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LAVRENT’EV PROBLEM FOR SEPARATED FLOWS
WITH AN EXTERNAL PERTURBATION

DMITRIY K. POTAPOV, VICTORIA V. YEVSTAFYEVA

Abstract. We study the Lavrent’ev mathematical model for separated flows
with an external perturbation. This model consists of a differential equation

with discontinuous nonlinearity and a boundary condition. Using a variational
method, we show the existence of a semiregular solution. As a particular case,

we study the one-dimensional model.

1. Introduction and statement of the problem

The Lavrent’ev model for separated flows as a main tool for hydrodynamics is
discussed in [1]. Separated flows are constructed with a scheme of some “mixed”
ideal fluid motion that is potential outside a separation zone and has a constant
vorticity inside. The mathematical model of the Lavrent’ev problem is given in [2].
The resonance case and a nonlinear perturbation in a general form for this problem
are presented in [3].

In the present article the Lavrent’ev model under an external continuous pertur-
bation is studied. Unlike [3], here the coercive case is considered and the external
perturbation is given in a concrete form. Actually the external perturbations such
as a jump, an exponential, a polynomial or a sine are simplifying and are not quite
adequate to real perturbations. So, we consider the model of the external pertur-
bation in the special analytical form that has not been studied for the Lavrent’ev
problem.

In a bounded domain Ω ⊂ R2 with a boundary Γ of class C2,α, where 0 <
α ≤ 1, we solve the Dirichlet problem for an elliptic equation with discontinuous
nonlinearity

−∆u(x) = µ sign(u(x)) + f(‖x‖), x ∈ Ω, (1.1)

u(x)|Γ = 0. (1.2)

Here ∆ is the Laplace operator, a parameter µ > 0 is the vorticity, a function
f ∈ C(Ω).

We study the model of the external perturbation in the form

f(t) = eαt sin(ωt+ ϕ), (1.3)
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where α, ω, ϕ are real constants. Here ω is a frequency, ϕ is a phase angle that
allows us to define a deviation at t = 0. The external perturbation of (1.3) is
considered in [4, 5]. Function of (1.3) describes a fading oscillatory process at
α < 0 and an accruing oscillatory process at α > 0.

In this article we study the existence of solutions for the Lavrent’ev problem
(1.1), (1.2) under (1.3).

Let (1.1) be exposed to the nonperiodic external perturbation of (1.3) with
a decreasing amplitude at α < 0. For example, a shock sea wave that arises
as a result of explosion may be described by the function f(t) with a strongly
decreasing amplitude. On the other hand, to describe a calming down storm that
is accompanied with the fading fluctuations of waves it is possible to use the function
f(t) with a poorly decreasing amplitude. Also, we notice that

|f(‖x‖)| = |eα·‖x‖ · sin(ω · ‖x‖+ ϕ)| ≤ eα·‖x‖ ≤ 1

as α < 0, ‖x‖ ≥ 0. So f is bounded.

2. Preliminaries

In this section we recall some definitions and a basic result to control prob-
lems for the distributed systems of the elliptic type with a spectral parameter and
discontinuous nonlinearity under an external perturbation (see [6]).

In a bounded domain Ω ⊂ Rn (n ≥ 2) with a boundary Γ of class C2,α (0 < α ≤
1), we consider the controlled system with an external perturbation in the form

Lu(x) ≡ −
n∑

i,j=1

(aij(x)uxi)xj
+ c(x)u(x)

= λg(x, u(x)) +Bv(x) +Dw(x), x ∈ Ω,

(2.1)

Gu
∣∣
Γ

= 0. (2.2)

Here L is a uniformly elliptic and formally self-adjoint differential operator with
coefficients aij ∈ C1,α(Ω) and c ∈ C0,α(Ω); λ is a positive parameter; the function
g : Ω×R→ R is superpositionally measurable and for almost all x ∈ Ω the section
g(x, ·) has only discontinuities of the first kind on R, g(x, u) ∈ [g−(x, u), g+(x, u)]
for all u ∈ R, where

g−(x, u) = lim inf
η→u

g(x, η), g+(x, u) = lim sup
η→u

g(x, η),

|g(x, u)| ≤ a(x) for all u ∈ R, a ∈ Lq(Ω), q > 2n
n+2 ; the operator B : U → Lq(Ω) is

linear and bounded, U is the Banach space of controls, the function v(x) in (2.1) is
viewed as a control, the control v ∈ Uad ⊂ U , Uad is the set of all admissible controls
for system (2.1), (2.2); the operator D : W → Lq(Ω) is linear and bounded, W is the
Banach space of perturbations, the function w(x) in (2.1) describes a perturbation,
the perturbation w ∈ W . The boundary condition (2.2) is either the Dirichlet
condition u(x)|Γ = 0, or the Neumann condition ∂u

∂nL
(x)|Γ = 0 with the conormal

derivative ∂u
∂nL

(x) ≡
∑n
i,j=1 aij(x)uxi

cos(n, xj), where n is the outward normal to
Γ and cos(n, xj) are the direction cosines of the normal n, or the Robin condition
∂u
∂nL

(x) + σ(x)u(x)|Γ = 0, where the function σ ∈ C1,α(Γ) is nonnegative and does
not identically vanish on Γ.



EJDE-2013/255 LAVRENT’EV PROBLEM FOR SEPARATED FLOWS 3

Such eigenvalue problems for elliptic equations with discontinuous nonlinearities
but without control and perturbation (v(x) ≡ 0 and w(x) ≡ 0) was established
earlier (see [7]–[10]).

Definition 2.1. A strong solution of problem (2.1), (2.2) at the fixed control v
and the fixed perturbation w is a function u ∈ W2

r(Ω), r > 1, satisfying (2.1) for
almost all x ∈ Ω and such that the trace Gu(x) on Γ equals zero.

Definition 2.2. A semiregular solution of problem (2.1), (2.2) at the fixed control
v and the fixed perturbation w is a strong solution u such that u(x) is a point of
continuity of the function g(x, ·) for almost all x ∈ Ω.

Definition 2.3. A jump discontinuity of a function f : R → R is a point u ∈ R
such that f(u−) < f(u+), where f(u±) = lims→u± f(s).

Semiregular solutions for equations with discontinuous nonlinearities were intro-
duced in [11]. Such solutions are significant in applications, for example, in the
problem of separated flows of an incompressible fluid (see [12]). Semiregularness
of solutions is provided with a restriction to discontinuities of the nonlinearity (for
example, the jumping discontinuities).

Let X = H1
◦ (Ω) if (2.2) is the Dirichlet condition, and X = H1(Ω) if (2.2) is the

Neumann or Robin condition. Put

J1(u) =
1
2

n∑
i,j=1

∫
Ω

aij(x)uxiuxjdx+
1
2

∫
Ω

c(x)u2(x)dx

in the case of the Dirichlet or Neumann condition, and

J1(u) =
1
2

n∑
i,j=1

∫
Ω

aij(x)uxi
uxj

dx+
1
2

∫
Ω

c(x)u2(x)dx+
1
2

∫
Γ

σ(s)u2(s)ds

in the case of the Robin condition. The following theorem shows the solvability for
problem (2.1), (2.2) and corresponds to which is [6, Theorem 2].

Theorem 2.4 ([6]). Suppose that the following conditions are satisfied:
(1) the inequality J1(u) ≥ 0 holds for each u ∈ X;
(2) for almost all x ∈ Ω the function g(x, ·) has only jump discontinuities;

g(x, 0) = 0 and |g(x, u)| ≤ a(x) for all u ∈ R, where a ∈ Lq(Ω) (q > 2n
n+2)

is fixed;
(3) there exists a u0 ∈ X such that∫

Ω

dx

∫ u0(x)

0

g(x, s)ds > 0;

(4) if the solution space N(L) of the problem

Lu = 0, x ∈ Ω,

Gu|Γ = 0

is nonzero (the resonance case), then it is additionally assumed that

lim
u∈N(L),‖u‖→+∞

∫
Ω

dx

∫ u(x)

0

g(x, s)ds = −∞;

(5) the operator B : U → Lq(Ω) is linear and bounded, the control space U is
Banach, the set of admissible controls Uad ⊂ U is nonempty;
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(6) the operator D : W → Lq(Ω) is linear and bounded, the perturbation space
W is Banach.

Then for any v ∈ Uad and w ∈ W there exists a semiregular solution of problem
(2.1), (2.2).

Under conditions (1)–(4) of the above theorem, when control and perturbation
are absent, and using a variational method, existence results were obtained in [7,
Theorems 3 and 4], and [10, Theorem 3].

3. Solution of the problem

Let us verify that all the conditions of Theorem 2.4 are fulfilled for the Lavrent’ev
problem (1.1), (1.2) under (1.3). We have

J1(u) =
1
2

2∑
i=1

∫
Ω

u2
xi
dx =

1
2

∫
Ω

(u2
x1

+ u2
x2

)dx =
1
2
‖u‖2 ≥ 0 ∀u ∈ H1

◦ (Ω).

Condition (1) is satisfied.
For almost all x ∈ Ω the function sign(·) has only jump discontinuity u = 0

as −1 = sign(0−) < sign(0+) = 1; sign(0) = 0 and | sign(u)| ≤ 1 for all u ∈ R,
1 ∈ Lq(Ω), q > 2·2

2+2 = 1 are valid. Therefore condition (2) of Theorem 2.4 is
fulfilled.

As in [13], it can be shown that there exists a u0 ∈ H1
◦ (Ω) such that∫

Ω

dx

∫ u0(x)

0

sign(s)ds > 0.

Condition (3) of Theorem 2.4 holds.
Since the space N(−∆) of solutions for the problem

−∆u = 0, u
∣∣
Γ

= 0

is zero, it follows that no additional assumption in condition (4) of Theorem 2.4 is
needed.

Clearly, condition (5) of Theorem 2.4 is not required as the control in (1.1) is
absent.

We see that at the perturbation f in (1.1) there is the identical operator I, i.e.,
If = f . The operator I is linear and bounded. The space C(Ω) of the perturbations
is a Banach space. Condition (6) of Theorem 2.4 is satisfied.

Thus all the conditions of Theorem 2.4 for the Lavrent’ev problem (1.1), (1.2)
under (1.3) are fulfilled. This implies that the Lavrent’ev problem has a semiregular
solution.

In the present paper we show the existence of the semiregular solution of the
Dirichlet problem for the elliptic equation with the discontinuous nonlinearity by
the variational method unlike in [2].

If, in addition, the variational functional corresponding to problem (1.1), (1.2)
has no more than a countable number of points of a global minimum, then, ac-
cording to [14, 15], there is the regular solution of problem (1.1), (1.2); i.e., the
semiregular solution with the property of correctness. Earlier (see [1]–[3]) the reg-
ular solutions for the Lavrent’ev problem were not investigated.

We note that other theoretical results for the Lavrent’ev problem are received
similarly to results for the Gol’dshtik mathematical model for separated flows of
incompressible fluid [12], which are analyzed in [13, 16, 17].
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4. One-dimensional model

Further we consider the one-dimensional analog of model (1.1), (1.2). We have

−u′′(x) = µ sign(u(x)) + f(x), x ∈ [0, 1], (4.1)

u(0) = u(1) = 0. (4.2)

A system of ordinary differential equations that contains a hysteresis nonlinear-
ity such as a relay and the external perturbation of (1.3) is studied in [4, 5]. By
replacement of variables, this system can be reduced to model (4.1), (4.2). Solv-
ability for this problem was established earlier. Arguing as above, we see that other
results for problem (4.1), (4.2) can be obtained as well as for the one-dimensional
analog of Gol’dshtik’s model that is considered in [16, 18].
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