Electronic Journal of Differential Equations, Vol. 2013 (2013), No. 250, pp. 1–9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS OF THE NONLINEAR DIFFERENTIAL EQUATION $t^2u'' = u^n$

MENG-RONG LI, HSIN-YU YAO, YU-TSO LI

ABSTRACT. In this article we study properties of positive solutions of the ordinary differential equation $t^2u'' = u^n$ for $1 < n \in \mathbb{N}$, we obtain conditions for their blow-up in finite time, and some properties for global solutions. Equations containing more general nonlinear terms are also considered.

1. Introduction

Some interesting results on the blow-up, blow-up rates, and estimates for the lifespan of solutions of the Emden-Fowler equation and the semi-linear wave equation $\Box u + f(u) = 0$ have been obtained, as shown in the references.

Here we wish to study the Emden-Fowler type wave equation, i.e. solutions, independent of the space variable x, of the equation $t^2u_{tt} - \Delta u = u^n$ for n > 1.

The existence and uniqueness of local solutions of the initial-value problem

$$t^2 u'' = u^n, \quad 1 < n \in \mathbb{N},$$

 $u(1) = u_0, \quad u'(1) = u_1,$ (1.1)

follow by standard arguments. Considering the transformation $t = e^s$, u(t) = v(s), we have $t^2u''(t) = -v_s(s) + v_{ss}(s)$, $v(s)^n = -v_s(s) + v_{ss}(s)$ and $v(0) = u(1) = u_0$; $v_s(0) = u'(1) = u_1$, the problem (1.1) can be transformed into

$$v_{ss}(s) - v_s(s) = v^n(s),$$

 $v(0) = u_0, \quad v_s(0) = u_1.$ (1.2)

Thus, the existence of local solutions u for (1.1) in (1,T) is equivalent to the existence of local solutions v for (1.2) in $(0, \ln T)$. In this article, we give estimates for the life-span T^* of positive solutions u of (1.1) in three different cases. The main results are as follows:

- (a) $u_1 = 0$, $u_0 > 0$: $T^* \le e^{k_1}$, $k_1 := s_0 + \frac{2(n+3)}{8-\epsilon} \frac{2}{n-1} v(s_0)^{\frac{1-n}{2}}$, $\varepsilon \in (0,1)$;
- (b) $u_1 > 0$, $u_0 > 0$:
 - $\begin{array}{ll} \text{(i)} \ E(0) \geq 0, \, T^* \leq e^{k_2}, \, k_2 := \frac{2}{n-1} \sqrt{\frac{n+1}{2}} u_0^{\frac{1-n}{2}}; \\ \text{(ii)} \ E(0) < 0, \, T^* \leq e^{k_3}, \, k_3 := \frac{2}{n-1} \frac{u_0}{u_1}; \end{array}$
- (c) $u_1 < 0, u_0 \in (0, (-u_1)^{\frac{1}{n}})$: $u(t) \le (u_0 u_1 u_0^n) + (u_1 + u_0^n)t u_0^n \ln t$.

²⁰⁰⁰ Mathematics Subject Classification. 34A34, 34C11, 34C60.

Key words and phrases. Nonlinear differential equation; Emden-Fowler equation; blow-up rate. ©2013 Texas State University - San Marcos.

Submitted October 5, 2013. Published November 20, 2013.

where E(0) is defined in the next section and s_0 is given by (3.3).

In Section 6, we replace the nonlinear term v^n by a more general increasing function f(v).

2. Notation and some Lemmas

For a given function v, we use the following functions

$$a(s) := v(s)^2, \quad E(0) := u_1^2 - \frac{2}{n+1} u_0^{n+1}, \quad J(s) := a(s)^{-\frac{n-1}{4}},$$

where u_0 and u_1 are the given initial conditions.

By an easy calculation we can obtain the following two Lemmas; we shall omit the proof of the first lemma.

Lemma 2.1. Suppose that $v \in C^2[0,T]$ is the solution of (1.2), then

$$E(s) = v_s(s)^2 - 2\int_0^s v_s(r)^2 dr - \frac{2}{n+1}v(s)^{n+1} = E(0),$$
 (2.1)

$$(n+3)v_s(s)^2 = (n+1)E(0) + a''(s) - a'(s) + 2(n+1)\int_0^s v_s(r)^2 dr, \qquad (2.2)$$

$$J''(s) = \frac{n^2 - 1}{4} J(s)^{\frac{n+3}{n-1}} (E(0) - \frac{a'(s)}{n+1} + 2 \int_0^s v_s(r)^2 dr), \tag{2.3}$$

$$J'(s)^{2} = J'(0)^{2} + \frac{(n-1)^{2}}{4} E(0) (J(s)^{\frac{2(n+1)}{n-1}} - J(0)^{\frac{2(n+1)}{n-1}}) + \frac{(n-1)^{2}}{2} J(s)^{\frac{2(n+1)}{n-1}} \int_{0}^{s} v_{s}(r)^{2} dr.$$
(2.4)

Lemma 2.2. For $u_0 > 0$, the positive solution v of (1.2) satisfies:

(i) If
$$u_1 \ge 0$$
, then $v_s(s) > 0$ for all $s > 0$ (2.5)

(ii) If
$$u_1 < 0$$
, $u_0 \in (0, (-u_1)^{\frac{1}{n}})$, then $v_s(s) < 0$ for all $s > 0$. (2.6)

Proof. (i) Since $v_{ss}(0)=u_1+u_0^n>0$, we know that $v_{ss}(s)>0$ in $[0,s_1)$ and $v_s(s)$ is increasing in $[0,s_1)$ for some $s_1>0$. Moreover, since v and v_s are increasing in $[0,s_1)$, $v_{ss}(s_1)=v_s(s_1)+v(s_1)^n>v_s(0)+v(0)^n>0$ for all $s\in[0,s_1)$ and $v_s(s_1)>v_s(s)>0$ for all $s\in[0,s_1)$, we know that there exists a positive number $s_2>0$, such that $v_s(s)>0$ for all $s\in[0,s_1+s_2)$. Continuing this process, we obtain $v_s(s)>0$ for all s>0, for which the solution exists.

(ii) Since $v_{ss}(0) = v_s(0) + v(0)^n = u_1 + u_0^n < 0$, there exists a positive number $s_1 > 0$ such that $v_{ss}(s) < 0$ in $[0, s_1), v_s(s)$ is decreasing in $[0, s_1)$; therefore, $v_s(s) < v_s(0) = u_1 < 0$ for all $s \in [0, s_1)$ and v(s) is decreasing in $[0, s_1)$. Moreover, since v and v_s are decreasing in $[0, s_1), v_{ss}(s) = v_s(s) + v(s)^n < v_s(0) + v(0)^n < 0$ for all $s \in [0, s_1)$ and $v_s(s_1) < v_s(s) < 0$ for all $s \in [0, s_1)$, we know that there exists a positive number $s_2 > 0$, such that $v_s(s) < 0$ for all $s \in [0, s_1 + s_2)$. Continuing this process, we obtain $v_s(s) < 0$ for all s > 0 in the interval of existence.

3. Life-span of positive solutions of (1.1) when $u_1 = 0$, $u_0 > 0$

In this section we want to estimate the life-span of a positive solution u of (1.1) if $u_1 = 0$, $u_0 > 0$. Here the life-span T^* of u means that u is the solution of equation (1.1) and u exists only in $[0, T^*)$ so that the problem (1.1) possesses a positive solution $u \in C^2[0, T^*)$.

Theorem 3.1. For $u_1 = 0$, $u_0 > 0$, the positive solution u of (1.1) blows up in finite time; that is, there exists $T^* < \infty$ so that

$$u(t)^{-1} \to 0$$
 as $t \to T^*$.

Proof. By (2.5), we know that $v_s(s) > 0$, a'(s) > 0 for all s > 0 provided that $u_1 = 0$, $u_0 > 0$. By Lemma 2.1,

$$a''(s) - a'(s) = 2(v_s(s)^2 + v(s)^{n+1}),$$

$$(a'(s)e^{-s})' = e^{-s}(a''(s) - a'(s)) = 2e^{-s}(v_s(s)^2 + v(s)^{n+1}),$$

$$a'(s)e^{-s} = 2\int_0^s e^{-r}(v_s(r)^2 + v(r)^{n+1})dr \ge 4\int_0^s e^{-r}v_s(r)v(r)^{\frac{n+1}{2}}dr,$$

and a'(0) = 0, hence we have

$$a'(s)e^{-s} \ge \frac{8}{n+3}(v(r)^{(n+3)/2}e^{-r}|_{r=0}^{s} + \int_{0}^{s} v(r)^{(n+3)/2}e^{-r}dr)$$

$$= \frac{8}{n+3}(v(s)^{(n+3)/2}e^{-s} - v(0)^{(n+3)/2}) + \frac{8}{n+3}\int_{0}^{s} v(r)^{(n+3)/2}e^{-r}dr.$$

Since a'(s) > 0 for all s > 0, v is increasing on $(0, \infty)$ and

$$a'(s)e^{-s} \ge \frac{8}{n+3}(v(s)^{(n+3)/2}e^{-s} - v(0)^{(n+3)/2}) + \frac{8}{n+3} \int_0^s v(0)^{(n+3)/2}e^{-r}dr$$

$$= \frac{8}{n+3}(v(s)^{(n+3)/2}e^{-s} - v(0)^{(n+3)/2}) + \frac{8}{n+3}v(0)^{(n+3)/2}(1 - e^{-s}),$$

$$a'(s) \ge \frac{8}{n+3}(v(s)^{(n+3)/2} - v(0)^{(n+3)/2}) = \frac{8}{n+3}(v(s)^{(n+3)/2} - u_0^{(n+3)/2}).$$
(3.1)

Using $u_1 = 0$ and integrating (1.2), we obtain

$$v_s(s) = v(s) - u_0 + \int_0^s v(r)^n dr,$$

$$v_s(s) \ge v(s) - u_0 + \int_0^s v(0)^n dr = v(s) - u_0 + u_0^n s,$$

$$(e^{-s}v(s))_s = e^{-s}(v_s(s) - v(s)) \ge e^{-s}(u_0^n s - u_0),$$

$$a'(s) \ge \frac{8}{n+3}(v(s)^{(n+3)/2} - v(0)^{(n+3)/2}) = \frac{8}{n+3}(v(s)^{(n+3)/2} - u_0^{(n+3)/2}).$$
(3.2)

According to (3.2), and since v'(s) > 0, $v(s)^{(n+3)/2} \ge (u_0 + u_0^n(e^s - 1 - s))^{(n+3)/2}$, for all $\epsilon \in (0, 1)$, we obtain

$$\begin{aligned} \epsilon v(s)^{(n+3)/2} &\geq \epsilon (u_0 + u_0^n (e^s - 1 - s))^{(n+3)/2}, \\ \epsilon v(s)^{(n+3)/2} &- 8u_0^{(n+3)/2} &\geq \epsilon (u_0 + u_0^n (e^s - 1 - s))^{(n+3)/2} - 8u_0^{(n+3)/2} \\ &\geq \epsilon (u_0^{(n+3)/2} + u_0^{\frac{n(n+3)}{2}} (e^s - 1 - s)^{(n+3)/2}) - 8u_0^{\frac{n+3}{2}} \\ &= (\epsilon - 8)u_0^{(n+3)/2} + \epsilon u_0^{\frac{n(n+3)}{2}} (e^s - 1 - s)^{(n+3)/2}. \end{aligned}$$

Now, we want to find a number $s_0 > 0$ such that

$$e^{s_0} - s_0 = 1 + \left(\frac{8 - \epsilon}{\epsilon} u_0^{\frac{n+3}{2}(1-n)}\right)^{2/(n+3)}.$$
 (3.3)

This means that there exists a number $s_0 > 0$ satisfying (3.3) with $\epsilon \in (0,1)$ such that

$$\epsilon v(s)^{(n+3)/2} - 8u_0^{(n+3)/2} \ge 0$$
 for all $s \ge s_0$.

From (3.1), it follows that

$$a'(s) \ge \frac{8}{n+3}v(s)^{(n+3)/2} - \frac{8}{n+3}u_0^{(n+3)/2}$$

$$= \frac{8-\epsilon}{n+3}v(s)^{(n+3)/2} + \frac{\epsilon v(s)^{(n+3)/2} - 8u_0^{(n+3)/2}}{n+3}$$

$$\ge \frac{8-\epsilon}{n+3}v(s)^{(n+3)/2}, \quad \text{for all } s \ge s_0.$$

For all $s \geq s_0$, $\epsilon \in (0,1)$, we obtain that

$$2v(s)v_s(s) \ge \frac{8-\epsilon}{n+3}v(s)^{(n+3)/2},$$
$$v(s)^{-\frac{n+1}{2}}v_s(s) \ge \frac{8-\epsilon}{2(n+3)},$$
$$\frac{2}{1-n}(v(s)^{\frac{1-n}{2}})_s \ge \frac{8-\epsilon}{2(n+3)}$$

and hence

$$(v(s)^{\frac{1-n}{2}})_s \le \frac{8-\epsilon}{2(n+3)} \frac{1-n}{2}.$$

Integrating the above inequality, we conclude that

$$v(s)^{\frac{1-n}{2}} \le v(s_0)^{\frac{1-n}{2}} - \frac{8-\epsilon}{2(n+3)} \frac{n-1}{2} (s-s_0).$$

Thus, there exists a number

$$s_1^* \le s_0 + \frac{2(n+3)}{8-\epsilon} \frac{2}{n-1} v(s_0)^{\frac{1-n}{2}} =: k_1$$

such that $v(s)^{-1} \to 0$ for $s \to s_1^*$, that is, $u(t)^{-1} \to 0$ as $t \to e^{k_1}$, which implies that the life-span T^* of a positive solution u is finite and $T^* \leq e^{k_1}$.

4. Life-span of positive solutions of (1.1) when $u_1>0,\ u_0>0$

In this section we estimate the life-span of a positive solution u of (1.1) whenever $u_1 > 0$, $u_0 > 0$.

Theorem 4.1. For $u_1 > 0$, $u_0 > 0$, the positive solution u of (1.1) blows up in finite time; that is, there exists a number $T^* < \infty$ so that

$$u(t)^{-1} \to 0$$
 as $t \to T^*$.

Proof. We separate the proof into two parts depending on whether $E(0) \geq 0$ or E(0) < 0.

(i) Assume that $E(0) \geq 0$. By (2.1) and (2.5) we have

$$v_s(s)^2 - \frac{2}{n+1}v(s)^{n+1} \ge E(0),$$
$$v_s(s)^2 \ge \frac{2}{n+1}v(s)^{n+1} + E(0), v_s(s) \ge \sqrt{\frac{2}{n+1}v(s)^{n+1} + E(0)}.$$

Since $E(0) \geq 0$, we obtain

$$v_s(s) \ge \sqrt{\frac{2}{n+1}} v(s)^{\frac{n+1}{2}},$$
$$v(s)^{-\frac{n+1}{2}} \cdot v_s(s) \ge \sqrt{\frac{2}{n+1}},$$
$$(v(s)^{\frac{1-n}{2}})_s \le \frac{1-n}{2} \sqrt{\frac{2}{n+1}}.$$

Integrating the above inequality, we obtain

$$v(s)^{\frac{1-n}{2}} \le u_0^{\frac{1-n}{2}} + \frac{1-n}{2} \sqrt{\frac{2}{n+1}} s.$$

Thus, there exists

$$s_2^* \le \frac{2}{n-1} \sqrt{\frac{n+1}{2}} u_0^{\frac{1-n}{2}} =: k_2$$

such that $v(s)^{-1} \to 0$ for $s \to s_2^*$; that is, $u(t)^{-1} \to 0$ as $t \to e^{k_2}$, which means that the life-span T^* of a positive solution u is finite and $T^* \le e^{k_2}$.

(ii) Assume that E(0) < 0. From (2.1) and (2.5) we obtain that $J'(s) = -\frac{n-1}{4}a(s)^{-\frac{n+3}{4}}a'(s)$, a'(s) > 0, $v_s(s) > 0$ for all s > 0 and

$$J'(s) = -\frac{n-1}{2} \sqrt{\frac{2}{n+1} + E(0)a(s)^{-\frac{n+1}{2}} + 2a(s)^{-\frac{n+1}{2}} \int_0^s v_s(r)^2 dr}$$

$$\leq -\frac{n-1}{2} \sqrt{\frac{2}{n+1} + E(0)a(s)^{-\frac{n+1}{2}}},$$

$$J(s) \leq J(0) - \frac{n-1}{2} \int_0^s \sqrt{\frac{2}{n+1} + E(0)a(r)^{-\frac{n+1}{2}}} dr.$$

Since E(0) < 0 and a'(s) > 0 for all s > 0,

$$J(s) \le J(0) - \frac{n-1}{2} \int_0^s \sqrt{\frac{2}{n+1} + E(0)a(0)^{-\frac{n+1}{2}}} dr$$
$$= a(0)^{-\frac{n-1}{4}} - \frac{n-1}{2} \sqrt{\frac{2}{n+1} + E(0)a(0)^{-\frac{n+1}{2}}} s.$$

Thus, there exists a number

$$s_3^* \le \frac{2}{n-1}a(0)^{-\frac{n-1}{4}}(\frac{2}{n+1} + E(0)a(0)^{-\frac{n+1}{2}})^{-\frac{1}{2}} =: k_3$$

such that $J(s_3^*)=0$ and $a(s)^{-1}\to 0$ for $s\to s_3^*$; that is, $u(t)^{-1}\to 0$ as $t\to e^{k_3}$. This means that the life-span T^* of u is finite and $T^*\leq e^{k_3}$.

5. Life-span of positive solutions of (1.1) when $u_1 < 0$

Finally, we estimate the life-span of a positive solution u of (1.1) when $u_1 < 0$.

Theorem 5.1. For
$$u_1 < 0$$
, $u_0 \in (0, (-u_1)^{\frac{1}{n}})$ we have
$$u(t) < (u_0 - u_1 - u_0^n) + (u_1 + u_0^n)t - u_0^n \ln t.$$

and in particular, if $E(0) \geq 0$, we have

$$u(t) \le (u_0^{\frac{1-n}{2}} + \frac{n-1}{2}\sqrt{\frac{2}{n+1}}\ln t)^{\frac{2}{1-n}}.$$

Proof. (i) By (1.2) and integrating this equation with respect to s, we get $v_s(s) = (u_1 - u_0) + v(s) + \int_0^s v(r)^n dr$. By (2.6), we have that v is decreasing and

$$v_s(s) \le (u_1 - u_0) + v(s) + \int_0^s v(0)^n dr = (u_1 - u_0) + v(s) + u_0^n s,$$

$$e^{-s}v(s) - u_0 \le (u_1 - u_0) \int_0^s e^{-r} dr + u_0^n \int_0^s re^{-r} dr$$

= $(u_1 - u_0)(1 - e^{-s}) + u_0^n (-se^{-s} - e^{-s} + 1);$

that is,

$$u(t) \le (u_0 - u_1) + u_1 t + u_0^n (t - 1 - \ln t)$$

= $(u_0 - u_1 - u_0^n) + (u_1 + u_0^n)t - u_0^n \ln t$.

(ii) If $E(0) \ge 0$, by (2.1), we have

$$v_s(s)^2 - \frac{2}{n+1}v(s)^{n+1} = E(0) + 2\int_0^s v_s(r)^2 dr \ge E(0),$$
$$v_s(s)^2 \ge E(0) + \frac{2}{n+1}v(s)^{n+1} \ge \frac{2}{n+1}v(s)^{n+1}.$$

By (2.6), we obtain that $-v_s(s) \ge \sqrt{\frac{2}{n+1}}v(s)^{\frac{n+1}{2}}, \frac{2}{n-1}(v(s)^{\frac{1-n}{2}})_s \ge \sqrt{\frac{2}{n+1}}$ and

$$\sqrt{\frac{2}{n+1}}s \le \frac{2}{n-1}(v(s)^{\frac{1-n}{2}} - v(0)^{\frac{1-n}{2}}),$$
$$v(s)^{\frac{1-n}{2}} \ge (u_0^{\frac{1-n}{2}} + \frac{n-1}{2}\sqrt{\frac{2}{n+1}}s).$$

Then, we know that

$$v(s) \le (u_0^{\frac{1-n}{2}} + \frac{n-1}{2} \sqrt{\frac{2}{n+1}} s)^{\frac{2}{1-n}}, \text{ for all } s \ge 0;$$

that is,

$$u(t) \leq (u_0^{\frac{1-n}{2}} + \frac{n-1}{2} \sqrt{\frac{2}{n+1}} \ln t)^{\frac{2}{1-n}} \quad \text{for all } t \geq 1.$$

6. A Generalization of Theorem 4.1

In this section we want to extent the blow-up result for the following generalization of (1.2),

$$v_{ss}(s) - v_s(s) = f(v),$$

 $v(0) = v_0, \quad v_s(0) = v_1,$

$$(6.1)$$

where f is an increasing continuous function with f(0) = 0. We have the following result.

Theorem 6.1. Suppose that f is an increasing function with f(0) = 0 and suppose v is a positive solution of (6.1). If $F(v) := \int_0^v f(r) dr$, then

$$\bar{E}(s) := v_s(s)^2 - 2\int_0^s v_s(r)^2 dr - 2F(v(s))$$
(6.2)

is constant. Furthermore, if there exists a positive constant k such that $F(s) \ge ks^{p+1}$, p > 1 for all $s \ge 0$, and $v_1 > 0$, then the life span of v is finite.

Proof. By an argument similar to that used in proving (2.1), we easily obtain that $\bar{E}(s)$ is a constant. Since f is increasing, we have

$$vf(v) = (v - 0) \cdot (f(v) - f(0)) \ge 0$$
 for $v \ge 0$,

thus

$$(v^2)_s - 2v^2(s) \ge 2v_0(v_1 - v_0) + 2\int_0^s v_s^2(r)dr.$$
(6.3)

By (6.2) and (6.3), we have $\bar{E}(s) = v_1^2 - 2F(v_0) := \bar{E}$, and

$$v^{2}(s) \ge v_{0}v_{1}e^{2s} - v_{0}(v_{1} - v_{0}), \tag{6.4}$$

$$(v^{2})_{s} - 2v^{2}(s) \geq 2v_{0}(v_{1} - v_{0}) + 2\int_{0}^{s} v_{s}^{2}(r)dr$$

$$= 2v_{0}(v_{1} - v_{0}) + 2\int_{0}^{s} (\bar{E} + 2F(v(r)) + 2\int_{0}^{r} v_{s}(\eta)^{2}d\eta)dr$$

$$\geq 2v_{0}(v_{1} - v_{0}) + 2\bar{E}s + 4k\int_{0}^{s} v^{p+1}(r)dr$$

$$\geq 2v_{0}(v_{1} - v_{0}) + 2\bar{E}s + 4ks^{1-p}(\int_{0}^{s} v^{2}(r)dr)^{\frac{p+1}{2}}.$$

$$(6.5)$$

Let $\int_0^s v^2(r)dr := b(s), e^{-s}b(s) = B(s)$. Then

$$b(s)'' - 2b(s)' \ge 2v_0(v_1 - v_0) + 2\bar{E}s + 4ks^{1-p}b(s)^{\frac{p+1}{2}}$$
 for $s > 0$

and by (6.5), we have

$$(e^{-s}(b(s)' - b(s)))'$$

$$= e^{-s}(b(s)'' - 2b(s)' + b(s))$$

$$\geq 2v_0(v_1 - v_0) + 2\bar{E}s + 4ks^{1-p}e^{-s}b^{\frac{p+1}{2}} + e^{-s}b(s)$$

$$= 2v_0(v_1 - v_0) + 2\bar{E}s + 4ks^{1-p}(e^{-s}b(s))^{\frac{p+1}{2}}e^{\frac{p-1}{2}s} + e^{-s}b(s) \geq 0,$$

$$(e^{-s}b(s))'' = (e^{-s}(b(s)' - b(s)))'$$

$$\geq 2v_0(v_1 - v_0) + 2\bar{E}s + 4k(\frac{e^s}{s^2})^{\frac{p+1}{2}}(e^{-s}b(s))^{\frac{p+1}{2}} + e^{-s}b(s)$$

$$\geq 2v_0(v_1 - v_0) + 2\bar{E}s + 2^{2-\frac{p+1}{2}}k(e^{-s}b(s))^{\frac{p+1}{2}} + e^{-s}b(s),$$

$$B(s)'' \geq 2v_0(v_1 - v_0) + 2\bar{E}s + 2^{2-\frac{p+1}{2}}kB(s)^{\frac{p+1}{2}} + B(s).$$

$$(6.6)$$

From (6.4) it follows that

$$b(s) \ge \frac{v_0 v_1}{2} (e^{2s} - 1) - v_0 (v_1 - v_0) s,$$

$$B(s) \ge \frac{v_0 v_1}{2} (e^s - e^{-s}) - v_0 (v_1 - v_0) s e^{-s},$$

$$2v_0(v_1 - v_0) + 2\bar{E}s + \frac{B(s)}{2} \ge 0, \quad s \ge s_0$$

for some $s_0 > 0$. Therefore,

$$B(s)'' \ge \frac{B(s)}{2} \ge \frac{v_0 v_1}{5} e^s, \quad s \ge s_0,$$

$$B'(s) \ge \frac{v_0 v_1}{5} (e^s - e^{s_0}) + B'(s_0) > 0, \ s \ge s_1$$

for some $s_1 > s_0$.

By (6.7), for all $s \geq s_1$,

$$((B(s)')^{2})' = 2B(s)'B(s)''$$

$$\geq 2^{2-\frac{p-1}{2}}kB(s)^{\frac{p+1}{2}}B(s)'$$

$$= 2^{2-\frac{p-1}{2}}k\frac{2}{p+3}(B(s)^{\frac{p+3}{2}})',$$

$$(B')^{2} - B'(s_{1})^{2} \geq \frac{2^{3-\frac{p-1}{2}}k}{p+3}(B^{\frac{p+3}{2}} - B(s_{1})^{\frac{p+3}{2}}),$$

$$(B')^{2} \geq \frac{2^{3-\frac{p-1}{2}}k}{p+3}(B^{\frac{p+3}{2}} - B(s_{1})^{\frac{p+3}{2}}) + B'(s_{1})^{2}$$

$$= \frac{2^{3-\frac{p-1}{2}}k}{2(p+3)}B^{\frac{p+3}{2}} + \left(\frac{2^{3-\frac{p-1}{2}}k}{2(p+3)}B^{\frac{p+3}{2}} - 2B(s_{1})^{\frac{p+3}{2}}\right) + B'(s_{1})^{2},$$

$$B' \geq \frac{2^{\frac{7-p}{4}}}{\sqrt{p+3}}B^{\frac{p+3}{4}} \quad \text{for } s \geq s_{2},$$

for some $s_2 > s_1$; hence, for $s \ge s_2$,

$$\frac{4}{1-p} (B^{\frac{1-p}{4}})' = B^{\frac{p+3}{-4}} B'(s) \ge \frac{2^{\frac{7-p}{4}}}{\sqrt{p+3}},$$

$$B(s)^{\frac{1-p}{4}} \le B(s_2)^{\frac{1-p}{4}} - \frac{p-1}{4} \frac{2^{\frac{7-p}{4}}}{\sqrt{p+3}} (s-s_2) \quad \text{for all } s \ge s_2 > 0.$$

Thus B(s) blows up at a finite s^* . Since $b(s) = e^s B(s)$, b(s) also blows up at s^* . Further, since $v^2(s) = b'(s) \ge 2b(s)$, v(s) blows up at s^* , as well.

Acknowledgements. Thanks are due to Professors Tai-Ping Liu, Ton Yang and Shih-Shien Yu for their continuous encouragement; to the anonymous referee for his/her helpful comments; and to Professor K. Schmitt for his comments and suggestions on Theorem 6.1. The authors want to thank Metta Education, Grand Hall and Auria Solar for their financial assistance.

References

- M. R. Li; Nichtlineare Wellengleichungen 2. Ordnung auf beschränkten Gebieten. PhD-Dissertation, Tübingen 1994.
- [2] M. R. Li; Estimates for the life-span of solutions of semilinear wave equations. Comm. Pure Appl. Anal., 2008, 7(2): 417-432.
- [3] M. R. Li; On the blow-up time and blow-up rate of positive solutions of semilinear wave equations $\Box u u^p = 0$ in 1-dimensional space. Comm.Pure Appl. Anal., to appear.
- [4] M. R. Li; On the semilinear wave equations. Taiwanese J. Math., 1998, 2(3): 329-345.
- [5] M. R. Li, L. Y. Tsai; On a system of nonlinear wave equations. Taiwanese J. Math., 2003, 7(4): 555-573.

- [6] M. R. Li, L. Y. Tsai; Existence and nonexistence of global solutions of some systems of semilinear wave equations. Nonlinear Analysis, 2003, 54: 1397-1415.
- [7] Meng-rong Li, Jenet Pai; Quenching problem in some semilinear wave equations. Acta Math. Sci., 2008, 28B(3): 523-529.
- [8] M. R. Li; On the generalized Emden-Fowler Equation $u''(t)u(t) = c_1 + c_2u'(t)^2$ with $c_1 \ge 0$, $c_2 \ge 0$. Acta Math. Sci., 2010 **30B**(4): 1227-1234.
- [9] M. R. Li; Blow-up results and asymptotic behavior of the Emden-Fowler Equation. Acta Math. Sci., 2007, 4: 703-734.
- [10] Meng-Rong Li, Yue-Loong Chang, Yu-Tso Li; A Mathematical Model of Enterprise Competitive Ability and Performance through Emden-Fowler Equation (II), Acta Mathematica Scientia, 2013, 33(4): 1127-1140.

Meng-Rong Li

DEPARTMENT OF MATHEMATICAL SCIENCES, NATIONAL CHENGCHI UNIVERSITY, TAIPEI, TAIWAN *E-mail address*: liwei@math.nccu.edu.tw

HSIN-YU YAO

Department of Mathematical Sciences, National Chengchi University, Taipei, Taiwan $E\text{-}mail\ address:}$ diadia09140gmail.com

Yu-Tso Li

DEPARTMENT OF AEROSPACE AND SYSTEMS ENGINEERING, FENG CHIA UNIVERSITY, TAICHUNG, TAIWAN

 $E ext{-}mail\ address: joycelion74@gmail.com}$