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COUNTEREXAMPLES TO MEAN SQUARE ALMOST
PERIODICITY OF THE SOLUTIONS OF SOME SDES WITH

ALMOST PERIODIC COEFFICIENTS

OMAR MELLAH, PAUL RAYNAUD DE FITTE

Abstract. We show that, contrarily to what is claimed in some papers, the

nontrivial solutions of some stochastic differential equations with almost pe-

riodic coefficients are never mean square almost periodic (but they can be
almost periodic in distribution).

1. Introduction

Almost periodicity for stochastic processes and in particular for solutions of sto-
chastic differential equations is investigated in an increasing number of papers since
the works of Tudor and his collaborators [1, 8, 11, 12], who proved almost periodic-
ity in distribution of solutions of some SDEs with almost periodic coefficients. More
recently, Bezandry and Diagana [3, 4, 5] claimed that some SDEs with almost peri-
odic coefficients have solutions which satisfy the stronger property of mean square
almost periodicity. These claims are repeated in some subsequent papers and a
book by different authors.

The aim of this short note is to give counterexamples to the results of [3, 4, 5].

Notation. We denote by law Y the distribution of a random variable Y . If X is
a metrizable topological space, we denote by M1,+(X) the set of Borel probability
measures on X, endowed with the topology of narrow (or weak) convergence; i.e., the
coarsest topology such that the mappings µ 7→ µ(ϕ),M1,+(X)→ R are continuous
for all bounded continuous ϕ : X→ R.

Let (X, d) be a metric space. A continuous mapping f : R → X is said to be
almost periodic (in Bohr’s sense) if, for every ε > 0, there exists a number l(ε) > 0
such that every interval I of length greater than l(ε) contains an ε-almost period ;
that is, a number τ ∈ I such that d(f(t+ τ), f(t)) ≤ ε for all t ∈ R. Equivalently,
by a criterion of Bochner, f is almost periodic if and only if the set {x(t+ .), t ∈ R}
is totally bounded in the space C(R,X) endowed with the topology of uniform
convergence. Thanks to another criterion of Bochner [6], almost periodicity of f
does not depend on the metric d nor on the uniform structure of (X, d), but only
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on f and the topology generated by d (see [2] for details). We refer to e.g. [7, 13]
for beautiful expositions of almost periodic functions and their many properties.

Let X = (Xt)t∈R be a continuous stochastic process with values in a separable
Banach space E:

• We say that X is mean square almost periodic if Xt is square integrable for
each t and the mapping t 7→ Xt, R→ L2(E) is almost periodic.
• We say that X is almost periodic in distribution (in Bohr’s sense) if the

mapping t 7→ lawXt+., R → M1,+(C(R,E)) is almost periodic, where
C(R,E) is endowed with the topology of uniform convergence on compact
subsets.

It is shown in [2] that, ifX is mean square almost periodic, thenX is almost periodic
in distribution. The counterexamples of this paper also show that the converse
implication is false (actually, it is proved in [2] that the converse implication is true
under a tightness condition).

2. Two explicit counterexamples

The following very simple counterexample, inspired by [2, Counterexample 2.16],
was suggested to us by Adam Jakubowski. It contradicts [3, Theorem 3.2], [4,
Theorem 3.3], and [5, Theorem 4.2].

Example 2.1 (stationary Ornstein-Uhlenbeck process). Let W = (Wt)t∈R be a
standard Brownian motion on the real line. Let α, σ > 0, and let X be the station-
ary Ornstein-Uhlenbeck process (see [10]) defined by

Xt =
√

2ασ
∫ t

−∞
e−α(t−s)dWs. (2.1)

Then X is the only L2-bounded solution of the following SDE, which is a particular
case of Equation (3.1) in [3]:

dXt = −αXt dt+
√

2ασ dWt.

The process X is Gaussian with mean 0, and we have, for all t ∈ R and τ ≥ 0,

Cov(Xt, Xt+τ ) = σ2e−ατ .

Assume that X is mean square almost periodic, and let (tn) be any increas-
ing sequence of real numbers which converges to ∞. By Bochner’s characteriza-
tion, we can extract a sequence (still denoted by (tn) for simplicity) such that
(Xtn) converges in L2 to a random variable Y . Necessarily Y is Gaussian with law
N (0, 2ασ2), and Y is G-measurable, where G = σ(Xtn : n ≥ 0). Moreover (Xtn , Y )
is Gaussian for every n, and we have, for any integer n,

Cov(Xtn , Y ) = lim
m→∞

Cov(Xtn , Xtn+m) = 0

because (X2
t )t∈R is uniformly integrable. This proves that Y is independent of Xtn

for every n, thus Y is independent of G. Thus Y is constant, a contradiction.
Thus (2.1) has no mean square almost periodic solution.

A similar reasoning applies to the next counterexample, which also contradicts
[3, Theorem 3.2], [4, Theorem 3.3], and [5, Theorem 4.2]:
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Example 2.2. Again, W = (Wt)t∈R is a standard Brownian motion on the real
line. Let X be defined by

Xt = e−t+sin(t)

∫ t

−∞
es−sin(s)

√
1− cos(s) dWs.

Then X satisfies the SDE with periodic coefficients

dXt = (−1 + cos(t))Xt dt+
√

1− cos(t) dWt.

The process X is Gaussian, with EXt = 0 and

Cov(Xt, Xt+τ ) = e−t−τ+sin(t+τ)e−t+sin(t))

∫ t

−∞
e2(s−sin(s))(1− cos(s)) ds

=
1
2
e−τ+sin(t+τ)−sin(t) → 0 as τ → +∞

in particular EX2
t = 1

2 e
2 sin(t) ≥ 1

2 e
−2 thus the same reasoning as in Example 2.1

shows that X is not mean square almost periodic, because if Xtn converges in L2

to Y , with tn →∞, then Y = 0 and EY 2 ≥ e−2/2.
By [8, Theorem 4.1], the process X is periodic in distribution.

The argument in the previous counterexamples can be slightly generalized for
non necessarily Gaussian processes as follows:

Lemma 2.3. Let X be a continuous square integrable stochastic process with values
in a Banach space E. Assume that (‖xt‖2)t∈R is uniformly integrable and that there
exists a sequence (tn) of real numbers, tn →∞, such that for any x∗ ∈ E∗ and any
integer n ≥ 0,

lim
m→∞

Cov
(
〈x∗, Xtn〉, 〈x∗, Xtm〉

)
= 0, (2.2)

lim
m→∞

Var(‖Xtm‖) > 0. (2.3)

Then X is not mean square almost periodic.

Proof. Assume that X is mean square almost periodic. Then, for some subsequence
(t′n) of (tn), Xt′n

converges in L2 to some random vector Y . By (2.3) and the uniform
integrability hypothesis, Y is not constant. On the other hand, by (2.2) and the
uniform integrability hypothesis, we have

Cov
(
〈x∗, Xt′n

〉, 〈x∗, Y 〉
)

= 0

for every x∗ ∈ E∗ and every integer n. Then

Var〈x∗, Y 〉 = lim
n

Cov
(
〈x∗, Xt′n

〉, 〈x∗, Y 〉
)

= 0,

thus Y is constant, a contradiction. �

3. Generalization

We present a generalization of Counterexamples 2.1 and 2.2 in a Hilbert space
setting. Other generalizations in the same setting are possible.

For the rest of this article, H and U are separable Hilbert spaces, Q is a symmetric
nonnegative operator on U with finite trace, and (Wt)t∈R is a Q-Brownian motion
with values in U. We denote U0 = Q1/2U and L0

2 = L2(U0,H) the space of Hilbert-
Schmidt operators from U0 to H, endowed with the Hilbertian norm

‖Ψ‖2L0
2

= ‖ΨQ1/2‖2L2
= Tr(ΨQΨ∗).
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It is well known that, if Φ is a predictable stochastic process with values in L0
2 such

that
∫ t
0
‖Φs‖2L0

2
ds < +∞, then we have the Ito isometry

E
(∥∥∫ t

0

Φs dWs

∥∥2
)

=
∫ t

0

‖Φs‖2L0
2
ds.

Recall (see e.g. [9, Definitions 1.4.1 and 1.4.2]) that a linear operator A(t) on
H with domain D(A(t)) generates an evolution semigroup (U(t, s))t≥s on H, if
(U(t, s))t≥s is a family of bounded linear operators on H such that

(i) U(t, r)U(r, s) = U(t, s) for all t, r, s ∈ R such that s ≤ r ≤ t, and, for every
t ∈ R, U(t, t) = I the identity operator on H,

(ii) for every x ∈ H, the mapping (t, s) 7→ U(t, s) from {(t, s) : t ≥ s} to H is
continuous,

(iii) for every T > 0, there exists KT < ∞ such that ‖U(t, s)‖ ≤ KT for
0 ≤ s ≤ t ≤ T ,

(iv) for all t, s ∈ R such that s ≤ t, the domain D(A(t)) is dense in H,
U(t, s)D(A(s)) ⊂ D(A(t)), and

∂

∂t
U(t, s)x = A(t)U(t, s)x for t > s and x ∈ D(A(s)).

The following theorem contains Counterexamples 2.1 and 2.2. Counterexample
2.2 can be seen as a particular case of Equation (3.1) below, with A(t) = −1+cos(t)
which generates the evolution semigroup U(t, s) = e−(t−s)+sin(t)−sin(s).

Theorem 3.1 (linear evolution equations with almost periodic noise). Let us con-
sider the stochatic evolution equation

dXt = A(t)Xt dt+ g(t) dWt (3.1)

where A(.) generates an evolution semigroup (U(t, s))t≥s on H. We assume that
(a) (see [8, Hypothesis 1]) the Yosida approximations An(t) = nA(t)(nI −

A(t))−1 of A(t), t ∈ R, generate corresponding evolution operators

(Un(t, s))t≥s

such that, for every x ∈ H and for all t, s ∈ R such that s ≤ t,

lim
n→∞

Un(t, s)x = U(t, s)x;

(b) A is uniformly dissipative (see [8, Hypothesis 3]), i.e. there exists β > 0
such that

〈A(t)x, x〉 ≤ −β‖x‖2, t ∈ R, x ∈ D(A(t));

(c) U is exponentially stable (see [4, Hypothesis H0]), i.e.,

‖U(t, s)‖ ≤Me−δ(t−s), t ≥ s; (3.2)

(d) g : R→ L0
2 is almost periodic and satisfies

0 <
∫ +∞

−∞
‖U(t, s)g(s)‖2L0

2
ds < +∞ . (3.3)

Then (3.1) has no mean square almost periodic solution. However, if the unique
L2-bounded solution X to (3.1) is such that the family (Xt)t∈R is tight, then it is
almost periodic in distribution.
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Note that, if A and g are T -periodic, then by [8, Theorem 4.1] the L2-bounded
solution is T -periodic in distribution, that is, the mapping t 7→ lawXt+., R →
M1,+(C(R,E)), is periodic.

Proof of Theorem 3.1. The only L2-bounded (mild) solution to (3.1) is

Xt =
∫ t

−∞
U(t, s)g(s) dWs; (3.4)

see the proof of [8, Theorem 3.3]. Note that X is Gaussian because the integrand in
(3.4) is deterministic. By [9, Theorem 1.4.5], X has a continuous version (actually
[9, Theorem 1.4.5] is given for processes defined on the half line R+, but we can
repeat the argument on any interval [−R,∞)). By [8, Theorem 4.3], if the family
(Xt)t∈R is tight, X is almost periodic in distribution.

Let p > 2. Applying Burkholder-Davis-Gundy inequalities to the process t 7→∫ t
−∞ U(t0, s)g(s) dWs for fixed t0, and then setting t = t0 yields, for some constant
cp,

E‖Xt‖p ≤ cp
(∫ t

−∞
‖U(t, s)g(s)‖2L0

2
ds
)p/2

≤ cp
(∫ +∞

−∞
‖U(t, s)g(s)‖2L0

2
ds
)p/2

< +∞

(see e.g. [9, Theorems 1.2.1, 1.2.3-(e) and Proposition 1.3.3-(f)]). Thus (Xt) is
bounded in Lp, which proves that (‖Xt‖2)t∈R is uniformly integrable.

We have E(Xt) = 0 for all t ∈ R. Let x ∈ H, t ∈ R and τ ≥ 0, and let us
compute the covariance Cov

(
〈x,Xt〉, 〈x,Xt+τ 〉

)
: We obtain

Cov
(
〈x,Xt〉, 〈x,Xt+τ 〉

)
= E

(〈
x,

∫ t

−∞
U(t, s)g(s) dWs

〉
×
〈
x,
(∫ t

−∞
U(t+ τ, s)g(s) dWs +

∫ t+τ

t

U(t+ τ, s)g(s) dWs

)〉)
= E

(〈
x,

∫ t

−∞
U(t, s)g(s) dWs

〉〈
U(t+ τ, t)∗x,

∫ t

−∞
U(t, s)g(s) dWs

〉)
.

Using (3.2) and (3.3), we deduce

lim
τ→+∞

∣∣Cov
(
〈x,Xt〉, 〈x,Xt+τ 〉

)∣∣
≤ lim
τ→+∞

‖U(t+ τ, t)‖‖x‖2E
∫ t

−∞
‖(U(t, s)g(s)‖2L0

2
ds = 0.

On the other hand, using (3.3), we have

Var(‖Xt‖) = E
(∫ t

−∞
‖U(t, s)g(s)‖2L0

2
ds
)
→
∫ +∞

−∞
‖U(t, s)g(s)‖2L0

2
ds > 0 .

We conclude by Lemma 2.3 that X is not mean square almost periodic. �
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4. Conclusion

A close look at the proofs of [3, 4, 5] shows the same error in each of those papers,
which besides are clever at other places. Let us use the notations of the Hilbert
setting of Section 3, and assume that all processes are defined on a probability
space (Ω,F , P ). The error lies in the proof of the (untrue) assertion that, if G : R×
L2(P ; H)→ L2(P ;L0

2) is almost periodic in the first variable, uniformly with respect
to the second on compact subsets of L2(P ; H), then the stochastic convolution

Ψ(Y )t :=
∫ t

−∞
U(t, s)G(s, Ys) dWs

is mean square almost periodic for any continous square integrable stochastic pro-
cess Y . If this were true, then with G(t, Y ) = g(t) an almost periodic function, and
assuming the hypothesis of Theorem 3.1, the process X = ψ(1) of Equation (3.4),
which is solution of (3.1), would be mean square almost periodic, but we know from
Theorem 3.1 that this is not the case. The error consists in a wrong identification
between integrals of the form

∫ t
−∞ Zs dWs and

∫ t
−∞ Zs dW̃s, where W̃ has the same

distribution as W .
Actually, mean square almost periodicity appears to be a very strong property

for solutions of SDEs. Our counter-examples suggest that there are “very few”
examples of SDEs with non trivial mean square almost periodic solutions. The
question of their characterization remains open.
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