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RIESZ BASES GENERATED BY THE SPECTRA OF
STURM-LIOUVILLE PROBLEMS

TIGRAN HARUTYUNYAN, AVETIK PAHLEVANYAN, ANNA SRAPIONYAN

Abstract. Let {λ2
n}∞n=0 be the spectra of a Sturm-Liouville problem on [0, π].

We investigate the question: Do the systems {cos(λnx)}∞n=0 or {sin(λnx)}∞n=0

form Riesz bases in L2[0, π]? The answer is almost always positive.

1. Introduction and statement of results

Let µn = λ2
n(q, α, β), n = 0, 1, 2, . . . be the eigenvalues of the Sturm-Liouville

boundary-value problem L(q, α, β)

−y′′ + q(x)y = µy, x ∈ (0, π), µ ∈ C, (1.1)

y(0) cosα+ y′(0) sinα = 0, α ∈ (0, π], (1.2)

y(π) cosβ + y′(π) sinβ = 0, β ∈ [0, π), (1.3)

where q ∈ L1
R[0, π], that is q is a real, summable on [0, π] function. In the simplest

case, when q(x) = 0 almost everywhere (a.e.) on [0, π], eigenfunctions of the prob-
lem L(0, α, β), which satisfy the initial conditions y(0) = sinα, y′(0) = − cosα,
have the form

ϕ0
n(x, α, β) = cos(λn(0, α, β)x) sinα− sin(λn(0, α, β)x)

λn(0, α, β)
cosα, n = 0, 1, 2, . . .

(1.4)
and form an orthogonal basis in L2[0, π]. Here rises a natural question: Do the
systems of functions {cos(λn(0, α, β)x)}∞n=0 and {sin(λn(0, α, β)x)}∞n=0 separately
form basis in L2[0, π]? Examples show, that the answer is not always positive and
depends on α and β. When α = β = π

2 , then λn(0, π2 ,
π
2 ) = n, n = 0, 1, 2, . . .

and the system {cos(λn(0, π2 ,
π
2 )x)}∞n=0 = {cos(nx)}∞n=0 forms an orthogonal ba-

sis, but the system {sin(λn(0, π2 ,
π
2 )x)}∞n=0 = {0} ∪ {sin(nx)}∞n=1 is not a basis

because of the “unnecessary” member sin(0x) ≡ 0. However, throwing away this
“unnecessary” member, we obtain an orthogonal basis {sin(nx)}∞n=1. In the case
of α = π, β = 0 (see below section 2), λn(0, π, 0) = n + 1, n = 0, 1, 2, . . . and
the system {sin(λn(0, π, 0)x)}∞n=0 = {sin((n + 1)x)}∞n=0 forms an orthogonal ba-
sis, but the system {cos(λn(0, π, 0)x)}∞n=0 = {cos((n + 1)x)}∞n=0 is not complete
in L2[0, π], there is a lack of constant, but adding it, thus, taking the system
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{1} ∪ {cos((n + 1)x)}∞n=0 = {cos(nx)}∞n=0 we obtain a basis in L2[0, π]. The
question that we want to answer in this paper is the following: Do the systems
{cos(λn(q, α, β)x)}∞n=0 and {sin(λn(q, α, β)x)}∞n=0 form Riesz bases in L2[0, π]? The
answer we formulate in theorems 1.1 and 1.2 below.

Theorem 1.1. The system of functions {cos(λn(q, α, β)x)}∞n=0 is a Riesz basis in
L2[0, π] for each triple (q, α, β) ∈ L1

R[0, π] × (0, π] × [0, π), except one case: when
α = π, β = 0, the system {cos(λn(q, π, 0)x)}∞n=0 is not a basis, but the system
{f(x)} ∪ {cos(λn(q, π, 0)x)}∞n=0 is a Riesz basis in L2[0, π], if f(x) = cos(λx),
where λ2 6= λ2

n for every n = 0, 1, 2, . . . .

Theorem 1.2. 1. Let α, β ∈ (0, π). Then the systems
(a) {sin(λnx)}∞n=1, if there is no zeros among λn = λn(q, α, β), n =

0, 1, 2, . . . (i.e. in this case we “throw away” sin(λ0x)),
(b) {sin(λnx)}n0−1

n=0 ∪ {sin(λnx)}∞n=n0+1, if λn0(q, α, β) = 0 (we ”throw
away” sin(λn0x) ≡ 0).

are Riesz bases in L2[0, π].
2. Let α = π, β ∈ (0, π) or α ∈ (0, π), β = 0. Then the systems

(a) {sin(λnx)}∞n=0, if there is no zeros among λn = λn(q, α, β), n =
0, 1, 2, . . . ,

(b) {sin(λnx)}n0−1
n=0 ∪ {x} ∪ {sin(λnx)}∞n=n0+1, if λn0 = 0.

are Riesz bases in L2[0, π].
3. Let α = π, β = 0. The answer is the same as in case 2.

The Riesz basicity of the systems of functions of sines and cosines in L2[0, π]
has been studied in many papers (see, for example, [1, 6, 9, 13, 14, 16]) and is also
associated with Riesz basicity in L2[−π, π] the systems of the form {eiλnx}∞n=−∞
(see, e.g. [7, 8, 15]). Completeness and Riesz basicity of systems of sines and cosines
are used in many related areas of mathematics, in particular, in solutions of the
inverse problems in spectral theory of operators (see, e.g. [1, 2, 3, 10, 11]).

This article is organized as follows. In section 2 we give some necessary infor-
mation and the results of [6], which are more similar to ours. In section 3 we prove
theorems 1.1 and 1.2.

2. Preliminaries

Eigenvalues of the problem L(q, α, β). The dependence of the eigenvalues of
the Sturm-Liouville problem on parameters α and β from the boundary conditions
(1.2) and (1.3) was investigated in [5], where the following theorem was proved.

Theorem 2.1. The smallest eigenvalue has the property

lim
α→0

µ0(q, α, β) = −∞, lim
β→π

µ0(q, α, β) = −∞. (2.1)

For eigenvalues µn(q, α, β), n ≥ 2, the formula

µn(q, α, β) = [n+ δn(α, β)]2 + [q] + rn(q, α, β) (2.2)
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holds, where [q] = 1
π

∫ π
0
q(x)dx,

δn(α, β) =
1
π

[
arccos

cosα√
[n+ δn(α, β)]2 sin2 α+ cos2 α

− arccos
cosβ√

[n+ δn(α, β)]2 sin2 β + cos2 β

] (2.3)

and rn(q, α, β) = o(1), when n → ∞, uniformly in α, β ∈ [0, π] and q from the
bounded subsets of L1

R[0, π] (we will write q ∈ BL1
R[0, π]).

Note that the formula (2.2) is the generalization of the asymptotic formulas
known prior to [5] for the eigenvalues of the Sturm-Liouville problem (see [1, 10,
11, 12]. More detailed table of the asymptotic formulas for eigenvalues of the
problem L(q, α, β) is in [11]). From (2.2) for λn(q, α, β) (µn = λ2

n) we obtain the
formula

λn(q, α, β) = n+ δn(α, β) +
[q]

2[n+ δn(α, β)]
+ ln(q, α, β) (2.4)

where ln = ln(q, α, β) = o(n−1) when n → ∞ uniformly for all q ∈ BL1
R[0, π] and

α, β ∈ [0, π]. From (2.3) easily follows that δn(α, β) = O(n−1) for α, β ∈ (0, π);
δn(α, β) = 1

2 +O(n−1) for α = π, β ∈ (0, π) and α ∈ (0, π), β = 0; and δn(π, 0) = 1
for all n = 2, 3, . . . . Thus, we distinguish 3 cases:

1. α, β ∈ (0, π); i.e. the interior points of the square [0, π] × [0, π], where
λn = λn(q, α, β) have the asymptotic property λn = n+O(n−1),

2. α = π, β ∈ (0, π) or α ∈ (0, π), β = 0 (i.e. right and bottom edges of
the square [0, π] × [0, π]), where λn have the asymptotic property λn =
n+ 1

2 +O(n−1),
3. α = π, β = 0, where λn(q, π, 0) = n+ 1 +O(n−1).

Riesz bases. The following three definitions and two lemmas are taken from [1].
Equivalent definitions and statements are available in other studies (see, e.g. [4, 6,
8]).

Definition 2.2. A basis {fj}∞j=1 of a separable Hilbert space H is called a Riesz
basis if it is derived from an orthonormal basis {ej}∞j=1 by linear bounded invertible
operator A, i.e., if fj = Aej , j = 1, 2, . . . .

Definition 2.3. Two sequences of elements {fj}∞j=1 and {gj}∞j=1 from H are called
quadratically close if

∑∞
j=1 ‖fj − gj‖

2
<∞.

Definition 2.4. A sequence {gn}∞n=0 is called ω-linearly independent, if the equal-
ity

∑∞
n=0 cngn = 0 is possible only when cn = 0 for n = 0, 1, 2, . . . .

Lemma 2.5. Let {fn}∞n=0 be a Riesz basis in H, {fn}∞n=0 and {gn}∞n=0 are quadrat-
ically close. If {gn}∞n=0 is ω-linearly independent, then {gn}∞n=0 is a Riesz basis in
H.

Lemma 2.6. Let {fn}∞n=0 be a Riesz basis in H, {fn}∞n=0 and {gn}∞n=0 are quadrat-
ically close. If {gn}∞n=0 is complete in H, then {gn}∞n=0 is ω-linearly independent
(and therefore, is a Riesz basis in H).

The following two theorems are proved in [6].
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Theorem 2.7. Let {λn}∞n=0 be a sequence of nonnegative numbers with the prop-
erty that λk 6= λm for k 6= m and of the form λn = n + δ + δn, with δn ∈
[−l, l] for sufficiently large n, where the constants δ ∈ [0, 1

2 ] and l ∈ (0, 1
4 ) sat-

isfy [1 + sin(2πδ)]
1
2 (1−cos(πl))+sin(πl) < 1. Then {cos(λnx)}∞n=0 is a Riesz basis

in L2[0, π].

Theorem 2.8. Let {λn}∞n=1 be a sequence of positive numbers of the form λn =
n− δ+ δn, having the same properties as in Theorem 2.7. Then {sin(λnx)}∞n=1is a
Riesz basis in L2[0, π].

It follows from (2.4) that the only circumstance, (essentially) preventing us to ap-
ply theorems 2.7 and 2.8 for proving Riesz basicity of systems {cos(λn(q, α, β)x)}∞n=0

and {sin(λn(q, α, β)x)}∞n=0, is that among the eigenvalues µn = λ2
n(q, α, β) may be

negative (see (2.1)), and accordingly among λn(q, α, β) may be (in a finite number)
pure imaginary ones. Can these λn interfere the Riesz basicity of the mentioned
systems? Our answer is contained in theorems 1.1 and 1.2.

3. Proofs of main Theorems

We will start with a lemma, which is an analogue of [6, Lemma 4].

Lemma 3.1. Let {ν2
n}∞n=0 and {λ2

n}∞n=0 be two real sequences such that ν2
k 6= ν2

m

and λ2
k 6= λ2

m, for k 6= m, and among which only a finite number of members
(ν2

0 , ν
2
1 , . . . , ν

2
n1

;λ2
0, λ

2
1, . . . , λ

2
n2

) can be negative, and the sequences are enumerated
in increasing order (ν2

0 < ν2
1 < · · · < ν2

n < . . . ;λ2
0 < λ2

1 < · · · < λ2
n < . . . ). Let

{νn} and {λn} have the asymptotic properties

νn = n+ δ +O(n−1), 0 ≤ δ ≤ 1, (3.1)

λn = n+ δn(α, β) +O(n−1), (3.2)

when n→∞ and, furthermore,
∞∑
n=0

|λn − νn|2 <∞. (3.3)

Then {cos(νnx)}∞n=0 is a Riesz basis in L2[0, π] if and only if {cos(λnx)}∞n=0 is a
Riesz basis in L2[0, π].

Proof. Set fn(x) = cos(νnx) and gn(x) = cos(λnx), n = 0, 1, 2 . . . . Assume {fn}∞n=0

is a Riesz basis in L2[0, π]. Since for real numbers νn and λn,

| cos(νnx)− cos(λnx)| = |2 sin
(λn − νn)x

2
sin

(λn + νn)x
2

|

≤ 2|sin (λn − νn)x
2

| ≤ |νn − λn|x ≤ π|νn − λn|,

we obtain that

‖cos(νnx)− cos(λnx)‖2 =
∫ π

0

| cos(νnx)− cos(λnx)|2dx ≤ π3|νn − λn|2.

Therefore,
∞∑
n=0

‖fn − gn‖2 =
n0∑
n=0

‖fn − gn‖2 +
∞∑

n=n0+1

‖fn − gn‖2
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≤M0 + π3
∞∑

n=n0+1

|λn − νn|2 <∞;

i.e., {fn}∞n=0 and {gn}∞n=0 are quadratically close (n0 = max{n1, n2}). According
to Lemma 2.5, to prove the Riesz basicity of the system {gn}∞n=0 it is enough to
prove its ω-linearly independence. Assume the contrary, i.e. let there is a sequence
{cn}∞n=0 ∈ l2, not identically zero, such that

∞∑
n=0

cngn = 0. (3.4)

Let λ ∈ C be such that λ 6= ±λn, n = 0, 1, 2, . . . , and define the function

g(x) =
∞∑
n=0

cn
λ2
n − λ2

gn(x). (3.5)

It follows from (2.2) that this series is uniformly convergent for x ∈ [0, π]. Similarly,
the series

g′(x) = −
∞∑
n=0

cnλn
λ2
n − λ2

sin(λnx) (3.6)

converges uniformly on [0, π]. Since g′′n = −λ2
ngn, we have (note, that here we

repeat the proof of [6])
m∑
n=0

cn
λ2
n − λ2

g′′n(x) = −
m∑
n=0

cnλ
2
n

λ2
n − λ2

gn(x) = −
m∑
n=0

cngn(x)− λ2
m∑
n=0

cn
λ2
n − λ2

gn(x).

Taking into account (3.4), we conclude that the sequence on the left-side of the last
equality converges in L2[0, π] to−λ2g(x), whenm→∞. This implies that g is twice
differentiable and satisfies the differential equation −g′′(x) = λ2g(x), x ∈ (0, π), and
initial conditions (see (3.5) and (3.6)):

g(0) = h(λ) =
∞∑
n=0

cn
λ2
n − λ2

, g′(0) = 0; (3.7)

i.e., g is the solution of the corresponding Cauchy problem, which is unique and
given by the formula

g(x) = h(λ) cos(λx). (3.8)

The function h(λ) defined by (3.7) is meromorphic, and taking into account that
{cn}∞n=0 6= {0}∞n=0, is not an identically zero function. Then it has no more than
countable number of isolated zeros. If h(λ) 6= 0, (3.5) and (3.8) show that cos(λx)
belongs to the closed linear span of the system {gn}∞n=0 in L2[0, π]. Since cos(λx) is
a continuous function of (λ, x), we obtain that cos(λx) belongs to closed linear span
of the system {gn}∞n=0 for all λ ∈ C. Particularly, the all cos(nx), n = 0, 1, 2, . . .
belong to the closed linear span of the system {gn}∞n=0, so the system {gn}∞n=0 is a
complete system in L2[0, π]. From Lemma 2.6 follows the ω-linearly independence
of the system {gn}∞n=0; i.e. we come to contradiction, and the Riesz basicity of
the system {gn}∞n=0 is proved. If we assume, that {gn}∞n=0 is a Riesz basis, then
similarly we can prove the Riesz basicity of the system {fn}∞n=0. Lemma 3.1 is
proved. �
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Let us now turn to the proof of the theorem 1.1. Let us start from the first case:
α, β ∈ (0, π). Let us take in Lemma 3.1 νn = n, fn(x) = cos(nx), and gn(x) =
cos(λn(q, α, β)x), n = 0, 1, 2, . . . . In this case λn(q, α, β) = n + O(n−1), and,
therefore, (3.3) holds; i.e., {fn} and {gn} are quadratically close. Since {fn}∞n=0 =
{cos(nx)}∞n=0 is a Riesz basis, then from the Lemma 3.1 follows the Riesz basicity
of the system {cos(λn(q, α, β)x)}∞n=0.

In the second case in Lemma 3.1 we take νn = n + 1
2 , fn(x) = cos((n + 1

2 )x),
and gn(x) = cos(λn(q, α, β)x), n = 0, 1, 2, . . . . In the second case λn(q, α, β) =
n + 1

2 + O(n−1) and therefore again holds (3.3); i.e. quadratically closeness. As
{cos((n+ 1

2 )x)}∞n=0 is the system of eigenfunctions of the Sturm-Liouville problem
L(0, π2 , 0), it is an orthogonal basis in L2[0, π] (and, particularly, is a Riesz basis).
From the Lemma 3.1 follows the Riesz basicity of the system {cos(λn(q, α, β)x)}∞n=0

in this case.
In the third case in Lemma 3.1 we take νn = n+1 (δ = 1), fn(x) = cos((n+1)x)

and gn(x) = cos(λn(q, π, 0)x), n = 0, 1, 2, . . . . If we assume that {gn}∞n=0 is a
Riesz basis, then from the asymptotic property λn(q, π, 0) = n + 1 + O(n−1) and
Lemma 3.1 follows the Riesz basicity of the system {fn}∞n=0 = {cos((n+ 1)x)}∞n=0,
which is incorrect, since it is even not complete. Therefore, {cosλn(q, π, 0)x}∞n=0

does not form a Riesz basis. But adding to this system a function f(x) = cos(λx),
where λ2 6= λ2

n for every n = 0, 1, 2, . . . and noticing that the system {f(x)} ∪
{cos(λn(q, π, 0)x)}∞n=0 is ω-linearly independent and quadratically close to the sys-
tem {cos(nx)}∞n=0, according to the Lemma 3.1, we get its Riesz basicity. Theorem
1.1 is proved.

Lemma 3.2. Let {ν2
n}∞n=0 and {λ2

n}∞n=0 are the same as in Lemma 3.1. Then
{sin(νnx)}∞n=0 is a Riesz basis in L2[0, π] if and only if {sin(λnx)}∞n=0 is a Riesz
basis in L2[0, π].

Proof. Set fn(x) = sin(νnx), gn(x) = sin(λnx), n = 0, 1, 2, . . . . Quadratic closeness
of the systems {fn}∞n=0 and {gn}∞n=0 can be showed in the same way as in Lemma
3.1. Function g(x) (see (3.5)) in this case is the solution of the Cauchy problem
−g′′ = λ2g, g(0) = 0, g′(0) = h1(λ) =

∑∞
n=0

cnλn

λ2
n−λ2 , and, therefore, has the form

g(x) = h1(λ) sin(λx)/λ. From the continuity of sin(λx)/λ as a function of two
variables (λ, x) follows that the equality

sin(λx)
λ

=
1

h1(λ)

∞∑
n=0

cn
λ2
n − λ2

sin(λnx) (3.9)

holds not only when h1(λ) 6= 0, but also for all λ ∈ C. Hence (3.9) is right for
λ = 1, 2, 3, . . . ; i.e., the all elements of the orthogonal basis {sin(nx)}∞n=1 are in the
closed linear span of the system {sin(λnx)}∞n=0; i.e., the system {sin(λnx)}∞n=0 is
complete in L2[0, π]. The rest of the proof is as in Lemma 3.1. �

Now the proof of Theorem 1.2 is: In stated in following cases:
(1.a) we take νn = n + 1 and accordingly {fn(x)}∞n=0 = {sin((n + 1)x)}∞n=0 =

{sin(nx)}∞n=1 and {gn(x)}∞n=1 = {sin(λnx)}∞n=1, as stated in Theorem 1.2.
Since {fn}∞n=0 is a Riesz basis (and even an orthogonal basis) and from the
asymptotic property λn = n + O(n−1) it follows that {fn} and {gn} are
quadratically close, therefore from Lemma 3.2 follows the Riesz basicity of
the system {sin(λnx)}∞n=1.
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(1.b) also {fn(x)}∞n=1 = {sin(nx)}∞n=1 and the system

{sin(λnx)}n0−1
n=0 ∪ {sin(λnx)}∞n=n0+1

is again quadratically close to {fn}∞n=1.
(2.a) we take νn = n + 1

2 , accordingly, fn(x) = sin((n + 1
2 )x), and gn(x) =

sin(λnx), n = 0, 1, . . . . Since {sin((n+ 1
2 )x)}∞n=0 is the system of eigenfunc-

tions of the self-adjoint problem L(0, π, π2 ), than it is an orthogonal basis
in L2[0, π]. The asymptotic property λn = n + 1

2 + O(n−1) ensures the
quadratically closeness of the systems {fn}∞n=0 and {gn}∞n=0, therefore in
this case the Riesz basicity of the system {gn}∞n=0 is proved.

(2.b) again fn(x) = sin((n+ 1
2 )x), n = 0, 1, . . . , and {gn} is different from the case

(2.a) with only one element gn0 , which has not any effect on quadratically
closeness of the systems {fn}∞n=0 and {gn}∞n=0.

(3) we take νn = n + 1 and fn(x) = sin((n + 1)x), n = 0, 1, 2, . . . ; i.e.,
{fn(x)}∞n=0 = {sin(nx)}∞n=1. The rest is followed from the asymptotic
property λn(q, π, 0) = n+ 1 +O(n−1), if we take gn(x) = sin(λn(q, π, 0)x),
n = 0, 1, . . . .

Therefore, theorem 1.2 is proved.

Remark 3.3. From lemmas 3.1 and 3.2 it easily follows that {cos(λn(q, α, β)x)}∞n=0

is a Riesz basis in L2[0, π] if and only if {cos(λn(0, α, β)x)}∞n=0 is a Riesz basis in
L2[0, π]. Similarly for sines. This means that the stability of Riesz basicity is not
affected by adding the potential q(·).
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