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EXISTENCE OF SOLUTIONS TO IMPULSIVE FRACTIONAL
PARTIAL NEUTRAL STOCHASTIC INTEGRO-DIFFERENTIAL

INCLUSIONS WITH STATE-DEPENDENT DELAY

ZUOMAO YAN, HONGWU ZHANG

Abstract. We study the existence of mild solutions for a class of impulsive

fractional partial neutral stochastic integro-differential inclusions with state-
dependent delay. We assume that the undelayed part generates a solution

operator and transform it into an integral equation. Sufficient conditions for

the existence of solutions are derived by using the nonlinear alternative of
Leray-Schauder type for multivalued maps due to O’Regan and properties of

the solution operator. An example is given to illustrate the theory.

1. Introduction

The study of impulsive functional differential or integro-differential systems is
linked to their utility in simulating processes and phenomena subject to short-time
perturbations during their evolution. The perturbations are performed discretely
and their duration is negligible in comparison with the total duration of the pro-
cesses and phenomena. Now impulsive partial neutral functional differential or
integro-differential systems have become an important object of investigation in
recent years stimulated by their numerous applications to problems arising in me-
chanics, electrical engineering, medicine, biology, ecology, etc. With regard to
this matter, we refer the reader to [11, 12, 19, 20, 33]. Besides impulsive effects,
stochastic effects likewise exist in real systems. Therefore, impulsive stochastic dif-
ferential equations describing these dynamical systems subject to both impulse and
stochastic changes have attracted considerable attention. Particularly, the papers
[5, 22, 27] considered the existence of mild solutions for some impulsive neutral sto-
chastic functional differential and integro-differential equations with infinite delay
in Hilbert spaces. As the generalization of classic impulsive differential equations,
impulsive stochastic differential inclusions in Hilbert spaces have attracted the re-
searchers great interest. Among them, Ren et al [30] established the controllability
of impulsive neutral stochastic functional differential inclusions with infinite de-
lay in an abstract space by means of the fixed point theorem for discontinuous
multi-valued operators due to Dhage.

2000 Mathematics Subject Classification. 34A37, 60H10, 34K50, 34G25, 26A33.
Key words and phrases. Impulsive stochastic integro-differential inclusions;

state-dependent delay; multi-valued map; fractional neutral integro-differential inclusions.
c©2013 Texas State University - San Marcos.

Submitted September 25, 2012. Published March 29, 2013.

1



2 Z. YAN, H. ZHANG EJDE-2013/81

On the other hand, fractional differential equations have gained considerable im-
portance due to their application in various sciences, such as physics, mechanics,
chemistry, engineering, etc.. In the recent years, there has been a significant de-
velopment in ordinary and partial differential equations involving fractional deriva-
tives; see the monograph of Kilbas et al [23] and the papers [1, 3, 7, 24, 25] and
the references therein. The existence of solutions for fractional semilinear differen-
tial or integro-differential equations is one of the theoretical fields that investigated
by many authors [2, 16, 32]. Several papers [4, 15] devoted to the existence of
mild solutions for abstract fractional functional differential and integro-differential
equations with state-dependent delay in Banach spaces by using fixed point tech-
niques. Recently, the existence, uniqueness and other quantitative and qualitative
properties of solutions to various impulsive semilinear fractional differential and
integrodifferential systems have been extensively studied in Banach spaces. For
example, Balachandran et al [6], Chauhan et al [8], Debbouche and Baleanu [14],
Mophou [28], Shu et al [31]. However, the deterministic models often fluctuate due
to noise, which is random or at least appears to be so. Therefore, we must move
from deterministic problems to stochastic ones. In this paper, we consider the exis-
tence of a class of impulsive fractional partial neutral stochastic integro-differential
inclusions with state-dependent delay of the form

dD(t, xt) ∈
∫ t

0

(t− s)α−2

Γ(α− 1)
AD(s, xs) ds dt+ F (t, xρ(t,xt)) dw(t), (1.1)

t ∈ J = [0, b], t 6= tk, k = 1, . . . ,m,

x0 = ϕ ∈ B, (1.2)

∆x(tk) = Ik(xtk), k = 1, . . . ,m, (1.3)

where the state x(·) takes values in a separable real Hilbert space H with inner
product (·, ·) and norm ‖ · ‖, 1 < α < 2, A : D(A) ⊂ H → H is a linear densely
defined operator of sectorial type on H. The time history xt : (−∞, 0]→ H given
by xt(θ) = x(t+ θ) belongs to some abstract phase space B defined axiomatically;
Let K be another separable Hilbert space with inner product (·, ·)K and norm ‖·‖K .
Suppose {w(t) : t ≥ 0} is a given K-valued Brownian motion or Wiener process with
a finite trace nuclear covariance operator Q > 0 defined on a complete probability
space (Ω,F , P ) equipped with a normal filtration {Ft}t≥0, which is generated by
the Wiener process w. We are also employing the same notation ‖ · ‖ for the norm
L(K,H), where L(K,H) denotes the space of all bounded linear operators from
K into H. The initial data {ϕ(t) : −∞ < t ≤ 0} is an F0-adapted, B-valued
random variable independent of the Wiener process w with finite second moment.
F,G,D(t, ϕ) = ϕ(0) +G(t, ϕ), ϕ ∈ B, ρ, Ik(k = 1, . . . ,m), are given functions to be
specified later. Moreover, let 0 < t1 < · · · < tm < b, are prefixed points and the
symbol ∆x(tk) = x(t+k )−x(t−k ), where x(t−k ) and x(t+k ) represent the right and left
limits of x(t) at t = tk, respectively.

We notice that the convolution integral in (1.1) is known as the Riemann-
Liouville fractional integral (see [9, 10]). In [10], the authors established the
existence of S-asymptotically ω-periodic solutions for fractional order functional
integro-differential equations with infinite delay. To the best of our knowledge,
the existence of mild solutions for the impulsive fractional partial neutral stochas-
tic integro-differential inclusions with state-dependent delay in Hilbert spaces has
not been investigated yet. Motivated by this consideration, in this paper we will
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study this interesting problem, which are natural generalizations of the concept of
mild solution for impulsive fractional evolution equations well known in the theory
of infinite dimensional deterministic systems. Specifically, sufficient conditions for
the existence are given by means of the nonlinear alternative of Leray-Schauder
type for multivalued maps due to O’Regan combined with the solution operator.
The known results appeared in [6, 8, 14, 28, 31] are generalized to the fractional
stochastic multi-valued settings and the case of infinite delay.

The rest of this paper is organized as follows. In Section 2, we introduce some
notations and necessary preliminaries. In Section 3, we give our main results.
In Section 4, an example is given to illustrate our results. In the last section,
concluding remarks are given.

2. Preliminaries

In this section, we introduce some basic definitions, notation and lemmas which
are used throughout this paper.

Let (Ω,F , P ) be a complete probability space equipped with some filtration
{Ft}t≥0 satisfying the usual conditions (i.e., it is right continuous and F0 contains
all P -null sets). Let {ei}∞i=1 be a complete orthonormal basis of K. Suppose
that {w(t) : t ≥ 0} is a cylindrical K-valued Wiener process with a finite trace
nuclear covariance operator Q ≥ 0, denote Tr(Q) =

∑∞
i=1 λi = λ < ∞, which

satisfies that Qei = λiei. So, actually, w(t) =
∑∞
i=1

√
λiwi(t)ei, where {wi(t)}∞i=1

are mutually independent one-dimensional standard Wiener processes. We assume
that Ft = σ{w(s) : 0 ≤ s ≤ t} is the σ-algebra generated by w and Fb = F .

Let L(K,H) denote the space of all bounded linear operators from K into H
equipped with the usual operator norm ‖ · ‖L(K,H). For ψ ∈ L(K,H) we define

‖ψ‖2Q = Tr(ψQψ∗) =
∞∑
n=1

‖
√
λnψen‖2.

If ‖ψ‖2Q < ∞, then ψ is called a Q-Hilbert-Schmidt operator. Let LQ(K,H) de-
note the space of all Q-Hilbert-Schmidt operators ψ. The completion LQ(K,H) of
L(K,H) with respect to the topology induced by the norm ‖ · ‖Q where ‖ψ‖2Q =
(ψ,ψ) is a Hilbert space with the above norm topology.

The collection of all strongly measurable, square integrable, H-valued random
variables, denoted by L2(Ω, H) is a Banach space equipped with norm‖x(·)‖L2 =
(E‖x(·, w)‖2)

1
2 , where the expectation, E is defined by Ex =

∫
Ω
x(w)dP . Let

C(J, L2(Ω, H)) be the Banach space of all continuous maps from J into L2(Ω, H)
satisfying the condition sup0≤t≤bE‖x(t)‖2 < ∞. Let L0

2(Ω, H) denote the family
of all F0-measurable, H-valued random variables x(0).

Definition 2.1 ([13]). We call S ⊂ Ω a P -null set if there is B ∈ F such that
S ⊆ B and P (B) = 0.

Definition 2.2 ([13]). A stochastic process {x(t) : t ≥ 0} in a real separable
Hilbert space H is a Wiener process if for each t ≥ 0,

(i) x(t) has continuous sample paths and independent increments.
(ii) x(t) ∈ L2(Ω, H) and E(x(t)) = 0.
(iii) Cov(w(t)−w(s)) = (t− s)Q, where Q ∈ L(K,H) is a nonnegative nuclear

operator.
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Definition 2.3 ([13]). Brownian motion is a continuous adapted real-valued pro-
cess x(t), t ≥ 0 such that

(i) x(0) = 0.
(ii) x(t)− x(s) is independent of Fs for all 0 ≤ s < t.
(iii) x(t)− x(s) is N(0, t− s)-distributed for all 0 ≤ s ≤ t.

Definition 2.4 ([13]). Normal filtration {Ft : 0 ≤ t ≤ b} is a right-continuous,
increasing family of sub σ-algebras of F .

Definition 2.5 ([13]). The process x is F0-adapted if each x(0) is measurable with
respect to F0.

We say that a function x : [µ, τ ] → H is a normalized piecewise continuous
function on [µ, τ ] if x is piecewise continuous and left continuous on (µ, τ ]. We
denote by PC([µ, τ ], H) the space formed by the normalized piecewise continuous,
Ft-adapted measurable processes from [µ, τ ] into H. In particular, we introduce
the space PC formed by all Ft-adapted measurable, H-valued stochastic processes
{x(t) : t ∈ [0, b]} such that x is continuous at t 6= tk, x(tk) = x(t−k ) and x(t+k ) exists
for k = 1, 2...,m. In this paper, we always assume that PC is endowed with the
norm

‖x‖PC = ( sup
0≤t≤b

E‖x(t)‖2)
1
2 .

Then, we have the following conclusion.

Lemma 2.6. The set (PC, ‖ · ‖PC) is a Banach space.

Proof. Let {xn} be a Cauchy sequence in PC, and fix any ε > 0. There is n0 ∈ N
such that for all n > n0 and p ∈ N

‖xn+p − xn‖PC = ( sup
0≤t≤b

E‖xn+p(t)− xn(t)‖2)
1
2 < ε

for each t ∈ [0, b]. From the above inequality it follows that the sequence xn(t) is
a Cauchy sequence in L2(Ω, H); moreover, by the completeness of L2(Ω, H) with
respect to ‖ · ‖L2 , for its limit x(t) := limxn(t), we obtain

E‖xn(t)− x(t)‖2 < ε2

for all n > n0. Consequently, ‖xn − x‖PC → 0 as n → ∞. Next, we need to show
that x ∈ PC. In fact, we verify that x is continuous. By

x(t+ ∆t)− x(t) = x(t+ ∆t)− xn(t+ ∆t) + xn(t+ ∆t)− xn(t) + xn(t)− x(t),

it follows that

E‖x(t+ ∆t)− x(t)‖2 ≤ 3E‖x(t+ ∆t)− xn(t+ ∆t)‖2

+ 3E‖xn(t+ ∆t)− xn(t)‖2 + 3E‖xn(t)− x(t)‖2.

Using the uniform convergence of xn to x with respect to ‖ · ‖L2 and the continuity
of xn, the continuity of x follows. The proof is complete. �

To simplify notation, we put t0 = 0, tm+1 = b and for x ∈ PC, we denote by
x̂k ∈ C([tk, tk+1];L2(Ω, H)), k = 0, 1, . . . ,m, the function given by

x̂k(t) :=

{
x(t) for t ∈ (tk, tk+1],
x(t+k ) for t = tk.
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Moreover, for B ⊆ PC we denote by B̂k, k = 0, 1, . . . ,m, the set B̂k = {x̂k : x ∈ B}.
The notation Br(x,H) stands for the closed ball with center at x and radius r > 0
in H.

Lemma 2.7. A set B ⊆ PC is relatively compact in PC if, and only if, the set B̂k
is relatively compact in C([tk, tk+1];L2(Ω, H)), for every k = 0, 1, . . . ,m.

Proof. Let B ⊆ PC be a subset and {x(i)(·)} be any sequence of B. Since B̂0 is a
relatively compact subset of C([0, t1];L2(Ω, H)). Then, there exists a subsequence
of x(i), labeled {x(i)

1 } ⊂ B, and x1 ∈ C([0, t1];L2(Ω, H)), such that

x
(i)
1 → x1 in C([0, t1];L2(Ω, H)) as i→∞.

Similarly, B̂k is a relatively compact subset of C([tk, tk+1];L2(Ω, H)), for k =
1, 2, . . . ,m. Then, there exists a subsequence of x(i), labeled {x(i)

k } ⊂ B, such
that xk ∈ C([tk, tk+1];L2(Ω, H)), and

x
(i)
k → xk in C([tk, tk+1];L2(Ω, H)) as i→∞.

Setting

x(t) =


x1(t), t ∈ [0, t1],
x2(t), t ∈ (t1, t2],
. . .

xm(t), t ∈ (tm, b],
then

x(i)
m → x in PC as i→∞.

Thus, the set B is relatively compact.
If set B ⊆ PC is relatively compact in PC and {x(i)(·)} be any sequence of B.

Then, for each t ∈ [0, t1], there exists a subsequence of x(i), labeled {x(i)
1 } ⊂ B, and

x1 ∈ PC, such that x(i)
1 → x1 in PC as i → ∞. From the definition of the set B̂0,

we can get
x̂

(i)
1 → x̂1 in C([0, t1];L2(Ω, H)) as i→∞.

Similarly, for each t ∈ [tk, tk+1](k = 1, 2, . . . ,m), there exists a subsequence of x(i),
labeled {x(i)

k } ⊂ B and xk ∈ PC, such that x(i)
k → xk in PC as i → ∞. From the

definition of the set B̂k, we can get

x̂
(i)
k → x̂k in C([tk, tk+1];L2(Ω, H)) as i→∞.

Thus, the set B̂k is relatively compact in C([tk, tk+1];L2(Ω, H)), for every k =
0, 1, . . . ,m. The proof is complete. �

In this article, we assume that the phase space (B, ‖ · ‖B) is a seminormed lin-
ear space of F0-measurable functions mapping (−∞, 0] into H, and satisfying the
following fundamental axioms due to Hale and Kato (see e.g., in [18]).

(A) If x : (−∞, σ + b]→ H, b > 0, is such that x|[σ,σ+b] ∈ C([σ, σ + b], H) and
xσ ∈ B, then for every t ∈ [σ, σ + b] the following conditions hold:

(i) xt is in B;
(ii) ‖x(t)‖ ≤ H̃‖xt‖B;
(iii) ‖xt‖B ≤ K(t − σ) sup{‖x(s)‖ : σ ≤ s ≤ t} + M(t − σ)‖xσ‖B, where

H̃ ≥ 0 is a constant; K,M : [0,∞) → [1,∞), K is continuous and M

is locally bounded, and H̃,K,M are independent of x(·).
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(B) For the function x(·) in (A), the function t→ xt is continuous from [σ, σ+b]
into B.

(C) The space B is complete.

The next result is a consequence of the phase space axioms.

Lemma 2.8. Let x : (−∞, b]→ H be an Ft-adapted measurable process such that
the F0-adapted process x0 = ϕ(t) ∈ L0

2(Ω,B) and x|J ∈ PC(J,H), then

‖xs‖B ≤MbE‖ϕ‖B +Kb sup
0≤s≤b

E‖x(s)‖,

where Kb = sup{K(t) : 0 ≤ t ≤ b}, Mb = sup{M(t) : 0 ≤ t ≤ b}.

Proof. For each fixed x ∈ H, we consider the function ξ(t) defined by ξ(t) =
sup{‖xs‖B : 0 ≤ s ≤ t}, 0 ≤ t ≤ b. Obviously, ξ is increasing. This combined with
the phase space axioms, we have

ξ(t) ≤M(t)‖ϕ‖B +K(t) sup
0≤s≤t

‖x(s)‖

≤Mb‖ϕ‖B +Kb‖x(t)‖.

Since E‖ϕ‖B <∞, E‖x(t)‖ <∞, the previous inequality holds. Consequently

E(ξ(t)) ≤ E(Mb‖ϕ‖B +Kb‖x(t)‖)
≤MbE‖ϕ‖B +Kb sup

0≤s≤b
E‖x(s)‖

for each t ∈ J . By the definition of ξ, we have

ξ(b) = E(ξ(b)) ≤MbE‖ϕ‖B +Kb sup
0≤s≤b

E‖x(s)‖,

and ‖xs‖B ≤ ξ(b) for each s ∈ J ; therefore,

‖xs‖B ≤MbE‖ϕ‖B +Kb sup
0≤s≤b

E‖x(s)‖.

The proof is complete. �

Let P(H) denote all the nonempty subsets of H. Let Pbd,cl(H), Pcp,cv(H),
Pbd,cl,cv(H), and Pcd(H) denote respectively the family of all nonempty bounded-
closed, compact-convex, bounded-closed-convex and compact-acyclic subsets of H
(see [17]). For x ∈ H and Y,Z ∈ Pbd,cl(H), we denote by D(x, Y ) = inf{‖x− y‖ :
y ∈ Y } and ρ̃(Y,Z) = supa∈Y D(a, Z), and the Hausdorff metric Hd : Pbd,cl(H) ×
Pbd,cl(H)→ R+ by Hd(A,B) = max{ρ̃(A,B), ρ̃(B,A)}.

A multi-valued map G is called upper semicontinuous (u.s.c.) on H if, for each
x0 ∈ H, the set G(x0) is a nonempty, closed subset of H and if, for each open
set S of H containing G(x0), there exists an open neighborhood S of x0 such that
G(S) ⊆ V . F is said to be completely continuous if G(V ) is relatively compact, for
every bounded subset V ⊆ H.

If the multi-valued map G is completely continuous with nonempty compact
values, then G is u.s.c. if and only if F has a closed graph, i.e. xn → x∗, yn →
y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗).

A multi-valued map G : J → Pbd,cl,cv(H) is measurable if for each x ∈ H, the
function t 7→ D(x,G(t)) is a measurable function on J .
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Definition 2.9 ([17]). Let G : H → Pbd,cl(H) be a multi-valued map. Then G is
called a multi-valued contraction if there exists a constant κ ∈ (0, 1) such that for
each x, y ∈ H we have

Hd(G(x)−G(y)) ≤ κ‖x− y‖.
The constant κ is called a contraction constant of G.

A closed and linear operator A is said to be sectorial of type ω if there exist
0 < θ < π/2, M > 0 and ω ∈ R such that its resolvent exists outside the sector
ω + Sθ := {ω + λ : λ ∈ C| arg(−λ) < θ} and ‖(λ− A)−1‖ ≤ M

|λ−ω| , λ /∈ ω + Sθ. To
give an operator theoretical approach we recall the following definition.

Definition 2.10 ([10]). Let A be a closed and linear operator with domain D(A)
defined on a Hilbert space H. We call A the generator of a solution operator if
there exist ω ∈ R and a strongly continuous function Sα : R+ → L(H) such that
{λα : Re(λ) > ω} ⊂ ρ(A) and λα−1(λα−A)−1x =

∫∞
0
e−λtSα(t)dt,Re(λ) > ω, x ∈

H. In this case, Sα(·) is called the solution operator generated by A.

We note that, if A is sectorial of type ω with 0 < θ < π(1 − α
2 ) then A is the

generator of a solution operator given by

Sα(t) =
1

2πi

∫
Σ

e−λtλα−1(λα −A)−1dλ,

where Σ is a suitable path lying outside the sector ω + Sα.
Cuesta [10] proved that, if A is a sectorial operator of type ω < 0, for some

M > 0 and 0 < θ < π(1− α
2 ), there is C > 0 such that

‖Sα(t)‖ ≤ CM

1 + |ω|tα
, t ≥ 0. (2.1)

Moreover, we have the following results.

Lemma 2.11 ([10]). Let Sα(t) be a solution operator on H with generator A.
Then, we have

(a) Sα(t)D(A) ⊂ D(A) and ASα(t)x = Sα(t)Ax for all x ∈ D(A), t ≥ 0;
(b) Let x ∈ D(A) and t ≥ 0. Then Sα(t)x = x+

∫ t
0

(t−s)α−2

Γ(α−1) ASα(s)xds;

(c) Let x ∈ H and t > 0. Then
∫ t

0
(t−s)α−2

Γ(α−1) Sα(s)x ds ∈ D(A) and

Sα(t)x = x+A

∫ t

0

(t− s)α−2

Γ(α− 1)
Sα(s)xds.

Note that the Laplace transform of the abstract function f ∈ L2(R+, L(K,H))
is defined by

f̃(ς) =
∫ ∞

0

e−ςtf(t)dw(t).

Now we consider the problem

dx(t) =
∫ t

0

(t− s)α−2

Γ(α− 1)
Ax(s) ds dt+ f(t)dw(t), t > 0, 1 < α < 2, (2.2)

x0 = ϕ ∈ H. (2.3)

Formally applying the Laplace transform, we obtain

λx̃(ς)− ϕ = λ1−αAx̃(ς) + f̃(λ)dw(λ),
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which establishes the result

λx̃(ς) = λα−1R(λα, A)ϕ+ λα−1R(λα, A)f̃(λ)dw(λ).

This implies that

x(t) = Sα(t)ϕ+
∫ t

0

Sα(t− s)f(s)dw(s).

Let x : (−∞, b] → H be a function such that x, x′ ∈ PC. If x is a solution of
(1.1)-(1.3), from the partial neutral integro-differential inclusions theory, we obtain

x(t) ∈ Sα(t)[ϕ(0)−G(0, ϕ)]+G(t, xt)+
∫ t

0

Sα(t−s)F (s, xρ(s,xs))dw(s), t ∈ [0, t1].

By using that x(t+1 ) = x(t−1 ) + Ik(xt1), for t ∈ (t1, t2] we have

x(t) ∈ Sα(t− t1)[x(t+1 )−G(t1, xt+1 )] +G(t, xt) +
∫ t

t1

Sα(t− s)F (s, xρ(s,xs))dw(s)

= Sα(t− t1)[x(t−1 ) + I1(xt1)−G(t1, xt+1 )] +G(t, xt)

+
∫ t

t1

Sα(t− s)F (s, xρ(s,xs))dw(s).

By repeating the same procedure, we can easily deduce that

x(t) ∈ Sα(t− tk)[x(t−k ) + Ik(xtk)−G(t1, xt+k )] +G(t, xt)

+
∫ t

tk

Sα(t− s)F (s, xρ(s,xs))dw(s)

holds for any t ∈ (tk, tk+1], k = 2, . . . ,m. This expression motivates the following
definition.

Definition 2.12. An Ft-adapted stochastic process x : (−∞, b] → H is called a
mild solution of the system (1.1)-(1.3) if x0 = ϕ, xρ(s,xs) ∈ B for every s ∈ J and
∆x(tk) = Ik(xtk), k = 1, . . . ,m, the restriction of x(·) to the interval (tk, tk+1](k =
0, 1, . . . ,m) is continuous, and

x(t) ∈



Sα(t)[ϕ(0)−G(0, ϕ)] +G(t, xt)
+
∫ t

0
Sα(t− s)F (s, xρ(s,xs))dw(s), t ∈ [0, t1],

Sα(t− t1)[x(t−1 ) + I1(xt1)−G(t1, xt+1 )] +G(t, xt)

+
∫ t
t1
Sα(t− s)F (s, xρ(s,xs))dw(s), t ∈ (t1, t2],

. . .

Sα(t− tm)[x(t−m) + Im(xtm)−G(tm, xt+m)] +G(t, xt)
+
∫ t
tm
Sα(t− s)F (s, xρ(s,xs))dw(s), t ∈ (tm, b].

Now we have a nonlinear alternative of Leray-Schauder type for multivalued
maps due to O’Regan.

Lemma 2.13 ([29]). Let H be a Hilbert space with V an open,convex subset of H
and y ∈ H. Suppose

(a) Φ : V → Pcd(H) has closed graph, and
(b) Φ : V → Pcd(H) is a condensing map with Φ(V ) a subset of a bounded set

in H hold.
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Then either
(i) Φ has a fixed point in V ; or

(ii) There exist y ∈ ∂V and λ ∈ (0, 1) with y ∈ λΦ(y) + (1− λ){y0}.

3. Main results

In this section we shall present and prove our main result. Assume that ρ :
J × B → (−∞, b] is continuous. In addition, we make the following hypotheses:

(H1) The function t → ϕt is continuous from R(ρ−) = {ρ(s, ψ) ≤ 0, (s, ψ) ∈
J × B} into B and there exists a continuous and bounded function Jϕ :
R(ρ−)→ (0,∞) such that ‖ϕt‖B ≤ Jϕ(t)‖ϕ‖B for each t ∈ R(ρ−).

(H2) The multi-valued map F : J × B → Pbd,cl,cv(L(K,H)); for each t ∈ J , the
function F (t, ·) : B → Pbd,cl,cv(L(K,H)) is u.s.c. and for each ψ ∈ B, the
function F (·, ψ) is measurable; for each fixed ψ ∈ B, the set

SF,ψ = {f ∈ L2(J, L(K,H)) : f(t) ∈ F (t, ψ) for a.e t ∈ J}
is nonempty.

(H3) There exists a positive function l : J → R+ such that the function s 7→
( 1

1+|ω|(t−s)α )2l(s) belongs to L1([0, t],R+), t ∈ J , and

lim sup
‖ψ‖2B→∞

‖F (t, ψ)‖2

l(t)‖ψ‖2B
= γ

uniformly in t ∈ J for a nonnegative constant γ, where

‖F (t, ψ)‖2 = sup{E‖f‖2 : f ∈ F (t, ψ)}.
(H4) The function G : J × B → H is continuous and there exist L,L1 > 0 such

that

E‖G(t, ψ1)−G(t, ψ2)‖2 ≤ L‖ψ1 − ψ2‖2B, t ∈ J, ψ1, ψ2 ∈ B,
E‖G(t, ψ)‖2 ≤ L1(‖ψ‖2B + 1), t ∈ J, ψ ∈ B,

with 4[(CM)2 + 1]LK2
b < 1.

(H5) The functions Ik : B → H are completely continuous and there exist con-
stants ck such that

lim sup
‖ψ‖2B→∞

E‖Ik(ψ)‖2

‖ψ‖2B
= ck

for every ψ ∈ B, k = 1, . . . ,m.

Remark 3.1. Let ϕ ∈ B and t ≤ 0. The notation ϕt represents the function
defined by ϕt(τ) = ϕ(t + θ). Consequently, if the function x(·) in axiom (A) is
such that x0 = ϕ, then xt = ϕt. We observe that ϕt is well-defined for t < 0 since
the domain of ϕ is (−∞, 0]. We also note that, in general, ϕt /∈ B; consider, for
instance, a discontinuous function in Cr × Lp(h,H) for r > 0 (see [21]).

Remark 3.2. The condition (H1) is frequently verified by continuous and bounded
functions. In fact, if B verifies axiom (C2) in the nomenclature of [21], then there
exists L̃ > 0 such that ‖ϕ‖B ≤ L̃ supτ≤0 ‖ϕ(τ)‖ for every ϕ ∈ B continuous and
bounded, see [21, Proposition 7.1.1] for details. Consequently,

‖ϕt‖B ≤ L̃
supτ≤0 ϕ(τ)
‖ϕ‖B

,
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for every continuous and bounded function ϕ ∈ B \ {0} and every t ≤ 0. We also
observe that the space Cr ×Lp(h,H) verifies axiom (C2) see [21, p. 10] for details.

Lemma 3.3. Let x : (−∞, b] → H such that x0 = ϕ and x|[0,b] ∈ PC(J,H). If
(H1) be hold, then

‖xs‖B ≤ (Mb + Jϕ0 )‖ϕ‖B +Kb sup{‖x(θ)‖; θ ∈ [0,max{0, s}]}, s ∈ R(ρ−) ∪ J,
where Jϕ0 = supt∈R(ρ−) J

ϕ(t).

Proof. For any s ∈ R(ρ−), by (H1), we have

‖xs‖B ≤ ‖ϕs‖B ≤ Jϕ(s)‖ϕ‖B ≤ Jϕ0 ‖ϕ‖B.
For any s ∈ [0, b], x ∈ PC(J,H). Using the phase spaces axioms, we have

‖xs‖B ≤M(s)‖ϕ‖B +K(s) sup{‖x(s)‖ : 0 ≤ s ≤ t}
≤Mb‖ϕ‖B +Kb sup{‖x(s)‖ : 0 ≤ s ≤ t}.

Then, for s ∈ (−∞, b], we have

‖xs‖B ≤ (Mb + Jϕ0 )‖ϕ‖B +Kb sup{‖x(θ)‖; θ ∈ [0,max{0, s}]}, s ∈ R(ρ−) ∪ J.
The proof is complete. �

Lemma 3.4 ([26]). Let J be a compact interval and H be a Hilbert space. Let F
be a multivalued map satisfying (H2) and Γ be a linear continuous operator from
L2(J,H) to C(J,H). Then the operator Γ ◦ SF : C(J,H) → Pcp,cv(C(J,H)) is a
closed graph in C(J,H)× C(J,H).

Theorem 3.5. Let (H1)–(H5) be satisfied and x0 ∈ L0
2(Ω, H), with ρ(t, ψ) ≤ t for

every (t, ψ) ∈ J ×B. Then problem (1.1)-(1.3) has at least one mild solution on J ,
provided that

max
1≤k≤m

{9(CM)2[1 + 2K2
b ck + 2K2

bL1] + 6K2
bL1} < 1. (3.1)

Proof. Consider the space BPC = {x : (−∞, b] → H;x0 = 0, x|J ∈ PC} endowed
with the uniform convergence topology and define the multi-valued map Φ : BPC →
P(BPC) by Φx the set of h ∈ BPC such that

h(t) =



0, t ∈ (−∞, 0],

Sα(t)[ϕ(0)−G(0, ϕ)] +G(t, x̄t) +
∫ t

0
Sα(t− s)f(s)dw(s), t ∈ [0, t1],

Sα(t− t1)[x̄(t−1 ) + I1(x̄t1)−G(t1, x̄t+1 )] +G(t, x̄t)

+
∫ t
t1
Sα(t− s)f(s)dw(s), t ∈ (t1, t2],

. . .

Sα(t− tm)[x̄(t−m) + Im(x̄tm)−G(tm, x̄t+m)] +G(t, x̄t)
+
∫ t
tm
Sα(t− s)f(s)dw(s), t ∈ (tm, b],

where f ∈ SF,x̄ρ = {f ∈ L2(L(K,H)) : f(t) ∈ F (t, x̄ρ(s,x̄t)) a.e. t ∈ J} and
x̄ : (−∞, 0] → H is such that x̄0 = ϕ and x̄ = x on J . In what follows, we aim
to show that the operator Φ has a fixed point, which is a solution of the problem
(1.1)-(1.3).

Let ϕ̄ : (−∞, 0) → H be the extension of (−∞, 0] such that ϕ̄(θ) = ϕ(0) = 0
on J and Jϕ0 = sup{Jϕ(s) : s ∈ R(ρ−)}. We now show that Φ satisfies all the
conditions of Lemma 2.13. The proof will be given in several steps.
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Step 1. We shall show there exists an open set V ⊆ BPC with x ∈ λΦx for
λ ∈ (0, 1) and x /∈ ∂V . Let λ ∈ (0, 1) and let x ∈ λΦx, then there exists an
f ∈ SF,x̄ρ such that we have

x(t) =



λSα(t)[ϕ(0)−G(0, ϕ)] + λG(t, x̄t) + λ
∫ t

0
Sα(t− s)f(s)dw(s), t ∈ [0, t1],

λSα(t− t1)[x̄(t−1 ) + I1(x̄t1)−G(t1, x̄t+1 )] + λG(t, x̄t)

+λ
∫ t
t1
Sα(t− s)f(s)dw(s), t ∈ (t1, t2],

. . .

λSα(t− tm)[x̄(t−m) + Im(x̄tm)−G(tm, x̄t+m)] + λG(t, x̄t)
+λ
∫ t
tm
Sα(t− s)f(s)dw(s), t ∈ (tm, b],

for some λ ∈ (0, 1). It follows from assumption (H3) that there exist two nonnega-
tive real numbers a1 and a2 such that for any ψ ∈ B and t ∈ J ,

‖F (t, ψ)‖2 ≤ a1l(t) + a2l(t)‖ψ‖2B. (3.2)

On the other hand, from condition (H5), we conclude that there exist positive
constants εk(k = 1, . . . ,m), γ1 such that, for all ‖ψ‖2B > γ1,

E‖Ik(ψ)‖2 ≤ (ck + εk)‖ψ‖2B,
max

1≤k≤m
{9(CM)2[1 + 2K2

b (ck + εk) + 2K2
bL1] + 6K2

bL1} < 1. (3.3)

Let

F1 = {ψ : ‖ψ‖2B ≤ γ1}, F2 = {ψ : ‖ψ‖2B > γ1},
C1 = max{E‖Ik(ψ)‖2, x ∈ F1}.

Therefore,
E‖Ik(ψ)‖2 ≤ C1 + (ck + εk)‖ψ‖2B. (3.4)

Then, by (H4), (3.2) and (3.4), from the above equation, for t ∈ [0, t1], we have

E‖x(t)‖2 ≤ 3E‖Sα(t)[ϕ(0)−G(0, ϕ)]‖2 + 3E‖G(t, x̄t)‖2

+ 3E
∥∥∫ t

0

Sα(t− s)f(s)dw(s)
∥∥2

≤ 6(CM)2[E‖ϕ(0)‖2 + L1(‖ϕ‖2B + 1)] + 3L1(‖x̄t‖2B + 1)

+ 3(CM)2 Tr(Q)
∫ t

0

( 1
1 + |ω|(t− s)α

)2

[a1l(s) + a2l(s)‖x̄ρ(s,x̄s)‖
2
B]ds

≤ 6(CM)2[H̃2E‖ϕ‖2B + L1(‖ϕ‖2B + 1)] + 3L1(‖x̄t‖2B + 1)

+ 3(CM)2 Tr(Q)a1

∫ t1

0

( 1
1 + |ω|(t1 − s)α

)2

l(s)ds

+ 3(CM)2 Tr(Q)a2

∫ t

0

( 1
1 + |ω|(t− s)α

)2

l(s)‖x̄ρ(s,x̄s)‖
2
Bds.

Similarly, for any t ∈ (tk, tk+1], k = 1, . . . ,m, we have

E‖x(t)‖2

≤ 3E‖Sα(t− tk)[x̄(t−k ) + Ik(x̄tk)−G(tk, x̄t+k )]‖2 + 3E‖G(t, x̄t)‖2

+ 3E
∥∥∫ t

tk

Sα(t− s)f(s)dw(s)
∥∥2
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≤ 9(CM)2[E‖x̄(t−k )‖2 + C1 + (ck + εk)‖x̄tk‖2B + L1(‖x̄t+k ‖
2
B + 1)]

+ 3L1(‖x̄t‖2B + 1) + 3(CM)2a1 Tr(Q)
∫ tk+1

tk

( 1
1 + |ω|(tk+1 − s)α

)2

l(s)ds

+ 3(CM)2a2 Tr(Q)
∫ t

tk

( 1
1 + |ω|(t− s)α

)2

l(s)‖x̄ρ(s,x̄s)‖
2
Bds.

Then, for all t ∈ [0, b], we have

E‖x(t)‖2

≤ M̃ + 9(CM)2[E‖x̄(t−k )‖2 + (ck + εk)‖x̄tk‖2B + L1‖x̄t+k ‖
2
B]

+ 3L1‖x̄t‖2B + 3(CM)2a2 Tr(Q)
∫ t

0

( 1
1 + |ω|(t− s)α

)2

l(s)‖x̄ρ(s,x̄s)‖
2
Bds,

where

M̃ = max
{

6(CM)2[H̃2E‖ϕ‖2B + L1(‖ϕ‖2B + 1)] + 3L1

+ 3(CM)2 Tr(Q)a1

∫ t1

0

( 1
1 + |ω|(b− s)α

)2

l(s)ds, 9(CM)2(C1 + L1)

+ 3L1 + 3(CM)2a1 Tr(Q)
∫ tk+1

tk

( 1
1 + |ω|(tk+1 − s)α

)2

l(s)ds
}
.

By Lemmas 2.8 and 3.3, it follows that ρ(s, xs) ≤ s, s ∈ [0, t], t ∈ [0, b] and

‖xρ(s,xs)‖
2
B ≤ 2[(Mb + Jϕ0 )E‖ϕ‖B]2 + 2K2

b sup
0≤s≤b

E‖x(s)‖2. (3.5)

For each t ∈ [0, b], we have

E‖x(t)‖2 ≤M∗ + {9(CM)2[1 + 2K2
b (ck + εk) + 2K2

bL1] + 6K2
bL1} sup

t∈[0,b]

E‖x(t)‖2

+ 6(CM)2a2K
2
b Tr(Q)

∫ t

0

( 1
1 + |ω|(t− s)α

)2

l(s) sup
τ∈[0,s]

E‖x(τ)‖2ds,

where

M∗ = M̃ + 9(CM)2[C1 + (ck + εk)C∗ + L1(C∗ + 1)] + 3L1(C∗ + 1)

+ 3(CM)2 Tr(Q)a2C
∗
∫ b

0

( 1
1 + |ω|(b− s)α

)2

l(s)ds,

C∗ = 2[(Mb + Jϕ0 )‖ϕ‖B]2.

Since L∗ = max1≤k≤m{9(CM)2[1 + 2K2
b (ck + εk) + 2K2

bL1] + 6K2
bL1} < 1, we have

sup
t∈[0,b]

E‖x(t)‖2

≤ M∗
1− L∗

+
6(CM)2a2K

2
b Tr(Q)

1− L∗

∫ b

0

( 1
1 + |ω|(b− s)α

)2

l(s) sup
τ∈[0,s]

E‖x(τ)‖2ds.

Applying Gronwall’s inequality in the above expression, we obtain

sup
t∈[0,b]

E‖x(s)‖2 ≤ M∗
1− L∗

exp
{6(CM)2a2K

2
b Tr(Q)

1− L∗

∫ b

0

( 1
1 + |ω|(b− s)α

)2

l(s)ds
}
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and, therefore,

‖x‖2PC ≤
M∗

1− L∗
exp

{6(CM)2a2K
2
b Tr(Q)

1− L∗

∫ b

0

( 1
1 + |ω|(b− s)α

)2

l(s)ds
}
<∞.

Then, there exists r∗ such that ‖x‖2PC 6= r∗. Set

V = {x ∈ BPC : ‖x‖2PC < r∗}.
From the choice of V , there is no x ∈ ∂V such that x ∈ λΦx for λ ∈ (0, 1).
Step 2. Φ has a closed graph. Let x(n) → x∗, hn ∈ Φx(n), x(n) ∈ V = Br∗(0,BPC)
and hn → h∗. From Axiom (A), it is easy to see that (x(n))s → x∗s uniformly for
s ∈ (−∞, b] as n → ∞. We prove that h∗ ∈ Φx∗. Now hn ∈ Φx(n) means that
there exists fn ∈ SF,x(n)

ρ
such that, for each t ∈ [0, t1],

hn(t) = Sα(t)[ϕ(0)−G(0, ϕ)] +G(t, (x(n))t) +
∫ t

0

Sα(t− s)fn(s)dw(s), t ∈ [0, t1].

We must prove that there exists f∗ ∈ SF,x∗ρ such that, for each t ∈ [0, t1],

h∗(t) = Sα(t)[ϕ(0)−G(0, ϕ)] +G(t, (x∗)t) +
∫ t

0

Sα(t− s)f∗(s)dw(s), t ∈ [0, t1].

Now, for every t ∈ [0, t1], we have∥∥∥(hn(t)− Sα(t)[ϕ(0)−G(0, ϕ)]−G(t, (x(n))t)−
∫ t

0

Sα(t− s)fn(s)dw(s)
)

−
(
h∗(t)− Sα(t)[ϕ(0)−G(0, ϕ)]−G(t, (x∗)t)

−
∫ t

0

Sα(t− s)f∗(s)dw(s)
)∥∥∥2

PC
→ 0 as n→∞.

Consider the linear continuous operator Ψ : L([0, t1], H)→ C([0, t1], H),

Ψ(f)(t) =
∫ t

0

Sα(t− s)f(s)dw(s).

From Lemma 3.4, it follows that Ψ ◦ SF is a closed graph operator. Also, from the
definition of Ψ, we have that, for every t ∈ [0, t1],

hn(t)−Sα(t)[ϕ(0)−G(0, ϕ)]−G(t, (x(n))t)−
∫ t

0

Sα(t−s)fn(s)dw(s)
)
∈ Γ(S

F,x(n)).

Since x(n) → x∗, for some f∗ ∈ SF,x∗ρ it follows that, for every t ∈ [0, t1],

h∗(t)− Sα(t)[ϕ(0)−G(0, ϕ)]−G(t, (x∗)t) =
∫ t

0

Sα(t− s)f∗dw(s).

Similarly, for any t ∈ (tk, tk+1], k = 1, . . . ,m, we have

hn(t) = Sα(t− tk)[x(n)(t−k ) + Ik(x(n)
tk)−G(tk, (x(n))t+k )] +G(t, (x(n))t)

+
∫ t

tk

Sα(t− s)fn(s)dw(s), t ∈ (tk, tk+1].

We must prove that there exists f∗ ∈ SF,x∗ρ such that, for each t ∈ (tk, tk+1],

h∗(t) = Sα(t− tk)[x∗(t−k ) + Ik(x∗tk)−G(tk, (x∗)t+k )] +G(t, (x∗)t)
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+
∫ t

tk

Sα(t− s)f∗(s)dw(s), t ∈ (tk, tk+1].

Now, for every t ∈ (tk, tk+1], k = 1, . . . ,m, we have∥∥∥(hn(t)− Sα(t− tk)[x(n)(t−k ) + Ik(x(n)
tk)−G(tk, (x(n))t+k )]−G(t, (x(n))t)

−
∫ t

tk

Sα(t− s)fn(s)dw(s)
)
−
(
h∗(t)− Sα(t− tk)

[
x∗(t−k ) + Ik(x∗tk)

−G(tk, (x∗)t+k )
]
−G(t, (x∗)t)−

∫ t

tk

Sα(t− s)f∗(s)dw(s)
)∥∥∥2

PC
→ 0 as n→∞.

Consider the linear continuous operator Ψ : L2((tk, tk+1], H) → C((tk, tk+1], H),
k = 1, . . . ,m,

Ψ(f)(t) =
∫ t

tk

Sα(t− s)f(s)dw(s).

From Lemma 3.4, it follows that Ψ ◦ SF is a closed graph operator. Also, from the
definition of Ψ, we have that, for every t ∈ (tk, tk+1], k = 1, . . . ,m,

hn(t)−Sα(t−tk)[x(n)(t−k )+Ik(x(n)
tk)−G(tk, (x(n))t+k )]−G(t, (x(n))t) ∈ Γ(S

F,x(n)
ρ
).

Since x(n) → x∗, for some f∗ ∈ SF,x∗ρ it follows that, for every t ∈ (tk, tk+1], we
have

h∗(t)− Sα(t− tk)[x∗(t−k ) + Ik(x∗tk)−G(tk, (x∗)t+k )]−G(t, (x∗)t)

=
∫ t

tk

Sα(t− s)f∗(s)dw(s).

Therefore, Φ has a closed graph.
Step 3. We show that the operator Φ condensing. For this purpose, we decompose
Φ as Φ1 + Φ2, where the map Φ1 : V → P(BPC) be defined by Φ1x, the set
h1 ∈ BPC such that

h1(t) =



0, t ∈ (−∞, 0],
−Sα(t)G(0, ϕ) +G(t, x̄t), t ∈ [0, t1],
−Sα(t− t1)G(t1, x̄t+1 ) +G(t, x̄t), t ∈ (t1, t2],

. . .

−Sα(t− tm)G(tm, x̄t+m) +G(t, x̄t), t ∈ (tm, b],

and the map Φ2 : V → P(BPC) be defined by Φ2x, the set h2 ∈ BPC such that

h2(t) =



0, t ∈ (−∞, 0],
Sα(t)ϕ(0) +

∫ t
0
Sα(t− s)f(s)ds, t ∈ [0, t1],

Sα(t− t1)[x̄(t−1 ) + I1(x̄t1)] +
∫ t
t1
Sα(t− s)f(s)dw(s), t ∈ (t1, t2],

. . .

Sα(t− tm)[x̄(t−m) + Im(x̄tm)] +
∫ t
tm
Sα(t− s)f(s)dw(s), t ∈ (tm, b].

We first show that Φ1 is a contraction while Φ2 is a completely continuous operator.
Claim 1. Φ1 is a contraction on BPC. Let t ∈ [0, t1] and v∗, v∗∗ ∈ BPC. From
(H4), Lemmas 2.8 and 3.3, we have

E‖(Φ1v
∗)(t)− (Φ1v

∗∗)(t)‖2 ≤ E‖G(t, v∗t)−G(t, v∗∗t)‖2
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≤ L‖v∗t − v∗∗t‖2B
≤ 2LK2

b sup{‖v∗(τ)− v∗∗(τ)‖2, 0 ≤ τ ≤ t}
≤ 2LK2

b sup
s∈[0,b]

‖v∗(s)− v∗∗(s)‖2

= 2LK2
b sup
s∈[0,b]

‖v∗(s)− v∗∗(s)‖2 (since v̄ = v on J)

= 2LK2
b ‖v∗ − v∗∗‖2PC .

Similarly, for any t ∈ (tk, tk+1], k = 1, . . . ,m, we have

E‖(Φ1v
∗)(t)− (Φ1v

∗∗)(t)‖2

≤ 2E‖Sα(t− tk)[−G(tk, v∗t+k ) +G(tk, v∗∗t+k )]‖2 + 2E‖G(t, v∗t)−G(t, v∗∗t)‖2

≤ 2(CM)2L‖v∗t+k − v
∗∗
t+k
‖2B + 2L‖v∗t − v∗∗t‖2B

≤ 4((CM)2 + 1)LK2
b sup
s∈[0,b]

‖v∗(s)− v∗∗(s)‖2

= 4((CM)2 + 1)LK2
b sup
s∈[0,b]

‖v∗(s)− v∗∗(s)‖2 (since v̄ = v on J)

= 4[(CM)2 + 1)]LK2
b ‖v∗ − v∗∗‖2PC ,

Thus, for all t ∈ [0, b], we have

E‖(Φ1v
∗)(t)− (Φ1v

∗∗)(t)‖2 ≤ L0‖v∗ − v∗∗‖2PC .
Taking supremum over t,

‖Φ1v
∗ − Φ1v

∗∗‖2PC ≤ L0‖v∗ − v∗∗‖2PC ,
where L0 = 4[(CM)2 + 1]LK2

b < 1. Hence, Φ1 is a contraction on BPC.
Claim 2. Φ2 is convex for each x ∈ V . In fact, if h1

2, h
2
2 belong to Φ2x, then there

exist f1, f2 ∈ SF,xρ such that

hi2(t) = Sα(t)ϕ(0) +
∫ t

0

Sα(t− s)fi(s)dw(s), t ∈ [0, t1], i = 1, 2.

Let 0 ≤ λ ≤ 1. For each t ∈ [0, t1] we have

(λh1
2 + (1− λ)h2

2)(t) = Sα(t)ϕ(0) +
∫ t

0

Sα(t− s)[λf1(s) + (1− λ)f2(s)]dw(s).

Similarly, for any t ∈ (tk, tk+1], k = 1, . . . ,m, we have

hi2(t) = Sα(t− tk)[x̄(t−k ) + Ik(x̄tk)] +
∫ t

tk

Sα(t− s)fi(s)dw(s), i = 1, 2.

Let 0 ≤ λ ≤ 1. For each t ∈ (tk, tk+1], k = 1, . . . ,m, we have

(λh1
2 + (1− λ)h2

2)(t) = Sα(t− tk)[x̄(t−k ) + Ik(x̄tk)]

+
∫ t

tk

Sα(t− s)[λf1(s) + (1− λ)f2(s)]dw(s).

Since SF,x̄ρ is convex (because F has convex values) we have (λh1
2+(1−λ)h2

2) ∈ Φ2x.
Claim 3. Φ2(V ) is completely continuous. We begin by showing Φ2(V ) is equicon-
tinuous. If x ∈ V , from Lemmas 2.8 and 3.3, it follows that

‖x̄ρ(s,x̄s)‖
2
B ≤ 2[(Mb + Jϕ0 )‖ϕ‖B]2 + 2K2

b r
∗ := r′.
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Let 0 < τ1 < τ2 ≤ t1. For each x ∈ V , h2 ∈ Φ2x, there exists f ∈ SF,x̄ρ , such that

h2(t) = Sα(t)ϕ(0) +
∫ t

0

Sα(t− s)f(s)dw(s). (3.6)

Then

E‖h2(τ2)− h2(τ1)‖2

≤ 4E‖[Sα(τ2)− Sα(τ1)]ϕ(0)‖2 + 4E
∥∥∫ τ1−ε

0

[Sα(τ2 − s)− Sα(τ1 − s)]f(s)dw(s)
∥∥2

+ 4E
∥∥∫ τ1

τ1−ε
[Sα(τ2 − s)− Sα(τ1 − s)]f(s)dw(s)

∥∥2

+ 4E
∥∥∫ τ2

τ1

Sα(τ2 − s)f(s)dw(s)
∥∥2

≤ 4E‖[Sα(τ2)− Sα(τ1)]ϕ(0)‖2 + 4(CM)2(a1 + a2r
′)[1 + |ω|bα]2 Tr(Q)

×
∫ τ1−ε

0

‖Sα(τ2 − s)− Sα(τ1 − s)‖2
( 1

1 + |ω|(τ1 − ε− s)α
)2

l(s)ds

+ 4(CM)2(a1 + a2r
′) Tr(Q)

∫ τ1

τ1−ε

( 1
1 + |ω|(τ2 − s)α

)2

l(s)ds

+ 4(CM)2(a1 + a2r
′) Tr(Q)

∫ τ1

τ1−ε

( 1
1 + |ω|(τ1 − s)α

)2

l(s)ds

+ 4(CM)2(a1 + a2r
′) Tr(Q)

∫ τ2

τ1

( 1
1 + |ω|(τ2 − s)α

)2

l(s)ds.

Similarly, for any τ1, τ2 ∈ (tk, tk+1], τ1 < τ2, k = 1, . . . ,m, we have

h2(t) = Sα(t− tk)[x̄(t−k ) + Ik(x̄tk)] +
∫ t

tk

Sα(t− s)f(s)dw(s). (3.7)

Then

E‖h2(τ2)− h2(τ1)‖2

≤ 4E‖[Sα(τ2)− Sα(τ1)]ϕ(0)‖2 + 4E
∥∥∫ τ1−ε

tk

[Sα(τ2 − s)− Sα(τ1 − s)]f(s)dw(s)
∥∥2

+ 4E
∥∥∥∫ τ1

τ1−ε
[Sα(τ2 − s)− Sα(τ1 − s)]f(s)dw(s)

∥∥∥2

+ 4E
∥∥∫ τ2

τ1

Sα(τ2 − s)f(s)dw(s)
∥∥2

≤ 4E‖[Sα(τ2)− Sα(τ1)]ϕ(0)‖2 + 4(CM)2(a1 + a2r
′)[1 + |ω|bα]2 Tr(Q)

×
∫ τ1−ε

tk

‖Sα(τ2 − s)− Sα(τ1 − s)‖2
( 1

1 + |ω|(τ1 − ε− s)α
)2

l(s)ds

+ 4(CM)2(a1 + a2r
′) Tr(Q)

∫ τ1

τ1−ε

( 1
1 + |ω|(τ2 − s)α

)2

l(s)ds

+ 4(CM)2(a1 + a2r
′) Tr(Q)

∫ τ1

τ1−ε

( 1
1 + |ω|(τ1 − s)α

)2

l(s)ds

+ 4(CM)2(a1 + a2r
′) Tr(Q)

∫ τ2

τ1

( 1
1 + |ω|(τ2 − s)α

)2

l(s)ds.
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From the above inequalities, we see that the right-hand side of E‖h2(τ2)−h2(τ1)‖2
tends to zero independent of x ∈ V as τ2 − τ1 → 0 with ε sufficiently small, since
Ik, k = 1, 2, . . . ,m, are completely continuous in H and the compactness of Sα(t)
for t > 0 imply the continuity in the uniform operator topology. Indeed, the fact
of Sα(·) is compact in H since it is generated by the dense operator A. Thus
the set {Φ2x : x ∈ V } is equicontinuous. The equicontinuities for the other cases
τ1 < τ2 ≤ 0 or τ1 ≤ 0 ≤ τ2 ≤ b are very simple.

Next, we prove that Φ2(V )(t) = {h2(t) : h2(t) ∈ Φ2(V )} is relatively compact
for every t ∈ [0, b]. To this end, we decompose Φ2 by Φ2(V ) = Γ1(V ) + Γ2(V ),
where the map Γ1 is defined by Γ1x, x ∈ V the set h̃1 such that

h̃1(t) =


∫ t

0
Sα(t− s)f(s)dw(s), t ∈ [0, t1],∫ t

tk
Sα(t− s)f(s)dw(s), t ∈ (t1, t2],

. . .∫ t
tm
Sα(t− s)f(s)dw(s), t ∈ (tm, b],

and the map Γ2 is defined by Γ2x, x ∈ V the set h̃2 such that

h̃2(t) =


Sα(t)ϕ(0), t ∈ [0, t1],
Sα(t− t1)[x̄(t−1 ) + I1(x̄t1)], t ∈ (t1, t2],
. . .

Sα(t− tm)[x̄(t−m) + Im(x̄tm)], t ∈ (tm, b].

We now prove that Γ1(V ))(t) = {h̃1(t) : h̃1(t) ∈ Γ1(V ))} is relatively compact
for every t ∈ [0, b]. Let 0 < t ≤ s ≤ t1 be fixed and let ε be a real number satisfying
0 < ε < t. For x ∈ V , we define

h̃1,ε(t) =
∫ t−ε

0

Sα(t− s)f(s)dw(s),

where f ∈ SF,x̄ρ . Using the compactness of Sα(t) for t > 0, we deduce that the
set Uε(t) = {h̃1,ε(t) : x ∈ V } is relatively compact in H for every ε, 0 < ε < t.
Moreover, for every x ∈ V we have

E‖h̃1(t)− h̃1,ε(t)‖2 ≤
∥∥ ∫ t

t−ε
Sα(t− s)f(s)dw(s)

∥∥
≤ (CM)2(a1 + a2r

′) Tr(Q)
∫ t

t−ε

( 1
1 + |ω|(t− s)α

)2

l(s)ds.

Similarly, for any t ∈ (tk, tk+1] with k = 1, . . . ,m. Let tk < t ≤ s ≤ tk+1 be fixed
and let ε be a real number satisfying 0 < ε < t. For x ∈ V , we define

h̃1,ε(t) =
∫ t−ε

tk

Sα(t− s)f(s)dw(s),

where f ∈ SF,x̄ρ . Using the compactness of Sα(t) for t > 0, we deduce that the
set Uε(t) = {h̃1,ε(t) : x ∈ V } is relatively compact in H for every ε, 0 < ε < t.
Moreover, for every x ∈ V we have

E‖h̃1(t)− h̃1,ε(t)‖2 ≤
∥∥ ∫ t

t−ε
Sα(t− s)f(s)dw(s)

∥∥
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≤ (CM)2(a1 + a2r
′) Tr(Q)

∫ t

t−ε

( 1
1 + |ω|(t− s)α

)2

l(s)ds.

The right hand side of the above inequality tends to zero as ε→ 0. Since there are
relatively compact sets arbitrarily close to the set U(t) = {h̃1(t) : x ∈ V }. Hence
the set U(t) is relatively compact in H. By Arzelá-Ascoli theorem, we conclude
that Γ1(V ) is completely continuous.

Next, we show that Γ2(V )(t) = {h̃2(t) : h̃2(t) ∈ Γ2(V )} is relatively compact for
every t ∈ [0, b]. For all t ∈ [0, t1], since h̃2(t) = Sα(t)ϕ(0), by the Sα(·) is compact
operator, it follows that {h̃2(t) : t ∈ [0, t1], x ∈ V } is a compact subset of H. On
the other hand, for t ∈ (tk, tk+1], k = 1, . . . ,m, and x ∈ V , there exists r′ > 0 such
that

[̂̃h2]k(t) ∈


Sα(t− tk)[x̄(t−k ) + Ik(x̄tk)], t ∈ (tk, tk+1), x ∈ V r′′ ,
Sα(tk+1 − tk)[x̄(t−k ) + Ik(x̄tk)], t = tk+1, x ∈ V r′′ ,
x̄(t−k ) + Ik(x̄tk), t = tk, x ∈ V r′′ ,

where V r′′ is an open ball of radius r′′. From (H5), it follows that [̂̃h2]k(t) is
relatively compact in H, for all t ∈ [tk, tk+1], k = 1, . . . ,m. By Lemma 2.7,
we infer that Γ2(V ) is relatively compact. Moreover, using the compactness of
{Ik}(k = 1, . . . ,m) and the continuity of the operator Sα(t), for all t ∈ [0, b], Γ2(V )
is completely continuous, and hence Φ2(V ) is completely continuous.

As a consequence of the above steps 1-3, we conclude that Φ = Φ1 + Φ2 is a
condensing map. All of the conditions of Lemma 2.13 are satisfied, we deduce that
Φ has a fixed point x ∈ BPC, which is in turn a mild solution of the problem
(1.1)-(1.3). The proof is complete. �

Remark 3.6. Note that by the condition ρ(s, xs) ≤ s, s ∈ [0, t], t ∈ [0, b] and using
Lemma 3.3, we have

‖xρ(s,xs)‖B ≤ (Mb + Jϕ0 )‖ϕ‖B +Kb sup{‖x̄(s)‖ : 0 ≤ s ≤ t}.

By lemma 2.8 this implies that

‖xρ(s,xs)‖B ≤ (Mb + Jϕ0 )E‖ϕ‖B +Kb sup
0≤s≤b

E‖x(s)‖,

and so (3.5) holds.

4. Application

Consider the following impulsive fractional partial neutral stochastic functional
integro-differential inclusions of the form

dD(t, zt)(x) ∈ Jα−1
t

( ∂2

∂x2
− ν
)
D(t, zt)(x)dt

+
∫ t

−∞
µ2(t, s− t, x, z(s− ρ1(t)ρ2(‖z(t)‖), x))dw(s),

0 ≤ t ≤ b, 0 ≤ x ≤ π,

(4.1)

z(t, 0) = z(t, π) = 0, 0 ≤ t ≤ b, z(τ, x) = ϕ(τ, x), τ ≤ 0, 0 ≤ x ≤ π, (4.2)

4z(tk, x) =
∫ tk

−∞
ηk(s− tk)z(s, x)ds, k = 1, 2, . . . ,m, (4.3)
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where 1 < α < 2, ν > 0 and ϕ is continuous and w(t) denotes a standard cylindrical
Wiener process in H defined on a stochastic space (Ω,F , P ). In this system,

D(t, zt)(x) = z(t, x)−
∫ t

−∞
µ1(s− t)z(s, x)ds.

Let H = L2([0, π]) with the norm ‖ · ‖ and define the operator A : D(A) ⊂ H → H
is the operator given by Aω = ω′′ − νω with the domain

D(A) := {ω ∈ H : ω′′ ∈ H,ω(0) = ω(π) = 0}.

It is well known that ∆x = x′′ is the infinitesimal generator of an analytic semigroup
T (t), t ≥ 0 on H. Hence, A is sectorial of type µ = −ν < 0.

Let r ≥ 0, 1 ≤ p < 1 and let h : (−∞,−r] → R be a nonnegative measurable
function which satisfies the conditions (h-5), (h-6) in the terminology of Hino et
al [21]. Briefly, this means that h is locally integrable and there is a non-negative,
locally bounded function γ on (−∞, 0] such that h(ξ + τ) ≤ γ(ξ)h(τ) for all ξ ≤ 0
and θ ∈ (−∞,−r) \ Nξ, where Nξ ⊆ (−∞,−r) is a set whose Lebesgue measure
zero. We denote by PCr × L2(h,H) the set consists of all classes of functions
ϕ : (−∞, 0] → X such that ϕ|[−r,0] ∈ PC([−r, 0], H), ϕ(·) is Lebesgue measurable
on (−∞,−r), and h‖ϕ‖p is Lebesgue integrable on (−∞,−r). The seminorm is
given by

‖ϕ‖B = sup
−r≤τ≤0

‖ϕ(τ)‖+
(∫ −r
−∞

h(τ)‖ϕ‖pdτ
)1/p

.

The space B = PCr × Lp(h,H) satisfies axioms (A)–(C). Moreover, when r = 0
and p = 2, we can take H̃ = 1, M(t) = γ(−t)1/2 and K(t) = 1 + (

∫ 0

−t h(τ)dτ)1/2,
for t ≥ 0 (see [21, Theorem 1.3.8] for details).

Additionally, we will assume that

(i) The functions ρi : [0,∞)→ [0,∞), i = 1, 2, are continuous.
(ii) The functions µ1 : R → R, are continuous, and l1 = (

∫ 0

−∞
(µ1(s))2

h(s) ds)1/2 <
∞.

(iii) The function µ2 : R4 → R is continuous and there exist continuous functions
b1, b2 : R→ R such that

|µ2(t, s, x, y)| ≤ b1(t)b2(s)|y|, (t, s, x, y) ∈ R4

with l2 = (
∫ 0

−∞
(b2(s))2

h(s) ds)1/2 <∞.
(iv) The functions ηk : R → R, k = 1, 2, . . . ,m, are continuous, and Lk =

(
∫ 0

−∞
(ηk(s))2

h(s) ds)1/2 <∞ for every k = 1, 2, . . . ,m.

In the sequel, B will be the phase space PC0×L2(h,H). Set ϕ(θ)(x) = ϕ(θ, x) ∈
B, defining the maps G : [0, b]× B → H, F : [0, b]× B → P(H) by

G(t, ϕ)(x) =
∫ 0

−∞
µ1(θ)ϕ(θ)(x)dθ,

D(t, ϕ)(x) = ϕ(0)x+G(t, ϕ)(x), Jα−1
t G(t) =

∫ t

0

(t− s)α−2

Γ(α− 1)
G(s)ds,

F (t, ϕ)(x) =
∫ 0

−∞
µ2(t, θ, x, ϕ(θ))(x)dθ, ρ(t, ϕ) = ρ1(t)ρ2(‖ϕ(0)‖).
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From these definitions, it follows that G,F are bounded linear operators on B with
‖G‖ ≤ LG and ‖F‖ ≤ LF , ‖Ik‖ ≤ Lk, k = 1, 2, . . . ,m, where LG = l1, LF =
‖b1‖∞l2. Then the problem (4.1)-(4.3) can be written as system (1.1)-(1.3). Fur-
ther, we can impose some suitable conditions on the above-defined functions to
verify the assumptions on Theorem 3.5, we can conclude that system (4.1)-(4.3)
has at least one mild solution on [0, b].

Conclusion. We have studied the existence of mild solutions for a class of impul-
sive fractional partial neutral stochastic integro-differential inclusions with state-
dependent delay and solution operator, which is new and allow us to develop the
existence of various partial fractional integro-differential inclusions and partial sto-
chastic integro-differential inclusions. An application is provided to illustrate the
applicability of the new result. The results presented in this paper extend and
improve the corresponding ones announced by Chauhan et al [8], Shu et al [31], Hu
and Ren [22], Lin et al [27], and others.

Acknowledgments. The authors want to thank the anonymous referees and the
editor for their valuable suggestions and comments.
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