0(\lambda ) \int_x^\infty K(x,t)e^{i\lambda t}dt \\ &\quad +( S_0(\lambda )-S(\lambda )) \int_x^\infty K(x,t)e^{i\lambda t}dt. \end{aligned} \end{equation} Multiplying this equality by $(1/2\pi )e^{i\lambda r}$ and integrating over $ \lambda $ from $-\infty $ to $+\infty $, for $r>x$, at the right-hand side we obtain \begin{equation} \label{d2} \begin{aligned} &K(x,r)+\frac{1}{2\pi }\int_{-\infty}^{\infty} [S_0(\lambda )-S(\lambda )] e_0(x,r)e^{i\lambda r}d\lambda \\ &-\int_x^{\infty} K(x,t)\Big\{ \frac{1}{2\pi } \int_{-\infty}^{\infty} S_0(\lambda )e^{i\lambda (t+r)}d\lambda \Big\} dt \\ &+\int_x^\infty K(x,t)\Big\{ \frac{1}{2\pi } \int_{-\infty}^{\infty} [ S_0(\lambda )-S(\lambda )] e^{i\lambda (t+r)}d\lambda \Big\} dt. \end{aligned} \end{equation} Now we will compute the integral $(1/2\pi )\int_{-\infty}^{\infty} S_0(\lambda )e^{i\lambda (t+r)}d\lambda $. By elementary transforms we obtain \begin{equation*} S_0(\lambda )=\frac{\tau ^{2}-1}{1+\tau e^{2i\lambda a}}+\tau e^{-2i\lambda a}=(\tau ^{2}-1)\sum_{k=0}^\infty (-1)^{k}\tau ^{k}e^{2i\lambda ak}+\tau e^{-2i\lambda a} \end{equation*} where $\tau =\alpha/(\alpha -1)$. Thus we have \begin{equation*} \frac{1}{2\pi }\int_{-\infty}^{\infty} S_0(\lambda )e^{i\lambda (t+r)}d\lambda =(\tau ^{2}-1)\underset{k=0}{\overset{\infty }{ \sum }}(-1)^{k}\tau ^{k}\delta (t+r+2ak)+\tau \delta (t+r-2a). \end{equation*} Consequently \eqref{d2} can be written as \begin{align*} &K(x,r)+F_{S}(x,r)+\int_x^\infty K(x,t)F_{0S}(t+r)dt-\tau K(x,2a-r) \\ &-(\tau ^{2}-1)\sum_{k=0}^\infty (-1)^{k}\tau ^{k}K(x,-2ak-r), \end{align*} where \begin{gather*} F_{0S}(x)\equiv \frac{1}{2\pi }\int_{-\infty}^\infty [ S_0(\lambda )-S(\lambda )] e^{i\lambda x}d\lambda , \\ F_{S}(x,r)\equiv (1-\alpha )F_{0S}(x+r)+\alpha F_{0S}(2a-x+r). \end{gather*} We note that $K(x,r)=0$ for $rx $, \eqref{c2} takes the form \begin{equation} K(x,r)+F_{S}(x,r)+\int_x^\infty K(x,r)F_{0S}(t+r)dt-\tau K(x,2a-r). \label{d3} \end{equation} On the left-hand side of \eqref{d1} with help of Jordan's lemma and the residue theorem and by taking Lemma \ref{t1} into account for $r>x$, we obtain \begin{equation} -\sum_{p=1}^n \frac{2ik_{p}\varphi (x,ik_{p})}{\psi '(ik_{p})}e^{-k_{p}r}. \label{d4} \end{equation} From the definition of norming constants $m_{p}$ $(p=1,2,\ldots ,n)$ in \eqref{c9} we have \begin{equation} \label{d5} \begin{aligned} &-\sum_{p=1}^n \frac{2ik_{p}\varphi (x,ik_{p})}{\psi '(ik_{p})}e^{-k_{p}r}\\ &=-\sum_{p=1}^n \frac{ 2ik_{p}e^{-k_{p}r}e(x,ik_{p})} {[ e'(0,ik_{p})-he(0,ik_{p})] \psi '(ik_{p})} \\ &=-\sum_{p=1}^n m_{p}^{2}e(x,ik_{p})e^{-k_{p}r}\\ &=- \sum_{p=1}^n m_{p}^{2}\{ e(x,ik_{p})e^{-k_{p}(x+r)}+\int_x^\infty K(x,t)e^{-k_{p}(x+r)}dt\} . \end{aligned} \end{equation} Thus, for $x<\min (r,2a-r)$, by taking \eqref{d3} and \eqref{d5} into account, from \eqref{d2} we derive the relation \begin{equation} K(x,r)+F(x,r)+\int_x^\infty K(x,t)F_0(t+r)dt+ \frac{\alpha }{1-\alpha }K(x,2a-r)=0 \label{d6} \end{equation} where \begin{equation} \begin{gathered} F_0(x)=F_{0S}(x)+\sum_{p=1}^n m_{p}^{2}e^{-k_{p}r}, \\ F(x,r)=F_{S}(x,r)+\sum_{p=1}^n m_{p}^{2}e_0(x,ik_{p})e^{-k_{p}(x+r)}. \end{gathered} \label{d7} \end{equation} Equation \eqref{d6} is called the \textit{basic equation} of the inverse problem of the scattering theory for the boundary problem \eqref{a1}-\eqref{a2}-\eqref{a3} or \eqref{a1'}-\eqref{a2}. The basic equation is different from the classical equation of Marchenko (see \cite{Marchenko}). Thus, we have proved the following theorem. \begin{theorem} \label{thm3.1} For each $x\geq 0$, the kernel $K(x,r)$ of the solution \eqref{b1} satisfies the basic equation \eqref{d6}. \end{theorem} Obviously, to form the basic equation \eqref{d6}, it suffices to know the functions $F_0(x)$ and $F(x,r)$. In turn, in order to find the functions $F_0(x)$, $F(x,r)$, it suffices to know only the scattering data $\{S(\lambda )\, (-\infty <\lambda <\infty ); k_{p}, m_{p}\, (p=1,2,\ldots ,n)\}$. Given the scattering data, we can use formulas \eqref{d7} to construct the functions $F_0(x)$, $F(x,r)$ and write down the basic equation \eqref{d6} for the unknown solution $K(x,r)$, the function $q(x)$ may be found from formula \eqref{b2}. \begin{theorem} \label{thm3.2} Equation \eqref{d6} has a unique solution $K(x,\cdot )\in L_1(x,+\infty )$ for each fixed $x\geq 0$. \label{t2} \end{theorem} \begin{proof} It is easy to show that for each fixed $x\geq 0$ the operator \begin{equation*} (M_{x}f)(r)=\begin{cases} f(r), & x>a \\ f(r)+\frac{\alpha }{1-\alpha }f(2a-r), & x0$ for all $\lambda \neq 0$. Thus, the basic equation \eqref{d6} is uniquely solvable. \end{proof} \begin{thebibliography}{99} \bibitem{Akhtyamov} Akhtyamov, A. M.; Sadovnichy, V. A.; Sultanaev, Ya, I.; Inverse problem for an operator pencil with nonsepareted boundary conditions, \textit{Eurasian Math. J.}, 1:2 (2010), 5-16. \bibitem{Aktosun1} Aktosun, T.; Mee, C. van der; Scattering and inverse scattering for the 1-D Schr\"{o}dinger equation with energy-dependent potentials, \textit{J. Math. Phys.}, 32:10 (1991), 2786--2801. \bibitem{Aktosun2} Aktosun, T.; Construction of the half-line potential from the Jost function, \textit{Inverse Problems}, 20:3 (2004), 859-876. \bibitem{Albeverio} Albeverio, S.; Gesztesy, F.; H\o egh-Krohn R.; Holden, H.;\textit{Solvable models in quantum mechanics}, with an appendix by Exner, P., (second edition), AMS Chelsea Publ., (2005). \bibitem{Gasymov} Gasymov, M. G.; Guseinov, G. Sh.; Determination of a diffusion operator from spectral data. \textit{Dokl. Akad. Nauk Azerb. SSR}, 37:2 (1980), 19-23. \bibitem{Guseinov1} Guseinov I. M.; Nabiyev, I. M.; The inverse spectral problem for pencils of differential operators, \textit{Math. Sb.}, 198:11 (2007), 47-66. \bibitem{Guseinov2} Guseinov, H. M.; Jamshidipour, A. H.; On Jost solutions of Sturm-Liouville equations with spectral parameter in discontinuity condition, \textit{Trans. of NAS of Azerb}, 30:4 (2010), 61-68. \bibitem{Hryniv} Hryniv, R.; Pronska, N.; Inverse spectral problems for energy-dependent Sturm--Liouville equations,\textit{\ Inverse Problems}, 28 (2012), 085008 (21pp). \bibitem{Jaulent1} Jaulent, M.; On an inverse scattering problem with an energy-dependent potential, \textit{Ann.Inst. H. Poincar\'{e} (A)}, 17:4 (1976), 363-378. \bibitem{Jaulent2} Jaulent, M.; Jean, C.; The inverse problem for the one-dimensional Schr\"{o}dinger equation with an energy-dependent potential: I, \textit{Ann.Inst. H. Poincar\'{e} (A)}, 25:2 (1976), 105-118. \bibitem{Jaulent3} Jaulent, M., Jean, C.; The inverse problem for the one-dimensional Schr\"{o}dinger equation with an energy-dependent potential: II, \textit{Ann.Inst. H. Poincar\'{e} (A)}, 25:2 (1976), 119-137. \bibitem{Jonas} Jonas, P.; On the spectral theory of operators associated with perturbed Klein-Gordon and wave type equations, \textit{J. Oper. Theory, } 29 (1993), 207--224. \bibitem{Kamimura} Kamimura, Y.; Energy dependent inverse scattering on the line, \textit{Differential Integral Equations}, 21:11-12 (2008), 1083-1112. \bibitem{Levitan} Levitan, B. M.; \textit{\ Inverse Sturm-Liouville Problems}, VSP:Zeist (1987). \bibitem{Maksudov} Maksudov, F. G.; Guseinov, G. Sh.; On solution of the inverse scattering problem for a quadratic pencil of one-dimensional Schr\"{o}dinger operators on the whole axis, \textit{Dokl. Akad. Nauk SSSR}, 289:1 (1986), 42-46. \bibitem{Marchenko} Marchenko, V. A.; \textit{Sturm-Liouville operators and their applications. Operator Theory: Advanced and Application}, Birkh\"{a} user: Basel, 22 (1986). \bibitem{Mamedov1} Mamedov, Kh. R.; Uniqueness of the solution to the inverse problem of scattering theory for the Sturm--Liouville Operator with a spectral parameter in the boundary condition, \textit{Mat. Zametki}, 74:1 (2003), 143--145. \bibitem{Mamedov2} Mamedov, Kh. R.; Kosar, N. P.; Inverse scattering problem for Sturm-Liouville operator with nonlinear dependence on the spectral parameter in the boundary condition, \textit{Math. Methods Appl. Sci.}, 34:2 (2011), 231-241. \bibitem{Mee} van der Mee, C.; Pivovarchik, V.; Inverse scattering for a Schr\"{o}dinger equation with energy dependent potential, \textit{J. Math. Phys.}, 42 (2001), 158--181. \bibitem{Nabiyev} Nabiev, A. A.; Inverse scattering problem for the Schr\"{o}dinger-type equation with a polynomial energy dependent potential. \textit{ Inverse Problems}, 22:6 (2006), 2055--2068. \bibitem{Najman} Najman, B.; Eigenvalues of the Klein-Gordon equation, \textit{Proc. Edinburgh Math. Soc. (2)}, 26:2 (1983), 181--190. \bibitem{Yang} Yang C. F.; Guo, Y. X.; Determination of a differential pencil from interior spectral data. \textit{J. Math. Anal. Appl.} 375:1 (2011), 284--293. \bibitem{Yurko} Yurko, V. A.; An inverse problem for differential operator pencils. \textit{Math. Sb.}, 191:10 (2000), 1561-1586. \end{thebibliography} \end{document}