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HOPF BIFURCATIONS AND SMALL AMPLITUDE LIMIT
CYCLES IN RUCKLIDGE SYSTEMS

FABIO SCALCO DIAS, LUIS FERNANDO MELLO

Abstract. In this article we study Hopf bifurcations and small amplitude

limit cycles in a family of quadratic systems in the three dimensional space
called Rucklidge systems. Bifurcation analysis at the equilibria of Rucklidge

system is pushed forward toward the calculation of the second Lyapunov co-

efficient, which makes possible the determination of the Lyapunov and higher
order structural stability.

1. Introduction

In this article we study Hopf bifurcations and small amplitude limit cycles in the
following family of quadratic systems, called Rucklidge system,

x′ = −ax+ by − yz, y′ = x, z′ = −z + y2, (1.1)

where (x, y, z) ∈ R3 are the state variables and (a, b) ∈ W = R2 are real parameters.
Despite the simplicity, system (1.1) has a rich local dynamical behavior and was
widely analyzed (see [9] and references therein).

Quadratic systems in R3 are some of the simplest systems after linear ones and
have been extensively studied in the last five decades. Examples of such systems
are the Lorenz system, the Chen system, the Liu system, the Rössler system, the
Rikitake system, the Lü system, the Genesio system among several others. See [2]
and references therein.

An interesting problem related to quadratic systems defined in R3 is the deter-
mination of the number of their limit cycles. In R2 this number is finite [3, 5]. For
quadratic systems in Rn, n ≥ 3 the scenario is very different. Recently Ferragut,
Llibre and Pantazi [4] provided an example of quadratic vector field in R3 and an
analytical proof that it has infinitely many limit cycles.

It is well known (see [9] and references therein) that system (1.1) has at most
three equilibria E0 = (0, 0, 0) and E± = (0,±

√
b, b), when b ≥ 0. In order to

study the stability of E± it is sufficient only to study the stability of E+ due to the
symmetry (x, y, z)→ (−x,−y, z) presented by system (1.1).

In general, to decide the stability of a non–hyperbolic equilibrium point of a
system in R3 is very difficult even for quadratic systems. As far as we know, the
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stabilities of E0 and E± were analyzed in [9]. But the studies of Hopf bifurcations
presented in [9] are incomplete and are not correct.

Consider the subset U ⊂ W of the parameter plane where b 6= 0. Write U =
U1 ∪ U2 ∪ U3 ∪H0, where

U1 = {a ∈ R, b > 0}, U2 = {a < 0, b < 0},
U3 = {a > 0, b < 0}, H0 = {a = ac = 0, b < 0}.

From the linear analysis of system (1.1) at E0 the following statements hold: if
(a, b) ∈ U1 ∪ U2 then E0 is unstable; if (a, b) ∈ U3 then E0 is locally asymptotically
stable; if (a, b) ∈ H0 then E0 is a non–hyperbolic equilibrium of Hopf type, that is
the Jacobian matrix of system (1.1) at E0 has one negative real eigenvalue and a
pair of purely imaginary eigenvalues

θ1 = −1 < 0, θ2,3 = ±i
√
−b.

Now consider the subset W+ ⊂ W of the parameter plane where b > 0. Write
W+ =W1 ∪W2 ∪W3 ∪H+, where

W1 = {a ≤ 0, b > 0}, W2 =
{
a > 0, b >

a(a+ 1)
2

}
,

W3 =
{
a > 0, 0 < b <

a(a+ 1)
2

}
, H+ =

{
a > 0, b = bc =

a(a+ 1)
2

}
.

From the linear analysis of system (1.1) at E+ the following statements hold: if
(a, b) ∈ W1 ∪W2 then E+ is unstable; if (a, b) ∈ W3 then E+ is locally asymptoti-
cally stable; if (a, b) ∈ H+ then E+ is a non–hyperbolic equilibrium of Hopf type,
that is the Jacobian matrix of system (1.1) at E+ has one negative real eigenvalue
and a pair of purely imaginary eigenvalues

λ1 = −(a+ 1) < 0, λ2,3 = ±i
√
a.

The sets H0 and H+ are called the Hopf curves of the equilibria E0 and E+,
respectively. From the Center Manifold Theorem, at a Hopf point a two dimensional
center manifold is well–defined, it is invariant under the flow generated by (1.1) and
can be continued with arbitrary high class of differentiability to nearby parameter
values (see [6, p. 152]). These center manifolds are normally attracting since
θ1 < 0 and λ1 < 0. So it is enough to study the stability of E0 and E+ for the
flow restricted to the family of parameter–dependent continuations of these center
manifolds.

It is important to emphasize that the study the stability of E0 and E+ for
the flow of system (1.1) restricted to the center manifolds is in fact the study of
the center–focus problem in an extended version to systems in R3. Although this
problem has a solution for quadratic systems in the plane [1] it remains open for
quadratic systems in R3.

The study carried out in the present article may contribute to understand an-
alytically the stability of the equilibria E0 and E+ of system (1.1). By using the
classical projection method which allows us to calculate the first and the second
Lyapunov coefficients associated to the Hopf points, we study the stability of E0

and E+ as well as the number of small amplitude limit cycles in system (1.1). More
precisely, in this article we prove the following two theorems.
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Theorem 1.1. Consider system (1.1) with parameter values in H0; that is, a =
ac = 0 and b < 0. Then the first Lyapunov coefficient associated to E0 is positive,
so E0 is an unstable equilibrium point.

Theorem 1.2. Consider system (1.1) with parameter values in H+. Define a1 =
6 +
√

37. The following statements hold.
(1) If 0 < a < a1 and b = bc then the first Lyapunov coefficient associated to

E+ is negative, so E+ is locally asymptotically stable.
(2) If a > a1 and b = bc then the first Lyapunov coefficient associated to E+ is

positive, so E+ is unstable.
(3) If a = a1 and b = bc then the first Lyapunov coefficient associated to E+

vanishes and the second Lyapunov coefficient is positive, so E+ is unstable.

The proofs of Theorems 1.1 and 1.2, and the study of the small amplitude limit
cycles of system (1.1) are presented in Section 3. In Section 2, we present a review on
the methods of Hopf bifurcation analysis. Some concluding remarks are presented
in Section 4.

2. Review on Hopf bifurcation

In this section we present a review of the projection method described in [6]
for the calculation of the first and second Lyapunov coefficients associated to Hopf
bifurcations. This method was extended to the calculation of the third and fourth
Lyapunov coefficients in [7] and [8], respectively.

Consider the differential equation

x′ = f(x, ζ), (2.1)

where x ∈ R3 and ζ ∈ R2 are respectively vectors representing phase variables and
control parameters. Assume that f is of class C∞ in R3 × R2. Suppose that (2.1)
has an equilibrium point x = x0 at ζ = ζ0 and, denoting the variable x − x0 also
by x, write

F (x) = f(x, ζ0) (2.2)
as

F (x) = Ax+
1
2
B(x, x) +

1
6
C(x, x, x) +

1
24
D(x, x, x, x)

+
1

120
E(x, x, x, x, x) +O(||x||6),

(2.3)

where A = fx(0, ζ0) and, for i = 1, 2, 3,

Bi(x, y) =
3∑

j,k=1

∂2Fi(ξ)
∂ξj∂ξk

∣∣∣
ξ=0

xj yk, Ci(x, y, z) =
3∑

j,k,l=1

∂3Fi(ξ)
∂ξj ∂ξk ∂ξl

∣∣∣
ξ=0

xj yk zl,

and so on for Di and Ei.
Suppose that (x0, ζ0) = (0, ζ0) is an equilibrium point of (2.1) where the Jacobian

matrix A has a pair of purely imaginary eigenvalues λ2,3 = ±iω0, ω0 > 0, and the
other eigenvalue λ1 6= 0. Let T c be the generalized eigenspace of A corresponding
to λ2,3. By this it is meant the largest subspace invariant by A on which the
eigenvalues are λ2,3. Let p, q ∈ C3 be vectors such that

Aq = iω0q, A>p = −iω0p, 〈p, q〉 =
3∑
i=1

p̄iqi = 1, (2.4)
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where A> is the transpose of the matrix A. Any vector y ∈ T c can be represented
as y = wq + w̄q̄, where w = 〈p, y〉 ∈ C. The two dimensional center manifold
associated to the eigenvalues λ2,3 = ±iω0 can be parameterized by the variables w
and w̄ by means of an immersion of the form x = H(w, w̄), where H : C2 → R3

has a Taylor expansion of the form

H(w, w̄) = wq + w̄q̄ +
∑

2≤j+k≤5

1
j!k!

hjkw
jw̄k +O(|w|6), (2.5)

with hjk ∈ C3 and hjk = h̄kj . Substituting this expression into (2.1) we obtain the
following differential equation

Hww
′ +Hw̄w̄

′ = F (H(w, w̄)), (2.6)

where F is given by (2.2). The complex vectors hij are obtained solving the system
of linear equations defined by the coefficients of (2.6), taking into account the
coefficients of F (see Remark 3.1 of [7, p. 27]), so that system (2.6), on the chart
w for a central manifold, writes as follows, with Gjk ∈ C,

w′ = iω0w +
1
2
G21w|w|2 +

1
12

G32w|w|4 +O(|w|6).

The first Lyapunov coefficient l1 is defined by

l1 =
1
2

ReG21, (2.7)

where G21 = 〈p,H21〉 and H21 = C(q, q, q̄) +B(q̄, h20) + 2B(q, h11).
The second Lyapunov coefficient is defined by

l2 =
1
12

ReG32, (2.8)

where G32 = 〈p,H32〉 and

H32 = 6B(h11, h21) +B(h̄20, h30) + 3B(h̄21, h20) + 3B(q, h22) + 2B(q̄, h31)

+ 6C(q, h11, h11) + 3C(q, h̄20, h20) + 3C(q, q, h̄21) + 6C(q, q̄, h21)

+ 6C(q̄, h20, h11) + C(q̄, q̄, h30) +D(q, q, q, h̄20) + 6D(q, q, q̄, h11)

+ 3D(q, q̄, q̄, h20) + E(q, q, q, q̄, q̄)− 6G21h21 − 3Ḡ21h21,

A Hopf point of codimension one is an equilibrium point (x0, ζ0) such that linear
part of the vector field f has eigenvalues λ2 and λ3 = λ with λ = λ(ζ) = γ(ζ)+iη(ζ),
γ(ζ0) = 0, η(ζ0) = ω0 > 0, the other eigenvalue λ1 6= 0 and the first Lyapunov
coefficient, l1(ζ0), is different from zero. A transversal Hopf point of codimension
one is a Hopf point of codimension one for which the complex eigenvalues depending
on the parameters cross the imaginary axis with nonzero derivative. When l1 < 0
(l1 > 0) one family of stable (unstable) periodic orbits can be found on the center
manifold and its continuation, shrinking to the Hopf point.

Hopf point of codimension 2 is an equilibrium (x0, ζ0) of f that satisfies the def-
inition of Hopf point of codimension one, except that l1(ζ0) = 0, and an additional
condition that the second Lyapunov coefficient, l2(ζ0), is nonzero. This point is
transversal if the sets γ−1(0) and l−1

1 (0) have transversal intersection, or equiva-
lently, if the map ζ 7→ (γ(ζ), l1(ζ)) is regular at ζ = ζ0. The bifurcation diagrams
for l2 6= 0 can be found in [6, p. 313]. In this bifurcation diagram two families of
small amplitude limit cycles can be found.
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3. Proofs of Theorems 1.1 and 1.2

3.1. Proof of Theorem 1.1. In this subsection we study Hopf bifurcations that
occur at the equilibrium E0 for parameters in the set H0.

Theorem 3.1. Consider system (1.1) with parameter values in H0. Then the first
Lyapunov coefficient at E0 is given by

l1(ac, b) =
2

1− 4b
> 0, (3.1)

since b < 0. If τ0 = (ac, b) ∈ H0 then system (1.1) has a transversal Hopf point at
E0 for the parameter vector τ0.

Proof. For parameters on the Hopf curveH0, the eigenvalues of the Jacobian matrix
of system (1.1) at E0 are θ1 = −1 < 0, θ2,3 = ±iω0, ω0 =

√
−b, b < 0, the

eigenvectors q and p defined in (2.4) are

q = (i
√
−b, 1, 0), p =

( i

2
√
−b

,
1
2
, 0
)

and the multilinear symmetric functions B and C can be written as

B(x, y) = (−(x2y3 + x3y2), 0, 2x2y2) , C(x, y, z) = (0, 0, 0) .

The complex vectors h11 and h20 are given by

h11 = (0, 0, 2) , h20 =
(

0, 0,
2

1 + i2
√
−b

)
.

By simple calculations, the first Lyapunov coefficient (2.7) is given by

l1(ac, b) =
2

1− 4b
,

which is positive, since b < 0. It remains only to verify the transversality condition
of the Hopf bifurcation. In order to do so, consider the family of differential equa-
tions (1.1) regarded as dependent on the parameter a. The real part, γ = γ(a), of
the pair of complex eigenvalues at the critical parameter a = ac = 0 verifies

γ′(ac) = Re
〈
p,
dA

da

∣∣∣
a=ac

q
〉

= −1
2
< 0.

In the above expression, A is the Jacobian matrix of system (1.1) at E0. Therefore,
the transversality condition at the Hopf point holds. �

The proof of Theorem 1.1 follows from Theorem 3.1.
From Theorem 3.1, the sign of the first Lyapunov coefficient at E0 is positive for

parameters in H0. Thus the equilibrium E0 is a weak repelling focus (for the flow of
system (1.1) restricted to the center manifold) and there is one unstable limit cycle
near the asymptotically stable equilibrium E0 for suitable value of the parameters
(a > 0). See the pertinent bifurcation diagram in [6, p. 89]. See Figures 1 and 2
where the stability of E0 and small amplitude limit cycles are depicted.
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3.2. Proof of Theorem 1.2. In this subsection we study Hopf bifurcations that
occur at the equilibrium E+ for parameters in the set H+.

Theorem 3.2. Consider system (1.1) with parameter values in H+. Then the first
Lyapunov coefficient at E+ is given by

l1(a, bc) =
2(a2 − 12a− 1)

a(a+ 1)(a(a+ 3) + 1)(a(a+ 6) + 1)
. (3.2)

If ζ0 = (a, bc) ∈ H+ is such that a 6= a1 then system (1.1) has a transversal Hopf
point at E+ for the parameter vector ζ0.

Proof. For parameters on the Hopf curveH+, the eigenvalues of the Jacobian matrix
of system (1.1) at E+ are λ1 = −(1 + a) < 0, λ2,3 = ±iω0, ω0 =

√
a, a > 0, the

eigenvectors q and p defined in (2.4) are

q =
(
− ω0 − i√

2c
,
iω0 + 1√

2cω0

, 1
)
,

p =
( ic√

2(c2 − iω0)
,
c(iω0 + 1)ω0√

2(c2 − iω0)
,

1
2
− 1

2c2 − 2iω0

)
where c =

√
1 + a, and the multilinear symmetric functions B and C can be written

as
B(x, y) = (−(x2y3 + x3y2), 0, 2x2y2) , C(x, y, z) = (0, 0, 0) .

The complex vectors h11 and h20 are given by

h11 =
(

0,− ω2
0 + 3√
2c3ω3

0

,− 2
c2ω2

0

)
,

h20 =
( √

2(5iω0 + 3)(ω0 − i)
cω2

0 (c2 − 2(ω0(2ω0 + 3i) + 2))
,

ω0(5ω0 − 8i)− 3√
2cω3

0 (c2 − 2(ω0(2ω0 + 3i) + 2))
,

−
2i(ω0 − i)

(
c2 + ω0(ω0 + i) + 2

)
c2ω2

0 (c2 − 2(ω0(2ω0 + 3i) + 2))

)
.

Therefore, the first Lyapunov coefficient (2.7) is

l1 =
D(c, ω0)

2c2ω4
0 (c4 + ω2

0) (c4 − 8 (ω2
0 + 1) c2 + 4 (ω2

0 + 4) (4ω2
0 + 1))

,

where

D(c, ω0) =
(
7ω2

0 − 9
)
c6 +

(
−21ω4

0 + 76ω2
0 + 69

)
c4 − 6ω4

0

(
4ω4

0 + 33ω2
0 + 66

)
+ 2

(
19ω6

0 + 75ω4
0 − 190ω2

0 − 78
)
c2 + 306ω2

0 + 96.

Substituting ω0 =
√
a and c =

√
1 + a into the expression of l1, it results (3.2).

It remains only to verify the transversality condition of the Hopf bifurcation.
In order to do so, consider the family of differential equations (1.1) regarded as
dependent on the parameter b. The real part, γ = γ(b), of the pair of complex
eigenvalues at the critical parameter b = bc verifies

γ′(bc) = Re
〈
p,
dA

db

∣∣∣
b=bc

q
〉

=
a+ 2

a3 + 4a2 + 4a+ 1
> 0,

since a > 0. In the above expression A is the Jacobian matrix of system (1.1) at
E+. Therefore, the transversality condition at the Hopf point holds. �
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The sign of the first Lyapunov coefficient (3.2) is determined by the sign of
the numerator of (3.2) since the denominator is positive. If ζ0 = (a, bc) ∈ H+,
a 6= a1 then l1(ζ0) 6= 0 and system (1.1) has a transversal Hopf point at E+ for
the parameter vector ζ0. More specifically, if ζ0 = (a, bc) ∈ H+, 0 < a < a1, then
l1(ζ0) < 0 and the Hopf point at E+ is asymptotically stable (weak attracting focus
for the flow of system (1.1) restricted to the center manifold) and for a suitable ζ
close to ζ0 there exists a stable limit cycle near the unstable equilibrium E+; if ζ0 =
(a, bc) ∈ H+, a > a1, then l1(ζ0) > 0 and the Hopf point at E+ is unstable (weak
repelling focus for the flow of system (1.1) restricted to the center manifold) and for
a suitable ζ close to ζ0 there exists an unstable limit cycle near the asymptotically
stable equilibrium E+. See Figures 1 and 2 where the stability of E+ and small
amplitude limit cycles are depicted.

In the next theorem we study the stability of the equilibrium E+ for the param-
eters in H+ when a = a1.

Theorem 3.3. Consider system (1.1) with parameters in H+, a = a1. Then the
second Lyapunov coefficient at E+ is positive.

Proof. Due to the quadratic nature of system (1.1), the multilinear symmetric
functions D and E are D(x, y, z, w) = E(x, y, z, w, r) = (0, 0, 0). The complex
vectors hij are too long and will be omitted here. After a long calculation, it
follows that the second Lyapunov coefficient (2.8) at E+ is given by

l2(a, bc) =
N(a)

3a3(1 + a)3(1 + a(3 + a))3(1 + a(6 + a))3(1 + a (11 + a))
, (3.3)

where

N(a) = 20a13 + 3956a12 + 62848a11 + 394248a10 + 1125116a9

20212a8 − 8288340a7 − 16285036a6 − 11735384a5

− 3575472a4 − 523708a3 − 44300a2 − 2600a− 72.

To study the real zeros of N we recall Descartes Theorem: the number of real
positive roots of the real algebraic equation N = 0, counted with multiplicities, is
at most the number of sign–changes of terms of N . It is easy to see that N(a) = 0
has at most one positive real root. Since

N(2) = − 725431
58852827

< 0 and N(3) =
341087

445944744
> 0,

the root of the equation N = 0 is in the open interval (2, 3). Therefore N(a1) > 0.
It follows that the sign of the second Lyapunov coefficient is positive, since the
denominator is positive. �

From Theorem 3.3, the sign of the second Lyapunov coefficient at E+ is positive
for parameters where l1 = 0. Thus the equilibrium E+ is a weak repelling focus
(for the flow of system (1.1) restricted to the center manifold) and there are two
limit cycles, one stable and the other unstable, near the equilibrium E+ for suitable
value of the parameters. See the pertinent bifurcation diagram in [6, p. 313]. See
also Figures 1 and 2 where the stability of E+ and small amplitude limit cycles are
depicted.

The proof of Theorem 1.2 follows from Theorems 3.2 and 3.3.
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4. Concluding remarks

This paper starts reviewing the stability analysis which accounts for the charac-
terization, in the plane of parameters, of the structural as well as Lyapunov stability
of the equilibria of system (1.1). It continues with the extension of the analysis to
the first order, codimension one points, based on the calculation of the first Lya-
punov coefficient for the equilibrium points E0 and E±. The bifurcation analysis at
the equilibria E± of system (1.1) is pushed forward to the calculation of the second
Lyapunov coefficient, which makes possible the determination of the Lyapunov as
well as higher order structural stability.

Figure 1. Bifurcation diagram of system (1.1). See also Figure 2

With the analytic data provided in the analysis performed here, the bifurcation
diagrams of equilibria E0 and E+ are established and are put together in Figures
1 and 2, without danger of confusion. These figures provide a qualitative synthesis
of the dynamical conclusions achieved at the parameter values where the system
(1.1) has the most complex equilibrium points.

In Figure 1 the dashed (continuous) curve H0 (H+) is the Hopf curve of the
equilibrium E0 (E+). The dotted curve S represents the curve of non–hyperbolic
periodic orbits. The point P1 has coordinates a = a1 and b = bc. The phase
portraits for the flow of system (1.1) restricted to the center manifold and its
continuations related to the points P1, . . . , P10 are illustrated in Figure 2 according
to the following convention: linear repelling focus in (a) for the points P3 (E+) and
P9 (E0); weak repelling focus in (b) for the points P2 (E+) and P8 (E0); linear
attracting focus and one repelling hyperbolic cycle in (c) for the points P7 (E+)
and P10 (E0); weak attracting focus and one repelling hyperbolic cycle in (d) for
the point P6 (E+); linear repelling focus and two hyperbolic cycles in (e) for the
point P5 (E+), linear repelling focus and one non–hyperbolic cycle in (f) for the
point P4 (E+); more weak repelling focus in (g) for the point P1 (E+).
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E-mail address: scalco@unifei.edu.br

Luis Fernando Mello
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