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CUBIC SYSTEMS WITH INVARIANT AFFINE STRAIGHT
LINES OF TOTAL PARALLEL MULTIPLICITY SEVEN

ALEXANDRU ŞUBĂ, VADIM REPEŞCO, VITALIE PUŢUNTICĂ

Abstract. In this article, we study the planar cubic differential systems with

invariant affine straight lines of total parallel multiplicity seven. We classify
these system according to their geometric properties encoded in the configu-

rations of invariant straight lines. We show that there are only 18 different
topological phase portraits in the Poincaré disc associated to this family of

cubic systems up to a reversal of the sense of their orbits, and we provide rep-

resentatives of every class modulo an affine change of variables and rescaling
of the time variable.

1. Introduction and statement of main results

We consider the real polynomial system of differential equations
dx

dt
= P (x, y),

dy

dt
= Q(x, y), gcd(P,Q) = 1 (1.1)

and the vector field X = P (x, y) ∂
∂x +Q(x, y) ∂∂y associated with system (1.1).

Denote n = max{deg(P ),deg(Q)}. If n = 3 then system (1.1) is called cubic.
A differentiable function f : D ⊂ C2 → C, f not constant is said to be an

elementary invariant (or a Darboux invariant) for the vector field X if there exists
a polynomial Kf ∈ C[x, y] with deg(Kf ) ≤ n− 1 such that the identity

X(f) ≡ f(x, y)Kf (x, y), (x, y) ∈ D
holds. Denote by IX the set of all elementary invariants of X; Ia = {f ∈ C[x, y] :
f ∈ IX}, Ie = {exp( gh ) : g, h ∈ C[x, y], gcd(g, h) = 1, exp( gh ) ∈ IX}.

If f ∈ Ia (respectively f ∈ Ie), then f(x, y) = 0; i.e., the set {(x, y) ∈ C :
f(x, y) = 0}, (respectively f) is called an invariant algebraic curve (respectively
an invariant exponential function) for polynomial system (1.1). In the case f ∈ Ia,
deg(f) = 1; i.e., f = ax + by + c, a, b, c ∈ C, (a, b) 6= (0, 0), we say that f = 0 (in
brief f) is an invariant straight line for (1.1). Moreover, if m is the greatest positive
integer such that fm divides X(f), then we will say that the invariant straight line
f has the parallel multiplicity equal to m. If f ∈ Ia has the parallel multiplicity
equal to m ≥ 2, then exp(1/f), . . . , exp(1/fm−1) ∈ Ie.

If the straight line ax+by+c = 0, a, b, c ∈ C passes through at least two distinct
points with real coordinates, then the complex line {(x, y) ∈ C2 : ax+ by + c = 0}
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contains a real line {(x, y) ∈ R2 : a′x + b′y + c′ = 0} with a′, b′, c′ ∈ R, which is
the real line passing through these two real points. In this case the complex line
could be written as ax + by + c = λ(a′x + b′y + c′) = 0 with λ ∈ C \ R. We call
an essentially complex line, a line which could not be written in this way. In what
follows by complex line we shall mean essentially complex line.

System (1.1) is called Darboux integrable if there exists a non-constant function
of the form f = fλ1

1 . . . fλs
s , where fj ∈ Ia ∪ Ie and λj ∈ C, j = 1, s, such that

either f is a first integral or f is an integrating factor for (1.1) (about the theory
of Darboux, presented in the context of planar polynomial differential systems on
the affine plane, see [11]).

A great number of works are dedicated to the investigation of polynomial differ-
ential systems with invariant straight lines (see, for example [1]–[10], [12]–[18]). In
particular we point out the following facts:

(1) The maximum number of invariant affine straight lines of cubic differential
systems is 8 [1].

(2) The class of cubic systems possessing invariant straight lines of total multi-
plicity 9, including the line at infinity was completely investigated in [8].

In this article we proceed to the next step, namely to consider cubic systems with
invariant affine straight lines of total parallel multiplicity 7. This is a continuation
of the qualitative investigation started in [18]. Our main result is as follows:

Theorem 1.1. Assume that a cubic system possesses invariant affine straight lines
of total parallel multiplicity seven. Then all such systems are integrable and we
give below their integrating factors as well as their first integrals. We give below
normal forms modulo the action of affine transformations and time rescaling of such
systems: normal forms (I.1) − (I.17). Moreover in Fig. 1.1 - Fig. 1.17. we give
the 18 topologically distinct phase portraits on the Poincaré disc of these systems.
In the table below for each one of the systems (I.1)–(I.17) the first arrow points
to the straight lines, the integrating factor and the first integral that corresponds to
each system.

(I.1)

8<:
ẋ = x(x+ 1)(x− a), a > 0,
ẏ = y(y + 1)(y − a), a 6= 1,
configuration (3r, 3r, 1r);

→ (1.2) → Fig. 1.1;

(1.2)

8<:
ẋ = x2(x+ 1),
ẏ = y2(y + 1),
configuration (3(2)r, 3(2)r, 1r);

→ (1.3) → Fig. 1.2;

(I.3)

8<:
ẋ = x((x− a)2 + 1),
ẏ = y((y − a)2 + 1), a 6= 0,
configuration (1r + 2c0, 1r + 2c0, 1r);

→ (1.4) → Fig. 1.3;

(I.4)

8>><>>:
ẋ = x(−a+ 2(a+ 1)y + x2 − 3y2),
ẏ = −ay − (a+ 1)(x2 − y2) + 3x2y − y3,
a ∈ (0; 1), a 6= 1/2,

configuration (3c1, 3c1, 1r);

→ (1.5) → Fig. 1.4;

(I.5)

8<:
ẋ = x(1 + 2ay − x2 + 3y2), a > 0,
ẏ = a+ y − ax2 + ay2 − 3x2y + y3,
configuration (3c1, 3c1, 1r);

→ (1.6) → Fig. 1.5;
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(I.6)

8<:
ẋ = x(x2 + 2y − 3y2),
ẏ = −x2 + y2 + 3x2y − y3,
configuration (3(2)c1, 3(2)c1, 1r);

→ (1.7) → Fig. 1.6;

(I.7)

8<:
ẋ = x(x+ 1)(x− a), a > 0, a 6= 1,
ẏ = y(y + 1)((1− a)x+ ay − a),
configuration (3r, 2r, 1r, 1r);

→ (1.8) → Fig. 1.7;

(I.8)

8<:
ẋ = x(x+ 1)(x− a), a > 0, a 6= 1,
ẏ = y(y + 1)(−a+ (2 + a)x− (1 + a)y),
configuration (3r, 2r, 1r, 1r);

→ (1.9) → Fig. 1.8;

(I.9)

8>><>>:
ẋ = x3,
ẏ = y2(ax+ y − ay),
a ∈ R \ {0; 1; 3/2; 2; 3},
configuration (3(3)r, 2(2)r, 1r, 1r);

→ (1.10) → Fig. 1.9a, 1.9b;

(I.10)

8<:
ẋ = x3,
ẏ = y2(2ax− y), a ∈ (−1, 0) ∪ (0, 1),
configuration (3(3)r, 2(2)r, 1c1, 1c1);

→ (1.11) → Fig. 1.10;

(I.11)

8<:
ẋ = (x− a)(x2 + 1), a > 0,
ẏ = y(1 + y)(2ax− (a2 + 1)y − a2 + 1),
configuration (1r + 2c0, 2r, 1c1, 1c1);

→ (1.12) → Fig. 1.11;

(I.12)

8>><>>:
ẋ = x(1 + x)(−1 + ax− (2 + a)y),
ẏ = y(1 + y)(−a− (1 + 2a)x+ y),
a > 0, a 6= 1,
configuration (2r, 2r, 2r, 1r);

→ (1.13) → Fig. 1.12;

(I.13)

8>><>>:
ẋ = x2(ax+ y),
ẏ = y2((2 + 3a)x− (1 + 2a)y),
a(a+ 1)(3a+ 2)(3a+ 1)(2a+ 1) 6= 0,

configuration (2(2)r, 2(2)r, 2(2)r, 1r);

→ (1.14) → Fig. 1.13;

(I.14)

8>><>>:
ẋ = x(x+ 1)(1 + a2 + 2x− 2ay),
ẏ = (1 + a2)y + (3 + a2)xy − 2ay2

+ax3 + 3x2y − axy2 + y3, a 6= 0,
configuration (2r, 2c1, 2c1, 1r);

→ (1.15) → Fig. 1.14;

(I.15)

8<:
ẋ = 2x2(x+ ay), a > 0,
ẏ = −ax3 + 3x2y + axy2 + y3,
configuration (2(2)r, 2(2)c1, 2(2)c1, 1r);

→ (1.16) → Fig. 1.15;

(I.16)

8>><>>:
ẋ = (x2 + 1)(ax− 2y + ay),
ẏ = (y2 + 1)(−x+ 2ax− y),
a(2a− 1)(a− 1)(a− 2) 6= 0,
configuration (2c0, 2c0, 2c0, 1r);

→ (1.17) → Fig. 1.16;

(I.17)

8<:
ẋ = x(1− (1 + a2)x2 + 4axy − 3y2),
ẏ = 2(ax− y)(1 + y2), a > 0,
configuration (2c0, 2c1, 2c1, 1r).

→ (1.18) → Fig. 1.17.
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Figure 1.1 Figure 1.2 Figure 1.3

Figure 1.4 Figure 1.5 Figure 1.6

Figure 1.7 Figure 1.8 Figure 1.9a

Figure 1.9b Figure 1.10 Figure 1.11
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Figure 1.12 Figure 1.13 Figure 1.14

Figure 1.15 Figure 1.16 Figure 1.17

The systems (I.1)-(I.17) have the following straight lines, Darboux integrating
factor µ and elementary first integral F , respectively, (see [11])

l1 = x, l2 = x+ 1, l3 = x− a, l4 = y, l5 = y + 1, l6 = y − a,

l7 = y − x; µ = 1/(l1l2l3l4l5l6), F ≡ (
x

y
)a+1(

y + 1
x+ 1

)a
y − a
x− a

;
(1.2)

l1,2 = x, l3 = x+ 1, l4,5 = y, l6 = y + 1, l7 = y − x;

µ = 1/(l21l3l
2
4l6), F ≡ x−1e−1/x(x+ 1)ye1/y(y + 1)−1 = const;

(1.3)

l1 = x, l2,3 = x− a∓ i, l4 = y, l5,6 = y − a∓ i, l7 = y − x;

µ =
1

l1l2l3l4l5l6
, F =

l2l3l
2
4

l21l5l6
exp(−2a arctan

l7
−1− a2 + ax+ ay − xy

);
(1.4)

l1 = y − ix, l2 = y − ix− 1, l3 = y − ix− a, l4 = y + ix, l5 = y + ix− 1,

l6 = y + ix− a, l7 = x; µ = 1/(l1l2l3l4l5l6),

F = arctan(ax/(x2 − ay + y2))− a arctan(x/(x2 − y + y2));
(1.5)

l1 = y − ix+ i, l2 = y + ix− i, l3 = y − ix− i, l4 = y + ix+ i,

l5 = y − ix+ a, l6 = y + ix+ a, l7 = x; µ = 1/(l1l2l3l4l5l6),

F = (
l3l4
l1l2

)a exp(4 arctan
x

a+ y
− 2 arctan

2xy
1− x2 + y2

);

(1.6)

l1 = l2 = y − ix, l3 = y − ix− 1, l4 = l5 = y + ix,

l6 = y + ix− 1, l7 = x; µ = 1/(l21l3l
2
4l6),

F = ((l1l4 − l7 − y)(l1l4 + l7 − y) cos
2l7
l1l4

+ 2l7(l1l4 − y) sin
2l7
l1l4

)/(l1l3l4l6);

(1.7)
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l1 = x, l2 = x+ 1, l3 = x− a, l4 = y, l5 = y + 1, l6 = y − x,
l7 = x+ ay; µ = l1/(l2l3l4l6l7), F = l2l

a
3 l
a+1
4 l−1

6 l−a7 ;
(1.8)

l1 = x, l2 = x+ 1, l3 = x− a, l4 = y, l5 = y + 1, l6 = y − x,
l7 = x− (a+ 1)y − a; µ = l2/(l1l3l5l6l7), F = l1l

−a−1
3 l−a5 l−1

6 la+1
7 ;

(1.9)

l1,2,3 = x, l4,5 = y, l6 = y − x, l7 = x+ y − ay;

µ = 1/(l1l4l6l7), F = (l1l4)a−2l6l
1−a
7 ;

(1.10)

l1,2,3 = x, l4,5 = y, l6,7 = y − (a± i
√

1− a2)x; µ = 1/(l1l4l6l7),

F = (xy)2
√

1−a2
(((1− a2)x2 + (y − ax)2)−

√
1−a2

) exp(−2a arctan
√

1− a2x

y − ax
);

(1.11)
l1 = x− a, l2,3 = x± i, l4 = y, l5 = y + 1,

l6,7 = x− (a± i)y − a; µ = l1/(l2l3l4l6l7),

F =
y2(x2 + 1)

y2 + (x− a− ay)2
exp(2a(arctan

1
x

+ arctan
y

x− a− ay
));

(1.12)

l1 = x, l2 = x+ 1, l3 = y, l4 = y + 1, l5 = ax− y + a, l6 = ax− y − 1,

l7 = x+ y + 1; µ = l7/(l1l2l3l4l5l6), F = (l1/l2)a(l4/l3)(l5/l6)a+1;
(1.13)

l1,2 = x, l3,4 = y, l5,6 = x− y, l7 = ax− y − 2ay;

µ = (l1l3l5)/l57, F = (l1l3l5)/(l27);
(1.14)

l1 = x, l2 = x+ 1, l3,5 = y ∓ ix, l4,6 = y ∓ i(x+ 1)− a, l7 = y + ax;

µ = l7/(l1l2l3l4l5l6), F =
l22l3l5
l21l4l6

exp(2a(arctan
l2

y − a
− arctan

x

y
));

(1.15)
l1,2 = x, l3,4 = y − ix, l5,6 = y + ix, l7 = y − ax;

µ = l1l3l5/l
5
7, F = l1l3l5/l

2
7;

(1.16)

l1,2 = x∓ i, l3,4 = y ∓ i, l5,6 = y − a(x± i)± i, l7 = y − x;

µ = l7/(l1l2l3l4l5l6); F = a arctan
l7

al1l2 − 1− xy
+ arctan

al7
l3l4 − a(1 + xy)

;

(1.17)

l1,2 = y ∓ i, l3,4 = y − (a+ i)x∓ i, l5,6 = y − (a− i)x± i,
l7 = x; µ = l7/(l1l2l3l4l5l6),

F = (
l4l6
l3l5

)a exp(2 arctan
2y − 2ax

x2 − 1 + (y − a ∗ x)2
− 4 arctan

1
y

).

(1.18)
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2. Properties of the cubic systems with invariant straight lines

We consider the real cubic differential systems

dx

dt
=

3∑
r=0

Pr(x, y) ≡ P (x, y),

dy

dt
=

3∑
r=0

Qr(x, y) ≡ Q(x, y),

gcd(P,Q) = 1,

(2.1)

where Pr(x, y) andQr(x, y) are homogeneous polynomials of degree r and |P3(x, y)|+
|Q3(x, y)| 6≡ 0.

By a straight lines parallel configuration of invariant straight lines of a cubic
system we understand the set of all its invariant affine straight lines, each endowed
with its own parallel multiplicity.

The goal of this section is to enumerate such properties for invariant straight
lines which will allow the construction of configurations of straight lines realizable
for (2.1). Some of these properties are obvious or easy to prove and others were
proved in [18].

2.1. Points and straight lines.
(II.1) In the finite part of the phase plane each system (2.1) has at most nine
singular points.
(II.2) In the finite part of the phase plane, on any straight line there are located
at most three singular points of the system (2.1).
(II.3) The system (2.1) has no more than eight invariant affine straight lines ([1]).
(II.4) At infinity the system (2.1) has at most four distinct singular points (in the
Poincaré compactification [12]) if yP3(x, y)−xQ3(x, y) 6≡ 0. In the case yP3(x, y)−
xQ3(x, y) ≡ 0 the infinity is degenerate, i.e. consists only of singular points.
(II.5) If yP3(x, y) − xQ3(x, y) 6≡ 0, then the infinity represents for (2.1) a non-
singular invariant straight line, i.e. a line that is not filled up with singularities.
(II.6) Through one point cannot pass more than four distinct invariant straight
lines of the system (2.1).

We say that the straight lines lj ≡ αjx+βjy+γj ∈ C[x, y], (αj , βj) 6= (0, 0), j =
1, 2, are parallel if α1β2 − α2β1 = 0. Otherwise the straight lines are called con-
current. If an invariant affine straight line l has the parallel multiplicity equal to
m, then we will consider that we have m parallel invariant straight lines identical
with l.
(II.7) The intersection point (x0, y0) of two concurrent invariant straight lines l1
and l2 of system (2.1) is a singular point for this system. If l1, l2 ∈ R[x, y] or l2 ≡ l̄1,
i.e. the straight lines l1 and l2 are complex conjugate, then x0, y0 ∈ R.
(II.8) A complex straight line l which passes through a point M0 with real coordi-
nates, could be described by an equation of the form: y = αx + β, Imα 6= 0, and
M0 is the intersection point of the straight lines l and l.

Definition 2.1. A complex straight line whose equation is verified by a point with
real coordinates will be called relatively complex straight line.

Unlike the complex straight lines, a straight line ax + by + c = 0, a, b, c ∈ R,
a2 + b2 6= 0, passes through an infinite number of real points and through an
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infinite number of points with at least one complex coordinate. Indeed, if x0, y0 ∈
R and ax0 + by0 + c = 0, then this straight line passes through complex points
(x0 + αb, y0 − αa), α ∈ C \ R.
(II.9) To a straight line L : ax+ by+ c = 0, a, b, c ∈ C such that L passes through
two distinct real points or through two complex conjugate points we can associate
a straight line L : a′x+ b′y + c′ = 0 with a′, b′, c′ ∈ R such that

{(x, y) ∈ R2 : a′x+ b′y + c′ = 0} ⊂ {(x, y) ∈ C2 : ax+ by + c = 0}.

(II.10) The complex conjugate straight lines l and l can be invariant lines for
system (2.1) only together.
(II.11) The complex conjugate invariant straight lines l and l have the same parallel
multiplicity.
(II.12) The number of complex singular points of a system (2.1) on an invariant
straight line {(x, y) ∈ C2 : ax+ by+ c = 0} where a, b, c ∈ R is even and is at most
two. In the last case the singular points are complex conjugate.
(II.13) An invariant straight line with real coefficients either intersects none of
the complex invariant straight lines of the system (2.1) in complex points, or it
intersects exactly two complex conjugate invariant straight lines in complex points.
(II.14) A cubic system with at least seven invariant affine straight lines counted
with parallel multiplicity has non-degenerate infinity and, therefore, there exist at
most four directions (slopes) for these lines.

2.2. Parallel invariant straight lines.

Definition 2.2. An affine straight line not passing through any real finite point
will be called absolutely complex straight line.

(II.15) A complex invariant straight line (l ∈ C[x, y] \ R[x, y]) of the system (2.1)
is absolutely complex if and only if it is parallel with its conjugate line.
(II.16) Through a complex point of any complex straight line can pass at most
one straight line with real coefficients.
(II.17) Via a non-degenerate linear transformation of the phase plane any abso-
lutely complex straight line can be made parallel to one of the axes of the coordinate
system, i.e. it is described by one of the equations x = γ or y = γ, γ ∈ C \ R.
Moreover, if we have two such straight lines l1 and l2, l1 ∦ l2, l1 ‖ l1, l2 ‖ l2, then
by a suitable transformation we can at the same time make the straight line l1 to
be parallel to the coordinate axis Ox, and the straight line l2 to be parallel to Oy
axis.
(II.18) Let l be a relatively complex line. Then neither an absolutely complex line
nor a straight line with real coefficients could be parallel to l.
(II.19) If l1 and l2 are two distinct parallel invariant affine straight lines of the
system (1.1), then either

(a) l1, l2 ∈ R[x, y], or
(b) l1 ∈ R[x, y] and l2 is absolutely complex, or
(c) l1 and l2 are absolutely complex and l2 = l1, or
(d) l1 and l2 are relatively complex straight lines and l2 6= l1.

(II.20) The system (2.1) cannot have invariant affine parallel straight lines of total
parallel multiplicity greater than 3.



EJDE-2013/274 CUBIC SYSTEMS WITH INVARIANT AFFINE STRAIGHT LINES 9

2.3. Multiple invariant straight lines.

Definition 2.3. By a triplet of parallel invariant affine straight lines we shall mean
a set of parallel invariant affine straight lines of total parallel multiplicity 3.

(II.21) If the cubic system (2.1) has a triplet of parallel invariant affine straight
lines, then all its finite singular points lie on these straight lines.
(II.22) The cubic system (2.1) cannot have more than two triplets of parallel
invariant affine straight lines.
(II.23) If l1, l2, l3 form a triplet of parallel invariant affine straight lines of a cubic
system (2.1), then either

(a) l1, l2, l3 ∈ R[x, y], or
(b) l1, l2, l3 are relatively complex, or
(c) l1 ∈ R[x, y] and l2,3 are absolutely complex.

(II.24) The parallel multiplicity of an invariant affine straight line of the cubic
system (2.1) is at most three.
(II.25) The parallel multiplicity of any absolutely complex invariant straight line
of the cubic system (2.1) is equal to one.
(II.26) If the cubic system (2.1) has two concurrent invariant affine straight lines
l1, l2 and l1 has the parallel multiplicity equal to m, 1 ≤ m ≤ 3, then this system
cannot have more than 3−m singular points on l2 \ l1.

We say that three affine straight lines are in generic position if no pair of the
lines could be parallel and no more that two lines could pass through the same
point.
(II.27) For the cubic system (2.1) the total parallel multiplicity of three invariant
affine straight lines in generic position is at most four.

3. Proof of Theorem 1.1

The classes of cubic systems (2.1) with invariant affine straight lines of total
multiplicity seven, where six of them form two triplets of parallel straight lines,
i.e. the systems (I.1)–(I.6) of Theorem 1.1, were studied in [18]. In the present
paper we will investigate the cubic system with invariant affine straight lines of
total multiplicity seven when the system: (A) has exactly one triplet of parallel
straight lines and (B) has not triplets of parallel straight lines.

3.1. A. Cases of one triplet of parallel invariant affine straight lines. We
write down the type of a configuration in italic (respectively, bold face; normal
form) if this configuration is a subconfiguration (a part) of a configuration with
eight invariant straight lines (respectively, unrealizable; realizable). We denote by
c0 (respectively c1) an absolutely (respectively relatively) complex invariant straight
line.

We denote by (3r, 2r, 2r) (see (A1) below) the configuration which consists of
seven distinct straight lines with real coefficients l1, . . . l7 ∈ R[x; y], among which
l1, l2, l3 form a triplet of parallel straight lines, i.e. l1 ‖ l2 ‖ l3. Moreover the
lines l4,5 and l6,7 form two pairs of parallel straight lines and lj ∦ lk, (j, k) =
(1, 4), (1, 6), (4, 6).

In the case of configuration (3(2)r, 2c1, 2c1) (see (A20) below) we have l1 ≡ l2 ‖
l3, l1, l3 ∈ R[x, y], l1 6= l3, the straight lines l4 and l5 are relatively complex,
l4 ‖ l5, l6 = l4, l7 = l5 and the slopes of the straight lines l1, l4, l6 are distinct.
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The configuration (1r + 2c0, 2c0, 1c1, 1c1) (see below (A54)) consists of a straight
line l1 with real coefficients and distinct complex straight lines l2, . . . , l7, l1 ‖ l2 ‖
l3, l4 ‖ l5, l7 = l6, lj ∦ lk, (j, k) = (1, 4), (1, 6), (1, 7), (4, 6), (4, 7), the straight lines
l2, l3, l4, l5 are absolutely complex and l6, l7 are relatively complex.

In (3(2)r, 2r, 2r) (see below (A2)) the straight line l1 with real coefficients has the
parallel multiplicity equal to two (l1 ≡ l2 ‖ l3, l1 6= l3). In (3(3)r, 2(2)c1, 2(2)c1) (see
below (A24)) the straight line l1 with real coefficients has the parallel multiplicity
equal to three (l1 ≡ l2 ≡ l3), the relatively complex straight line l4 has the parallel
multiplicity equal to two (l4 ≡ l5, l6 ≡ l7, l4 6= l6, l6 = l4) and so on.

According to property (II.14), if the cubic system has seven invariant affine
straight lines, then there exist at most four direction (slopes) for these lines.

By properties (II.19), (II.23), (II.24) and (II.25), if the system (2.1) has one
triplet of parallel invariant affine straight lines, one of the following 54 configurations
is possible:

(A1) (3r , 2r , 2r); (A28) (1r + 2c0 , 2c0 , 2c0 );
(A2) (3(2)r,2r,2r); (A29) (1r + 2c0 , 2c1 , 2c1 );
(A3) (3(3)r,2r,2r); (A30) (1r + 2c0,2(2)c1,2(2)c1);
(A4) (3r,2(2)r,2r); (A31) (3r, 2r, 1r, 1r);
(A5) (3(2)r,2(2)r,2r); (A32) (3(2)r,2r,1r,1r);
(A6) (3(3)r,2(2)r,2r); (A33) (3(3)r,2r,1r,1r);
(A7) (3r,2(2)r,2(2)r); (A34) (3r,2(2)r,1r,1r);
(A8) (3(2)r,2(2)r,2(2)r); (A35) (3(2)r,2(2)r,1r,1r);
(A9) (3(3)r, 2(2)r, 2(2)r); (A36) (3(3)r, 2(2)r, 1r, 1r);
(A10) (3r,2r,2c0); (A37) (3r,2c0,1r,1r);
(A11) (3(2)r,2r,2c0); (A38) (3(2)r,2c0,1r,1r);
(A12) (3(3)r,2r,2c0); (A39) (3(3)r,2c0,1r,1r);
(A13) (3r,2(2)r,2c0); (A40) (3r,2r,1c1,1c1);
(A14) (3(2)r,2(2)r,2c0); (A41) (3(2)r,2r,1c1,1c1);
(A15) (3(3)r,2(2)r,2c0); (A42) (3(3)r,2r,1c1,1c1);
(A16) (3r,2c0,2c0); (A43) (3r,2(2)r,1c1,1c1);
(A17) (3(2)r,2c0,2c0); (A44) (3(2)r,2(2)r,1c1,1c1);
(A18) (3(3)r,2c0,2c0); (A45) (3(3)r, 2(2)r, 1c1, 1c1);
(A19) (3r , 2c1 , 2c1 ) (A46) (3r, 2c0, 1c1, 1c1);
(A20) (3(2)r,2c1,2c1); (A47) (3(2)r,2c0,1c1,1c1);
(A21) (3(3)r,2c1,2c1); (A48) (3(3)r,2c0,1c1,1c1);
(A22) (3r,2(2)c1,2(2)c1); (A49) (1r + 2c0,2r,1r,1r);
(A23) (3(2)r,2(2)c1,2(2)c1); (A50) (1r + 2c0,2(2)r,1r,1r);
(A24) (3 (3 )r , 2 (2 )c1 , 2 (2 )c1 ); (A51) (1r + 2c0, 2r, 1c1, 1c1);
(A25) (1r + 2c0,2r,2r); (A52) (1r + 2c0,2(2)r,1c1,1c1);
(A26) (1r + 2c0,2(2)r,2r); (A53) (1r + 2c0 , 2c0 , 1r , 1r);
(A27) (1r + 2c0,2(2)r,2(2)r); (A54) (1r + 2c0,2c0,1c1,1c1).

Next, we will examine the configurations (A1)–(A54) and their realization in the
class of cubic systems.

3.1.1. Unrealizable configurations. Property (II.27) does not allow the real-
ization of configurations (A6), (A7), (A8), (A22), (A23), (A27), (A30) and (A44);
Properties (II.7), (II.26) do not allow the realization of configurations (A17), (A18),
(A32), (A34), (A50), (A52); (II.7),(II.21) → (A11), (A12), (A15), (A20), (A21),
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(A39), (A41), (A42), (A47), (A48); (II.7), (II.12), (II.21) → (A16); (II.2),
(II.7), (II.8), (II.16) → (A26), (A40), (A49); (II.2), (II.7), (II.21) → (A2), (A3),
(A33); (II.2), (II.7), (II.26) → (A4); (II.7), (II.16), (II.21) → (A10), (A13),
(A14), (A37), (A38); (II.2), (II.7), (II.8), (II.26), (II.27) → (A5); (II.2), (II.7),
(II.16), (II.21) → (A25); (II.7), (II.26), (II.27) → (A35); (II.7), (II.21), (II.26)
→ (A43); (II.2), (II.7), (II.9), (II.21) → (A54).

3.1.2. Subconfigurations of configurations with eight straight lines. We
denote by Oj,k the point of intersection of concurrent straight lines lj and lk.
Configuration (A1): (3r, 2r, 2r). Via affine transformations of coordinates we
can make that l1 = x, l2 = x+ 1, l3 = x− a, a > 0, l4 = y, l5 = y + 1. Properties
(II.2), (II.7) and (II.21) impose the straight lines l6 and l7 to pass, respectively,
through the points: (a) O2,5(−1,−1), O1,4(0, 0) and O1,5(0,−1), O3,4(a, 0) or (b)
O1,5(0,−1), O2,4(−1, 0) and O1,4(0, 0), O3,5(a,−1) (Fig. 3.1). Taking into account
that l6 ‖ l7, in the case (a) we have l6 = y − x, l7 = y − x + 1, and in the
case (b): l6 = y + x − 1, l7 = y + x. In both cases a = 1. We observe that
the configuration of the straight lines l1, . . . l7 in the case (a) is symmetrical with
respect to the coordinate axis Oy to the configuration of the same lines in the case
(b). Therefore, it is enough to consider the case when l1 = x, l2 = x+1, l3 = x−1,
l4 = y, l5 = y + 1, l6 = y − x, l7 = y − x + 1. The cubic system (2.1) for which
these straight lines are invariant look as:

ẋ = x(x2 − 1), ẏ = y(y + 1)(3x− 2y − 1). (3.1)

It is easy to show that (3.1), besides the invariant straight lines l1, . . . , l7, has
one more invariant affine straight line l8 = x− 2y − 1.

Figure 3.1a Figure 3.1b Figure 3.2 Figure 3.3

Configuration (A9): (3(3)r, 2(2)r, 2(2)r). Assume that l1 = l2 = l3, l4 = l5,
l6 = l7, lj ∦ lk, (j, k) 6= (1, 4), (1, 6), (4, 6). We can consider l1,2,3 = x, l4,5 = y,
l6,7 = x− y (see Fig. 3.2). There is only one cubic system for which these straight
lines are invariant (l1 with parallel multiplicity equal to three, l4 and l6 both with
parallel multiplicity equal to two):

ẋ = x3, ẏ = y2(3x− 2y).

It is easy to verify that this system, together with the straight lines l1, . . . , l7, has
also the invariant affine straight line l8 = x− 2y.
Configuration (A19): (3r, 2c1, 2c1). Properties (II.7), (II.12) and (II.21) allow
only the configuration given in Fig. 3.3. By an affine transformation we can make
l1 = x, l2 = x − a, a ∈ (0, 1), l3 = x − 1, l4,6 = y ∓ ix, l5,7 = y ∓ i(x − 1) − α,
α ∈ R. The cubic systems for which the straight lines l1, . . . , l4 and l6 are invariant
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look as:
ẋ = x(x− 1)(x− a),

ẏ = ay + b20x
2 − (a+ 1)xy + b20y

2 + b30x
3 + b21x

2y

+b30xy
2 + (b21 − 1)y3.

(3.2)

Figure 3.4 Figure 3.5 Figure 3.6 Figure 3.7

If the straight lines l5,7 = y ∓ i(x− 1)− α are invariant for system (3.2) then it
has the form

ẋ = x(x− 1)(2x− 1), ẏ = y(1− 3x+ 3x2 + y2). (3.3)

Totally the system (3.3) has the following invariant affine straight lines: l1 = x,
l2 = x− 1/2, l3 = x− 1, l4,6 = y ∓ ix, l5,7 = y ∓ i(x− 1), l8 = y.
Configuration (A24): (3(3)r,2(2)c1,2(2)c1) (Fig. 3.4). Without loss of general-
ity, we consider l1 = l2 = l3 = x and l5,7 = l4,6 = y ± ix. There is only one cubic
system for which these straight lines are invariant and this is the system

ẋ = 2x3, ẏ = y(3x2 + y2). (3.4)

Clearly, for cubic system (3.4) and the straight line l8 = y is also invariant.
Configuration (A28): (1r+2c0,2c0,2c0) (Fig. 3.5). We can take l1 = x − a,
a ∈ R, l2 = x− i, l3 = x+ i, l4 = y− i, l5 = y+ i. Therefore, we have the following
cubic system possessing these lines:

ẋ = (x− a)(x2 + 1), ẏ = (y2 + 1)(bx+ cy + d). (3.5)

We may assume that the straight line l6 passes through the singular points
O3,5(−i,−i), O1,4(a, i), otherwise we could apply the substitution x→ −x or/and
y → −y which preserves the form of the system (3.5). Then the line l6 is described
by the equation 2x− (1 + ia)y − a+ i = 0. Hence, l7 = 2x− (1 + ia)y − a− i = 0.
The fact that the straight lines l6 and l7 are parallel implies a = 0, and therefore,
l6,7 = 2x− y ± i. If the straight lines l6,7 are invariant for system (3.5) it becomes

ẋ = x(x2 + 1), ẏ = (3x− y)(y2 + 1)/2.

It is easy to see that besides the invariant straight lines l1, . . . l7 defined above, the
obtained system has also the invariant affine straight line l8 = x− y.
Configuration (A29): (1r+2c0,2c1,2c1) (Fig. 3.6). We can consider l1 = x,
l4 = y − ix, l5 = y − ix − 2, l6 = y + ix, l7 = y + ix − 2. The absolutely complex
straight line l2 (respectively l3) pass through the point O4,7(−i, 1) (respectively
O5,6(i, 1)), i.e. it is described by the equation x + i = 0 (respectively x − i = 0).
The cubic system for which these straight lines are invariant look as:

ẋ = 2x(x2 + 1), ẏ = (y − 1)(−2y + 3x2 + y2).
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Evidently, the straight line l8 = y − 1 is also invariant for the obtained system.
Therefore, it has eight invariant affine straight line.
Configuration (A46): (3r,2c0,1c1,1c1) (Fig. 3.7). We start with the system

ẋ = x(x+ 1)(x− a), a > 0, ẏ = (y2 + 1)(bx+ cy + d) (3.6)

for which the straight lines l1 = x, l2 = x + 1, l3 = x − a, l4 = y − i, l5 =
y + i are invariant. The straight line l6 passes through the points O2,5(−1,−i),
O3,4(a, i) and therefore it is described by the equation y = 2i

a+1x + 1−a
a+1 i. We put

l6 = y − 2i
a+1x−

1−a
a+1 i, l7 = l6. The straight lines l6,7 are invariant for system (3.6)

if and only if this system has the form

ẋ = x(x+ 1)(x− 1), ẏ = −y(y2 + 1). (3.7)

It is easy to check that the straight lines l1 = x, l2,3 = x±1, l4,5 = y∓i, l6,7 = y∓ix,
l8 = y are invariant for (3.7).
Configuration (A53): (1r+2c0,2c0,1r,1r) (Fig. 3.8). We consider the system
(3.5) which has the following invariant straight lines: l1 = x− a, a ∈ R, l2 = x− i,
l3 = x+ i, l4 = y − i, l5 = y + i. The straight lines l6 and l7 with real coefficients
pass through the complex conjugate points O3,5(−i,−i), O2,4(i, i) and O2,5(i,−i),
O3,4(−i, i), respectively. Therefore, l6 = y − x and l7 = y + x. The straight lines
l1, . . . , l7 are invariant for system (3.5) if and only if the system looks as:

ẋ = x(x2 + 1), ẏ = y(y2 + 1). (3.8)

Evidently, and the straight line l8 = y is also invariant for (3.8).

Figure 3.8 Figure 3.9a Figure 3.9b Figure 3.10

3.1.3. Realizable configurations. Configuration (A31): (3r, 2r, 1r, 1r). Via
affine transformations of the phase plane we can make the straight lines l1, . . . , l6 to
be described by equations: x = 0, x+ 1 = 0, x− a = 0, a > 0, y = 0, y+ 1 = 0 and
x− y = 0. Properties (II.7) and (II.21) allow only configurations from Fig. 3.9. In
the case of Fig. 3.9a) (Fig. 3.9b)) we can write l7 = x+ ay (l7 = x− (a+ 1)y − a).

System (I.7) (respectively (I.8)) from Theorem 1.1 is the unique cubic system
possessing the invariant affine straight lines: l1 = x, l2 = x+ 1, l3 = x− a, l4 = y,
l5 = y+ 1, l6 = y−x and l7 = x+ay (respectively l7 = x− (a+ 1)y−a). Moreover
this system could not have other invariant affine straight line if a 6= 1. If a = 1 then
(I.7) (respectively (I.8)) has an additional invariant affine straight line l8 = y − 1
(respectively l8 = x− y − 1).
Configuration (A36): (3(3)r, 2(2)r, 1r, 1r). Using properties (II.7) and (II.21),
we obtain the configuration Fig. 3.10. We can consider l1 = l2 = l3 = x, l4 = l5 = y
and l6 = y− x. The cubic system with these invariant straight lines coincides with
the system (I.9) from Theorem 1.1 and this system possess also the invariant straight
line l7 = x + y − ay (see (1.10)). If a = 0 (respectively a = 3/2; a = 3), then the
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straight line l4 (respectively l7; l6) has parallel multiplicity equal to three (two). In
the case a = 1, we have gcd(P,Q) = x, and in the case a = 2 the straight lines l6
and l7 (see (1.10)) coincide, have parallel multiplicity equal to one, and the system
(I.9) does not have other invariant affine straight lines, except l1, . . . , l5. Therefore
if a = 2 the system (I.9) has exactly six invariant affine straight lines (counting also
their parallel multiplicity).
Configuration (A45): (3(3)r, 2(2)r, 1c1, 1c1) (Fig. 3.10). We take l1 = l2 = l3 =
x, l4 = l5 = y and the system

ẋ = x3, ẏ = y2(b+ cx+ dy), (3.9)

for which these straight lines are invariant.
By property (II.27), the conjugate and relative complex straight lines l6,7 pass

through origin of coordinates, so they can be described by the equations y − (α ±
βi)x = 0, where α, β ∈ R, β 6= 0. Rescaling the coordinate axes, we can make
β = 1. The conditions imposed to systems (3.9) to have the invariant straight lines
l6,7 = y − (α± i)x lead to the system

ẋ = (1 + α2)x3, ẏ = y2(2αx− y), α 6= 0. (3.10)

Applying the substitutions x→ x/
√

1 + α2, y → y, a = α/
√

1 + α2, we obtain the
system (I.10) from Theorem 1.1.
Configuration (A51): (1r+ 2c0, 2r, 1c1, 1c1) (Fig. 3.11). We consider l1 = x− a,
a ∈ [0,+∞), l2 = x + i, l3 = x − i, l4 = y, l5 = y + 1. In the case given by
Fig. 3.11a (respectively Fig. 3.11b) the straight line l6 passes through the points
O2,5(−i,−1) and O1,4(a, 0) (respectively O2,5(−i,−1) and O3,4(i, 0)). Therefore, it
is described by the equation x− (a+ i)y− a = 0 (2y+ ix+ 1 = 0). In the first case
(given by Fig. 3.11a) assuming that l7 = l̄6, we obtain the straight lines from (1.12)
and the system (I.11), for which these straight lines are invariant (see Theorem
1.1). If a = 0, then the system (I.11) has the invariant affine straight lines l1 = x,
l2,3 = x± i, l4 = y, l5 = y + 1, l6,7 = x∓ yi, l8 = y − 1.

In the case Fig. 3.11b we have l6,7 = 2y±ix+1. The intersection pointO(0,−1/2)
of the straight lines l6 and l7 lies on the straight line l1 = x − a, so a = 0. There
exists only one cubic system: ẋ = x(x2 + 1), ẏ = −2y(1 + y)(1 + 2y), with invariant
affine straight lines l1 = x, l2,3 = x± i, l4 = y, l5 = y + 1, l6,7 = 2y ± ix+ 1. This
system has an additional invariant affine straight line l8 = 1 + 2y.

Figure 3.11a Figure 3.11b

3.1.4. Qualitative study of systems (I.7)–(I.11)
In this section, the qualitative study of the systems (I.7)–(I.11) from Theorem 1.1

will be done. For this purpose, to determine the topological behavior of trajectories,
the finite and the infinite singular points will be examined. This information and
the information provided by the existence of invariant straight lines, will be taken
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into account when the phase portraits of systems (I.7)–(I.11) on the Poincaré disk
will be constructed.

We set the abbreviations: SP for a singular point and TSP for type of SP .
We use here the following symbols: λ1 and λ2 for eigenvalues of SP ; S for a saddle
(λ1λ2 < 0); TS for a topological saddle; Ns for a stable node (λ1, λ2 < 0); Nu

for a unstable node (λ1, λ2 > 0); DNs(u) for a “decritic” stable (unstable) node
(λ1 = λ2 6= 0); TNs(u) for a stable (unstable) topological node; S − Ns(u) for a
saddle-node with a stable (unstable) parabolic sector; P s(u) for a stable (unstable)
parabolic sector; H for a hyperbolic sector, F s(u) for a stable (instable) focus.
Systems (I.7), (I.8), (I.11). In the first column of Tables 3.1, 3.2 and 3.3 we
indicate the real singular points (finite and infinite) of the systems (I.7), (I.8), (I.11),
respectively; in the second column the eigenvalues corresponding to these singular
points and in the third column the types of the singularities. All these points
are simple and together with the invariant straight lines, complectly determine the
phase portrait of each of the systems (I.7), (I.8) and (I.11).

Table 3.1
System (I.7) (Fig. 1.7)

SP λ1; λ2 TSP SP λ1; λ2 TSP
O1(−1,−1) 1 + a; 1 + a DNu O8(−1, 1

a ) 1 + a; 1+a
a Nu

O2(−1, 0) −1; 1 + a S O9(a, a) a(1 + a); a2(1 + a) Nu

O3(0,−1) −a; 2a S X1∞(1, 0, 0) −1; −1 DNs

O4(0, 0) −a; −a DNs X2∞(1, 1, 0) −1; 1 + a S
O5(a,−1) a+ a2; a+ a2 DNu X3∞(1,− 1

a , 0) −1; 1+a
a S

O6(a, 0) −a2; S Y∞(0, 1, 0) −a; −a DNs

O7(0, 1) −a; 2a S

Table 3.2
System (I.8) (Fig. 1.8)

SP λ1; λ2 TSP SP λ1; λ2 TSP
O1(−1,−1) 1 + a; 1 + a DNu O8(a, a) a+ a2; S

−a(1 + a)2

O2(−1, 0) −2(1 + a); 1 + a S O9(0,− a
1+a ) −a; a

1+a S

O3(0,−1) −1; −a Ns X1∞(1, 0, 0) −1; −1 DNs

O4(0, 0) −a; −a DNs X2∞(1, 1, 0) −1; −a Ns

O5(a,−1) −(1 + a)2; a(1 + a) S X3∞(1, 1
1+a , 0) −1; a

1+a S

O6(a, 0) a(1 + a); DNu Y∞(0, 1, 0) 1 + a; 1 + a DNu

O7(−1,−2) −2(1 + a); 1 + a S

Table 3.3
System (I.11) (Fig. 1.11)

SP λ1; λ2 TSP SP λ1; λ2 TSP
O1(0, 0) a2 + 1; a2 + 1 DNu X∞(1, 0, 0) a2 + 1; a2 + 1 DNu

O2(−1, 0) a2 + 1; −2(a2 + 1) S Y∞(0, 1, 0) −1; −1 DNs

O3(1, 0) a2 + 1; a2 + 1 DNu

System (I.9) (Table 3.4). The origin of coordinates is a non-hyperbolic singular
point for (I.9). We will study the behavior of the trajectories in a neighborhood of
this point using blow-up method. In the polar coordinates x = ρ cos θ, y = ρ sin θ
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the system (I.9) takes the form

dρ

dτ
= ρ(cos4 θ + (1− a) sin4 θ + a cos θ sin3 θ),

dθ

dτ
= sin θ cos θ(sin θ − cos θ)(cos θ + (1− a) sin θ),

(3.11)

where τ = ρ2t. Taking into account that the system (I.9) is symmetric with respect
to the origin, it is sufficient to consider θ ∈ [0, π). The singular points of the system
(3.11) with first coordinate ρ = 0 and the second θ ∈ [0, π), and their eigenvalues
respectively are: {M1(0, 0): λ1,2 = ±1 → saddle }; {M2(0, π2 ): λ1,2 = ±(1− a) →
saddle}; {M3(0, π4 ): λ1,2 = 1

2 , λ2 = 2−a
2 → unstable node, if a < 2, and saddle,

if a > 2}; {M4(0, arctg 1
a−1 ): λ1 = (a−1)(a−2)

a2−2a+2 , λ2 = (a−1)2

a2−2a+2 → unstable node, if
a < 1 or a > 3; and saddle, if 1 < a < 3}. We obtain Fig. 1.9a if a < 1 and Fig.
1.9b if a > 1. In Fig. 3.12a, 3.12b, it is illustrated the case a < 1, i.e. the singular
point (0, 0) is TNu, and in Fig. 3.12c, 3.12d we have the case a > 1 with following
partition in sectors of the neighborhood of the origin: PuHHPuHH.

Table 3.4
System (I.9) (Fig. 1.9a) System (I.9) (Fig. 1.9b)

SP λ1; λ2 TSP SP λ1; λ2 TSP

O(0, 0) 0; 0 TNu O(0, 0) PuHHPuHH PuHHPuHH

X1∞(1, 0, 0) −1; −1 DNs X1∞(1, 0, 0) DNs DNs

X2,∞(1, 1, 0) −1; 2− a S X2,∞(1, 1, 0) S Ns

X3,∞(1, 1
a−1

, 0) −1; a−2
a−1

S X3,∞(1, 1
a−1

, 0) Ns S

Y∞(0, 1, 0) a− 1; DNs Y∞(0, 1, 0) DNu DNu

a− 1

Figure 3.12a Figure 3.12b

Figure 3.12c Figure 3.12d
System (I.10) Table 3.5.

Table 3.5
System (I.10) (Fig. 1.10)

SP λ1; λ2 TSP
O1(0, 0) 0; 0 HHHH

X∞(1, 0, 0) −1; −1 DNs

Y∞(0, 1, 0) 1; 1 DNu

We will study the behavior of the trajectories in a neighborhood of the origin of
coordinates. We note that all trajectories are symmetric with respect to the point
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(0, 0). Using polar coordinate, we write:

ρ̇ = ρ(cos4 θ + 2a cos θ sin3 θ − sin4 θ),

θ̇ = sin θ cos θ(a sin 2θ − 1).
(3.12)

The coordinates of the singular points Mi(0, θi) of the system (3.12) are given by
the equation

sin θ cos θ(a sin 2θ − 1) = 0.
Since |a| < 1 (see (I.10)) we get a sin 2θ−1 < 0 and therefore we obtain the singular
points M1(0, 0), M2(0, π/2), M3(0, π) and M4(0, 3π/2), which are saddles with the
same eigenvalues: λ1,2 = ±1 (see Fig. 3.13a). Therefore after blow-up we arrive at
the topological structure of the vicinity of the origin of coordinates given by Fig.
3.13b.

Figure 3.13a Figure 3.13b

3.2. B. Cases of cubic systems without triplets of parallel invariant straight
lines. We have the following 15 configurations of 7 straight lines that do not contain
a triplet of parallel invariant straight lines:

(B1) (2r, 2r, 2r, 1r); (B9) (2r,2c0,2c0,1r);
(B2) (2(2)r,2r,2r,1r); (B10) (2(2)r,2c1,2c1,1r);
(B3) (2(2)r,2(2)r,2r,1r); (B11) (2(2)r,2c0,2c0,1r);
(B4) (2(2)r, 2(2)r, 2(2)r, 1r); (B12) (2(2)r, 2(2)c1, 2(2)c1, 1r);
(B5) (2r,2r,2c0,1r); (B13) (2c0, 2c0, 2c0, 1r);
(B6) (2(2)r,2r,2c0,1r); (B14) (2c0, 2c1, 2c1, 1r);
(B7) (2(2)r,2(2)r,2c0,1r); (B15) (2c0,2(2)c1,2(2)c1,1r).
(B8) (2r, 2c1, 2c1, 1r);

3.2.1. The classification of the cubic systems.

Remark 3.1. The properties (II.2), (II.7), (II.16), (II.26) and (II.27) do not allow
realization of the configurations (B2), (B3), (B5)–(B7), (B9)–(B11) and (B15).

Further we will study the configurations (B1), (B4), (B8), (B12), (B13) and
(B14).
Configuration (B1): (2r, 2r, 2r, 1r). For this configuration the properties (II.2)
and (II.7) allow only the cases (a) and (b) from Fig. 3.14. We consider l1 = x,
l2 = x+ 1, l3 = y, l4 = y+ 1. In the case (a) we have l5 = x+ y+ 1, l6 = x− y and
l7 = x− y + 1. The cubic system with these invariant affine straight lines has the
form:

ẋ = x(x+ 1)(1− x+ 3y), ẏ = y(y + 1)(1 + 3x− y). (3.13)
It is easy to check that for (3.13) the straight line l8 = x− y − 1 is also invariant.
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In the case of Fig. 3.14b we have the straight lines (1.13) and the system (I.12)
from Theorem 1.1. If a = 1, then after the time rescaling t → −t this system
coincide with the system (3.13).
Configuration (B4): (2(2)r, 2(2)r, 2(2)r, 1r). We can consider l1,2 = x and l3,4 =
y. The property (II.27) impose to other straight lines of this configuration to pass
through the origin of coordinate (see Fig. 3.16). Rescaling Ox axis we can write
l5,6 = x−y. The conditions imposed to a cubic system to have the invariant straight
lines l1, . . . l6 leads to the system (I.13) from Theorem 1.1, and we observe that this
system has the seventh invariant affine straight line: l7 = ax− y − 2ay.

If a(a+ 1)(2a+ 1) = 0, then gcd(P,Q) 6= const, and if 3a+ 2 = 0 (3a+ 1 = 0),
then the invariant straight line y = 0 (x− y = 0) has parallel multiplicity equal to
three.

Figure 3.14a Figure 3.14b Figure 3.15a Figure 3.15b

Configuration (B8): (2r, 2c1, 2c1, 1r). Let l1, . . . , l7 be the straight lines of this
configuration, where l1,2,7 are real, l3, . . . , l6 are relative complex and l1 ‖ l2, l3 ‖ l4,
l5 ‖ l6, l5 = l3, l6 = l4, lj ∦ lk, (j, k) ∈ {(1, 3), (1, 5), (1, 7), (3, 7), (5, 7)}. According
to properties (II.2), (II.7) and (II.16), the only cases illustrated in Fig. 3.15 can
occur. Let O3,5 = l3 ∩ l5 ∈ l1. Via an affine transformation of the phase plane we
can make the straight line l3 to be written into form y−ix = 0 and then l5 = y+ix.
We rotate the phase plane such that the straight line l1 coincides with the Oy axis,
and apply rescaling x → kx, y → ky, k 6= 0. We choose k such that l2 passes
through the point (−1, 0). Finally, we obtain: l1 = x, l2 = x + 1, l3,5 = y ∓ ix,
l4,6 = y ∓ ix − a ∓ bi, a, b ∈ R, b 6= 0. In the case Fig. 3.15a we have b = 1,
l4∩ l6 = (−1, a), l7 = y+ax, and the system (I.14) from the Theorem 1.1. We note
that if a = 0, then the system (I.14) has an additionally invariant affine straight
line l8 = 2x+ 1.

In the case Fig. 3.15b we have the straight lines l1 = x, l2 = x+ 1, l3,5 = y∓ ix,
l4,6 = y∓ i(x+ 2), l7 = y, and the cubic system with these invariant affine straight
lines looks:

ẋ = 2x(x+ 1)(x+ 2), ẏ = y(4 + 6x+ 3x2 + y2).

The obtained system has also the eighth invariant affine straight line: l8 = x+2.

Figure 3.16 Figure 3.17 Figure 3.18 Figure 3.19
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Configuration (B12): (2(2)r, 2(2)c1, 2(2)c1, 1r). Let l1 = l2, l3 = l4, l5 = l6,
l5 = l3, l7 6‖ l1, l7 6‖ l3. Properties (II.7) and (II.27) allow these straight lines to
have only reciprocal position illustrated in Fig. 3.17.

Via affine transformations similar to those applied to the configuration (B8), we
can write l1,2 = x, l3,4 = y − ix, l5,6 = y + ix. Then, l7 = y − ax, a ≥ 0. These
straight lines are invariant for the cubic system (I.15) from the Theorem 1.1. If
a = 0, then the straight line l1 has parallel multiplicity equal to three, which is not
allowed in this configuration.
Configuration (B13): (2c0, 2c0, 2c0, 1r) (Fig. 3.18). We can consider l1 = x− i,
l2 = x+ i, l3 = y − i, l4 = y + i. Then l5 = y − a(x− i)− i, l6 = y − a(x+ i) + i,
a ∈ R, a(a − 1) 6= 0, l7 = y − x. Forcing a generic cubic system to possess these
invariant straight lines, we arrive at the system (I.16) from the Theorem 1.1. If
a = 1/2 (a = 2), then (I.16) has one more invariant affine straight line: l8 = y
(l8 = x).
Configuration (B14): (2c0, 2c1, 2c1, 1r) (Fig. 3.19). We can take l1 = y − i,
l2 = y + i and l7 = x. The cubic system (2.1) with invariant straight lines l1, l2
and l7 has the form

ẋ = x(a10 + a20x+ a11y + a30x
2 + a21xy + a12y

2),

ẏ = (1 + y2)(b00 + b10x+ b01y).
(3.14)

We denote by l3, . . . , l6 the relatively complex straight lines and assume l3 ‖ l4,
l5 ‖ l6, l5 = l3, l6 = l4. Two of these straight lines pass through the point O1,7(0, i),
and other two - through the point O2,7(0,−i). Let l3 pass through the point O1,7,
i.e. it is described by an equation of the form y = (a+bi)x+i. Then the straight line
l4 passes through the point O2,7 and it is described by the equation y = (a+bi)x−i,
a, b ∈ R, b 6= 0. Via the rescaling x→ x/b we can make b = 1. Therefore we obtain
the straight lines l3,4 = y− (a+ i)x∓ i and l5,6 = y− (a− i)x± i. If these straight
lines are invariant for (3.14), then we get the system (I.17) from Theorem 1.1.

3.2.2. Qualitative study of systems (I.12)-(I.17).
Systems (I.12), (I.14), (I.16) and (I.17). The behavior of trajectories in sys-
tems (I.12), (I.14), (I.16) and (I.17) from Theorem 1.1 it is completely determined
by information from (1.13), (1.15), (1.17), (1.18) and Tables 3.6 - 3.9.

Table 3.6
System (I.12) (Fig. 1.12)

SP λ1; λ2 TSP SP λ1; λ2 TSP
O1(0, 0), −1; −a DNs X1∞(1, 0, 0) −a; −a DNs

O2(−1,−1)
O3(−1, 0), a+ 1; a+ 1 DNu X2,∞(1,−1, 0) −2(a+ 1); S
O4(0,−1) a+ 1
O5(− 1

2 ,−
1
2 ) a+1

4 ; −a+1
2 S X3,∞(1, a, 0) a(a+ 1); DNu

a(a+ 1)
O6( 1

a , 0), a+1
a ; − (a+1)2

a S Y∞(0, 1, 0) −1; −1 DNu

O7(−a+1
a ,−1)

O8(−1,−a− 1), a2 + a; S
O9(0, a) −(a+ 1)2
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Table 3.7
System (I.14) (Fig. 1.14)

SP λ1; λ2 TSP SP λ1; λ2 TSP
O1(0, 0), a2 + 1; a2 + 1 DNu X∞(1,−a, 0) −2(a2 + 1); S
O2(−1, a) a2 + 1
O3(− 1

2 ,
a
2 ) − 1

2 (a2 + 1); 1
4 (a2 + 1) S Y∞(0, 1, 0) −1; −1 DNs

Table 3.8
System (I.16) (Fig. 1.16)

SP λ1; λ2 TSP
O1(0, 0) 1− a; −2(1− a) S

X1∞(1, 0, 0) −a; −a DNu if a < 0;
DNs if a > 0

X2∞(1, 1, 0) −2(1− a); −(1− a) S
X3∞(1, a, 0) a(1− a); a(1− a) DNu if a < 0 or a > 1;

DNs if a ∈ (0, 1)
Y∞(0, 1, 0) 1; 1 DNu

Table 3.9
System (I.17) (Fig. 1.17)

SP λ1; λ2 TSP
O1(0, 0) −2; 1 S

O2(−1,−a), O3(1, a) −2(1 + ia); −2(1− ia) F s

X∞(1, 0, 0) 1 + a2; 1 + a2 DNu

Y∞(0, 1, 0) −1; 2 S

System (I.13) For this system we have Table 3.10.

Table 3.10
System (I.13) (Fig. 1.13)

SP λ1; λ2 TSP

O1(0, 0) 0; 0 P s(i)HHP s(i)HH −
if a(a+ 1)(2a+ 1) < 0 (> 0)

X1∞(1, 0, 0) −a; −a DNu if a < 0;
DNs if a > 0

X2∞(1, 1, 0) −a− 1; −a− 1 DNu if a < −1;
DNs if a > −1

X3∞(1, a
2a+1 , 0) − 2a(a+1)

2a+1 ; a(a+1)
2a+1 S

Y∞(0, 1, 0) 2a+ 1; 2a+ 1 DNu if a < −1/2;
DNs if a > −1/2

As we can see from Table 3.10, system (I.13) has a nilpotent singular point in
the finite part of the phase plane and four hyperbolic singular points at the infinity.
We can find the type of the nilpotent singular point by using blow-up method.
Therefore, applying to system (I.13) the transformation x = ρ cos θ, y = ρ sin θ, we
obtain

dρ

dτ
= ρ(a cos4 θ − (1 + 2a) sin4 θ + sin θ cos3 θ + (2 + 3a) sin3 θ cos θ),

dθ

dτ
= sin θ cos θ(sin θ − cos θ)(a cos θ − (1 + 2a) sin θ)),

(3.15)
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where τ = ρ2t. The vector field associated to the system (I.13) is symmetric with
respect to the origin of the coordinates. This allows us to consider the angle θ
from (3.15) to be between 0 and π. The singular points Mk of the system (3.15)
with the first coordinate ρ = 0 and the second coordinate θ ∈ [0, π), their eigen-
values λ1, λ2 and their types are, respectively: {M1(0, 0) : λ1,2 = ±a → saddle};
{M2(0, π2 ) : λ1,2 = ±(1 + 2a) → saddle}; {M3(0, π4 ) : λ1,2 = ± 1+a

2 → saddle};
{M4(0, arctan a

1+2a ) : λ1 = a(a+1)(2a+1)
5a2+4a+1 , λ2 = 2a(a+1)(2a+1)

5a2+4a+1 → stable node, if
a(a + 1)(ab + 1) < 0 and unstable node, if a(a + 1)(2a + 1) > 0}. Depending
on the values of the parameter a, the neighborhood of the singular point (0, 0)
consists from sectors of the type P sHHP sHH or of the type PuHHPuHH (see
Fig. 3.12c, 3.12d). From the topological point of view, the cubic system (I.13) has
the same phase portrait as the system (I.9) in the case a > 1, a 6= 3/2, 2, 3 (see Fig.
1.9b).
System (I.15). This system has only one non-hyperbolic finite singular point
and two hyperbolic singular points at the infinity (Table 3.11). Using blow-up
method we investigate the neighborhood of the origin of the coordinates. In polar
coordinates we can write (I.15) as:

ρ̇ = ρ(2 cos2 θ + a cos θ sin θ + sin2 θ),

θ̇ = cos θ(sin θ − a cos θ).
(3.16)

The singular points Mk of the system (3.16) with first coordinate ρ = 0 and the
second coordinate θ ∈ [0, π), their characteristic values λ1, λ2 and their type are:
{M1(0, π2 ), M2(0,−π2 ): λ1 = −1;λ2 = 1− saddle;{M3(0, arctan a), M3(0, arctan a+
π) : λ1 = 1;λ2 = 2 – unstable node. The behavior of the trajectories near (0, 0) is
illustrated in Fig. 3.20.

Figure 3.20a Figure 3.20b
Table 3.11

System (I.15) (Fig. 1.15)
SP λ1; λ2 TSP

O1(0, 0) 0; 0 PuPu

X∞(1, 0, 0) −2(a2 + 1); a2 + 1 S
Y∞(0, 1, 0) −1; −1 DNs

As all of the cases mentioned above are considered, therefore Theorem 1.1 is
proved.
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