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GLOBAL STABILITY OF A DELAY DIFFERENTIAL EQUATION
OF HEPATITIS B VIRUS INFECTION WITH IMMUNE

RESPONSE

JINLIANG WANG, XINXIN TIAN

Abstract. The global stability for a delayed HBV infection model with CTL

immune response is investigated. We show that the global dynamics is de-
termined by two sharp thresholds, basic reproduction number <0 and CTL

immune-response reproduction number <1. When <0 ≤ 1, the infection-free

equilibrium is globally asymptotically stable, which means that the viruses are
cleared and immune is not active; when <1 ≤ 1 < <0, the CTL-inactivated

infection equilibrium exists and is globally asymptotically stable, which means

that CTLs immune response would not be activated and viral infection be-
comes chronic; and when <1 > 1, the CTL-activated infection equilibrium

exists and is globally asymptotically stable, in this case the infection causes a

persistent CTLs immune response. Our model is formulated by incorporating
a Cytotoxic T lymphocytes (CTLs) immune response to recent work [Gourley,

Kuang, Nagy, J. Bio. Dyn., 2(2008), 140-153] to model the role in antiviral by
attacking virus infected cells. Our analysis provides a quantitative understand-

ings of HBV replication dynamics in vivo and has implications for the optimal

timing of drug treatment and immunotherapy in chronic HBV infection.

1. Introduction

Approximately more than 350 million people worldwide live with chronic hepati-
tis B virus (HBV) infection[30], and 25-40 percent of these chronic infection carrier
will at risk of developing chronic liver disease, cirrhosis and hepatocellular carci-
noma [21]. HBV infection therefore represents a significant global public health
problem.

A basic within-host viral infection model introduced by Nowak et al [20, 21] and
Perelson et al [25] have been widely used in the studies of HBV and HIV infection
dynamics and its treatment with the reverse transcriptase inhibitor lamivudine.
After then several mathematical models have been modified to study of anti-HBV
infection treatment and its dynamics. Most of these models focus on cell-free vi-
ral spread in a compartment such as the bloodstream, see, for example, In [29],
saturated mass action incidence rates βxv/(1 + αv) was proposed under the as-
sumption that a less than linear response in v could occur due to saturation at
high virus concentration. Min et al [17] and Zheng et al [34] employed a standard
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incidence function instead of the mass action incidence to describe the hepatitis B
virus infection as follows

ẋ(t) = λ− dx(t)− βx(t)v(t)
x(t) + y(t)

,

ẏ(t) =
βx(t)v(t)
x(t) + y(t)

− ay(t),

v̇(t) = ky(t)− µy(t),

(1.1)

where x, y and v are numbers of uninfected (susceptible) liver cells, infected liver
cells and free virions, respectively. Uninfected liver cells are assumed to be produced
at a constant rate, λ, to maintain tissue homeostasis in the face of hepatocyte
turnover, described by the linear term dx, where d is the per-capita death rate.
Infected liver cells are killed by immune cells at rate ay. Free virions are generated
from infected cells at the rate of ky and decay by lymphatic and other mechanisms
at the rate of µv, where k is the so-called “burst” constant.

Upon infection with HIV-1, there is a short intracellular “eclipse phase” (often
referred to as “latency” in the literature), during which the cell is infected but has
not yet begun producing virus. There are two methods to model this eclipse phase,
by a time delay or by an explicit class of latently infected cells. Recently, Gourley
et al [6] proposed the following model (As an extension of this model (1.1)) under
some biologically motivated modifications:

ẋ(t) = λ− dx(t)− βkx(t)y(t)
µ(x(t) + y(t))

,

ė(t) = −de(t) +
βkx(t)y(t)

µ(x(t) + y(t))
− βke−dτx(t− τ)y(t− τ)

µ(x(t− τ) + y(t− τ))
,

ẏ(t) =
βe−dτkx(t− τ)y(t− τ)
µ(x(t− τ) + y(t− τ))

− ay(t),

(1.2)

where e(t) represents the number of exposed cells (i.e., cells that have acquired the
virus but are not yet producing new virions). Exposed cells begin shedding virions
after τ units of time, representing the time required to construct, transcribe and
translate the episomal viral genome, construct and then release mature virions.
Other parameters are the same as in the basic virus model (1.1). Model (1.2) is
obtained from the following three observations:

(1) A typical chronically infected HBV patient has a total serum load of about
2×1011 to 3×1012 virions [20]. The average human liver has about an equal number
of cells (assuming a liver mass of about 1.5 kg). These large numbers suggest that
a more plausible HBV model should employ a standard incidence function, instead
of the mass action incidence. On the other hand, the time delay associated with
virus production is on the order of a day or two [19], much shorter than the life
expectancy of a typical hepatocyte, which is 6-12 months or more [27]. This makes
e much smaller than x and y. Hence, e can be omitted from the denominators of
the infection term.

(2) The HBV incubation period, which varies from 45 to 180 days, and the
delay in viral shedding mentioned previously both suggest that viral production
delay may significantly impact infection dynamics and, hence, should be explicitly
modeled.
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(3) Variable v (virus particles) evolves on much faster time scale than the liver
cells do, so a quasi-steady state assumption can be applied to v; i.e., to a good
approximation, v = ky/µ.

In fact, it has been reported (Dimitrov et al. [4] and Sato et al. [28]) that
cell-to-cell spread of virus is favored over infections with cell-free virus inocula. For
example, HTLV-I infection in vivo is achieved through cell-to-cell contact among
healthy and infected CD4+ T cells [2]. It is evidently that cell-to-cell infection is
the predominant route of viral spread since viral replication in a system with rapid
cell turnover kinetics depends on cell-to-cell transfer of virus(see e.g. Gummuluru
et al. [7], Haase et al [10, 11], Philips et al [24]). Then the above HBV infection
model cab be termed as cell to cell infection model. Note that in above simpler
model (1.2), the x and y equations do not involve variable e and form a closed
subsystem of two equations. Guo and Cai [8] resolved the global stability of infection
equalibrium of model (1.2), without other additional conditions, which is left as an
open problem in [6]. They showed that the infected equilibrium of system (1.2) is
always globally asymptotically stable as long as it exists by constructing suitable
Lyapunov functional and LaSalle invariance principle.

In most viral infections, cytotoxic T lymphocyte cells (CTLs), which attack
infected cells, and antibody cells, which attack viruses, play a key role in antiviral
defense. Chronic HBV infection is often the result of exposure early in life, leading
to viral persistence in the absence of strong antibody or cellular immune responses
[5]. Therapy of HBV carriers can aim to either inhibit viral replication or enhance
immunological responses against the virus, or both [26]. It is currently widely
accepted that HBV infection is non-cytopathic. Infected hepatocytes are killed not
by the virus but by HBV-specific cytotoxic T lymphocytes (CTLs) [9, 19]. This
mortality is somehow amplified by inflammation responses within the liver, but
CTLs appear to be the major mediator of hepatitis B pathogenesis [14]. Therefore,
one of the dynamics of viral infection model with CTLs response have recently
drawn much attention of researchers in the related areas and the interaction between
infected cells and CTLs response in vivo has been studied by ordinary differential
equations (ODEs) or delay differential equations (DDEs) (see e.g.[1, 3, 33]).

In this article, letting z(t) be the density of CTLs, we propose the model

ẋ(t) = λ− d1x(t)− βx(t)y(t)
x(t) + y(t)

,

ẏ(t) =
βe−d1τx(t− τ)y(t− τ)
x(t− τ) + y(t− τ)

− d2y(t)− ay(t)z(t),

ż(t) = py(t)z(t)− d3z(t),

(1.3)

where the infected cells y(t) are removed at a rate ayz by the CTL immune response
and the virus-specific CTL cells proliferate at a rate pyz by contact with the infected
cells, and die at a rate d3z. The aim of the present paper is to carry out a complete
mathematical analysis of model (1.3), we will show that the global properties of
model (1.3) for <1 ≤ 1 < <0 and <1 > 1 without any further conditions on
the parameters. More precisely, we show that if <1 ≤ 1 < <0, CTL-inactivated
infection equilibrium E1 is globally asymptotically stable; if <1 > 1, CTL-activated
infection equilibrium E2 is globally asymptotically stable. The global stabilities of
these models are established by constructing Lyapunov functionals and Lyapunov-
LaSalle invariance principle (see e.g. [13]). Similar methods and techniques had
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been engaged by motivated by the works by Huang et al [12], Korobeinikov [16],
McCluskey [18] and Wang et al [31, 32].

The organization of this paper is as follows. In Section 2, we give the prelimi-
naries of model (1.3) including basic reproduction number, CTL immune-response
reproduction number and equilibria. In Section 3, The global stability results is
proved by Lyapunov functionals. A brief discussion is given in Section 4 to conclude
this work.

2. Preliminaries

We denote by C the Banach space of continuous real-valued functions C =
C([−τ, 0],R3) with the sup-norm

‖ϕ‖ = max
{

sup
−τ≤θ≤0

|ϕ1(θ)|, sup
−τ≤θ≤0

|ϕ2(θ)|, sup
−τ≤θ≤0

|ϕ3(θ)|
}

(2.1)

for ϕ = (ϕ1, ϕ2, ϕ3) ∈ C. Further, the nonnegative cone of C is defined as C+ =
C([−τ, 0],R3

+).
The initial conditions of system (1.3) at t = 0 are given as x(θ) = ϕ1(θ), y(θ) =

ϕ2(θ), z(θ) = ϕ3(θ), θ ∈ [−τ, 0]. where

ϕ = (ϕ1, ϕ2, ϕ3) ∈ C+, ϕ(0) > 0. (2.2)

The following theorem establishes the positivity and boundedness of solutions for
system (1.3) with initial conditions (2.2).

Theorem 2.1. Under the preceding initial conditions (2.2), then x(t), y(t) and z(t)
are all nonnegative and bounded for all t at which the solution exists.

Proof. By the existence and uniqueness theorem [15, Theorem 2.1] of delay differen-
tial equations, there exists a t0 > 0 such that there exists a solution (x(t), y(t), z(t))
of system (1.3) for 0 < t < t0. We assume that there exists a solution of system
(1.1) for 0 < t < t1 for a positive t1, where the existence is assured by the theorem
stated above. First, we prove that x(t) is positive for all t ≥ 0. Assuming the
contrary and letting t1 > 0 be the first time such that x(t1) = 0. If x(t) ere to
lose its non-negativity, there would have to be x′(t1) ≤ 0, by the first equation of
system (1.1), this is clearly impossible given the equation for x(t) in system (1.3).
It follows that x(t) > 0 for t > 0 as long as x(t) exists.

By the second equation of system (1.3), we have

y(t) = y(0) exp
(
− d2t− a

∫ t

0

z(θ)dθ
)

+
∫ t

0

βe−dτx(θ − τ)y(θ − τ)
x(θ − τ) + y(θ − τ)

ed2(θ−t) exp
(
− a

∫ t

θ

z(σ)dσ
)
dθ.

It follows that y(t) > 0 for t > 0.
From the third equation of system (1.3), we have z(t) = z(0) exp[(py − d3)t].

This shows that z(t) ≥ 0 for 0 ≤ t < t1.
Next we show that positive solutions of (1.3) are ultimately uniformly bounded

for t ≥ 0. Let

G(t) = e−d1τx(t) + y(t+ τ) +
a

p
z(t).
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Adding all the equations of (1.3) we obtain

G′(t) = λe−d1τ − d1e
−d1τx(t)− d2y(t+ τ)− d3

a
z(t)

≤ λe−d1τ − dG(t),

where d = min{d1, d2, d3}. Then G(t) ≤ M1 for some M1 > 0 for sufficiently large
t. For example, we can take as M1 = 2λe−dτ

d , which implies that G(t) is ultimately
bounded, and so are x(t), y(t) and z(t). This proof is complete. �

System (1.3) always exists an infection-free equilibrium E0 = (x0, 0, 0), where
x0 = λ

d1
, which represents the state that the viruses are absent. The basic repro-

duction number of system (1.3) is given by

<0 =
βe−dτ

d2
.

If <0 ≤ 1, an infection-free equilibrium E0 is the unique equilibrium, corresponding
to the extinction of free viruses. If <0 > 1, in addition to E0, there exists an
CTL-inactivated infection equilibrium E1(x1, y1, 0), where

x1 =
λ

d1 + d2ed1τ (<0 − 1)
, y1 =

λ(<0 − 1)
d1 + d2ed1τ (<0 − 1)

,

which represents the state that the viruses are present whereas the CTLs are absent.
We introduce a CTL immune-response reproduction number

<1 =
d1 + d2e

d1τ (<0 − 1)
pλ

(py1 − d3) + 1.

Given <1 > 1, then system (1.3) has an CTL-activated infection equilibrium
E2(x2, y2, z2), where

x2 =
(λp− d1d3 − βd3) +

√
(λp− d1d3 − βd3)2 + 4d1d3λp

2d1p
,

y2 =
d3

p
, z2 =

βpe−d1τx2

ax2p+ d3
− d2

a
.

Clearly, the endemic equilibrium represents the state that both the viruses and
CTL response are present.

3. Main results

Throughout the article, we let g(x) = x − 1 − lnx, to simplify many of the
expressions which follow. Note that g : R+ → R+ has strict global minimum
g(1) = 0.

Theorem 3.1. If <0 ≤ 1, then the disease free equilibrium E0 is globally asymp-
totically stable.

Proof. Define a Lyapunov functional

L0 = e−d1τ
[
x−x0−

∫ x

x0

x0(θ + y)
θ(x0 + y)

dθ
]

+y+
a

p
z+βe−d1τ

∫ t

t−τ

x(θ)y(θ)
x(θ) + y(θ)

dθ. (3.1)

Calculating the time derivative of L0 along the solution of (1.3), it follows that
dL0

dt

∣∣∣
(1.3)
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= e−d1τ
[
1− x0(x+ y)

x(x0 + y)
]
ẋ+ ẏ +

a

p
ż +

βe−d1τxy

x+ y
− βe−d1τx(t− τ)y(t− τ)

x(t− τ) + y(t− τ)

= e−d1τ
[
1− x0(x+ y)

x(x0 + y)
][
λ− d1x−

βxy

x+ y

]
+
βe−d1τx(t− τ)y(t− τ)
x(t− τ) + y(t− τ)

− d2y − ayz +
a

p
(pyz − d3z) +

βe−d1τxy

x+ y
− βe−d1τx(t− τ)y(t− τ)

x(t− τ) + y(t− τ)

= e−d1τd1(x0 − x)
[
1− x0(x+ y)

x(x0 + y)
]

+
βe−d1τx0y

x0 + y
− d2y −

ad3z

p

= e−d1τd1(x0 − x)
[
1− x0(x+ y)

x(x0 + y)
]

+
d2x0y(<0 − 1)

x0 + y
− d2y

2

x0 + y
− ad3z

p
,

where

e−d1τd1(x0 − x)
[
1− x0(x+ y)

x(x0 + y)
]

= −e
−d1τd1y(x0 − x)2

x(x0 + y)
≤ 0.

Therefore, <0 ≤ 1 ensures that dL0/dt ≤ 0 for all x > 0, y ≥ 0, z ≥ 0, and
dL0/dt = 0 holds if and only if x = x0, y = 0, and z(t) = 0 for <0 ≤ 1. If
follows that the largest invariant set in {(xt, yt, vt, zt)|dL0/dt = 0} is E0. The
classical Lyapunov-LaSalle invariance principle [15, Theorem 2.5.3] shows that E0

is globally asymptotically stable when <0 ≤ 1. �

Theorem 3.2. If <1 ≤ 1 < <0, then CTL-inactivated infection equilibrium E1 is
globally asymptotically stable.

Proof. Define a Lyapunov functional

L1 = x− x1 −
∫ x

x1

x1(θ + y1)
θ(x1 + y1)

dθ + ed1τy1g
( y
y1

)
+
aed1τ

p
z

+ ed1τd2y1

∫ t

t−τ
g
( βx(θ)y(θ)
ed1τd2y1(x(θ) + y(θ))

)
dθ.

Calculating the time derivative of L1 along the solution of (1.3), it follows that

dL1

dt

∣∣∣
(1.1)

=
[
1− x1(x+ y1)

x(x1 + y1)
]
ẋ+ ed1τ

(
1− y1

y

)
ẏ +

aed1τ

p
ż

+
βxy

x+ y
− βx(t− τ)y(t− τ)
x(t− τ) + y(t− τ)

− ed1τd2y1 ln
βxy

ed1τd2y1(x+ y)

+ ed1τd2y1 ln
βx(t− τ)y(t− τ)

ed1τd2y1(x(t− τ) + y(t− τ))

=
[
1− x1(x+ y1)

x(x1 + y1)
][
d1(x1 − x) +

( βx1y1
x1 + y1

− βxy

x+ y

)]
+
[ βx(t− τ)y(t− τ)
x(t− τ) + y(t− τ)

− ed1τ (d2y(t)− ay(t)z(t))
](

1− y1
y

)
+
aed1τ

p
(py − d3)z +

βxy

x+ y
− βx(t− τ)y(t− τ)
x(t− τ) + y(t− τ)

− ed1τd2y1 ln
βxy

ed1τd2y1(x+ y)

+ ed1τd2y1 ln
βx(t− τ)y(t− τ)

ed1τd2y1(x(t− τ) + y(t− τ))
.

(3.2)
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Here we used that

λ = d1x1 +
βx1y1
x1 + y1

, d2y1 =
βe−d1τx1y1

x1 + y1
. (3.3)

Combining the (3.2) and (3.3) we obtain

dL1

dt

∣∣∣
(1.1)

= d1(x1 − x)
[
1− x1(x+ y1)

x(x1 + y1)
]

+
βx1y1
x1 + y1

[
1− x1(x+ y1)

x(x1 + y1)
+
y(x+ y1)
y1(x+ y)

− y

y1

]
− y1

y

βx(t− τ)y(t− τ)
x(t− τ) + y(t− τ)

+ ed1τay1z −
ed1τad3z

p
+

βx1y1
x1 + y1

− ed1τd2y1 ln
βxy

ed1τd2y1(x+ y)
+ ed1τd2y1 ln

βx(t− τ)y(t− τ)
ed1τd2y1(x(t− τ) + y(t− τ))

= d1(x1 − x)
[
1− x1(x+ y1)

x(x1 + y1)
]

+
βx1y1
x1 + y1

[(
1− y(x+ y1)

y1(x+ y)

)( x+ y

x+ y1
− 1
)

−
( x+ y

x+ y1
− 1− ln

x+ y

x+ y1

)
−
(x1(x+ y1)
x(x1 + y1)

− 1− ln
x1(x+ y1)
x(x1 + y1)

)
− ln

x+ y

x+ y1
− ln

x1(x+ y1)
x(x1 + y1)

]
+
aed1τ

p
(py1 − d3)

− βx1y1
x1 + y1

[ (x1 + y1)x(t− τ)y(t− τ)
x1y(x(t− τ) + y(t− τ))

− 1− ln
(x1 + y1)x(t− τ)y(t− τ)
x1y(x(t− τ) + y(t− τ))

]
− βx1y1
x1 + y1

[
ln

(x1 + y1)x(t− τ)y(t− τ)
x1y(x(t− τ) + y(t− τ))

+ ln
βxy

ed1τd2y1(x+ y)

− ln
βx(t− τ)y(t− τ)

ed1τd1y1(x(t− τ) + y(t− τ))

]
= d1(x1 − x)

[
1− x1(x+ y1)

x(x1 + y1)

]
+

βx1y1
x1 + y1

(
1− y(x+ y1)

y1(x+ y)

)( x+ y

x+ y1
− 1
)

− βx1y1
x1 + y1

g
( x+ y

x+ y1

)
− βx1y1
x1 + y1

g
(x1(x+ y1)
x(x1 + y1)

)
− βx1y1
x1 + y1

g
( (x1 + y1)x(t− τ)y(t− τ)
x1y(x(t− τ) + y(t− τ))

)
+
aed1τ

p
(py1 − d3),

where

d1(x1 − x)
[
1− x1(x+ y1)

x(x1 + y1)
]

= −d1y(x1 − x)2

x(x1 + y1)
≤ 0.

Note that

<1 =
d1 + d2e

d1τ (<0 − 1)
pλ

(py1 − d3) + 1,

which implies that <1 ≤ 1 is equivalent to py1/d3 ≤ 1. The latter py1/d3 is seen
to be the immune reproductive number, which expresses the average number of
activated CTLs generated from one CTL during its life time 1/d3 through the
stimulation of the infected cells y1. It is reasonable that immune is activated in
the case where <1 > 1. Hence dL1

dt is always non-positive under the condition
<1 ≤ 1 < <0, and it can be verified that dL1

dt = 0 if and only if x = x1 and
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x+y
x+y1

= x1(x+y1)
x(x1+y1)

= (x1+y1)x(t−τ)y(t−τ)
x1y(x(t−τ)+y(t−τ)) = 1. Using the first two equations of system

(1.3), we have

0 = ẋ(t) = λ− d1x1 −
βx1y(t)
x1 + y(t)

,

0 = ẏ(t) =
βe−d1τx1y(t− τ)
x1 + y(t− τ)

− d2y(t)− ay(t)z(t).

This gives y = y1, z = 0. So, the global asymptotic stability of E1 follows from the
LaSalle’s invariant principle. �

Theorem 3.3. If <1 > 1, then CTL-activated infection equilibrium E2 is globally
asymptotically stable; i.e., E2 is globally asymptotically stable whenever it exists.

Proof. Define a Lyapunov functional

L2 = x(t)− x2 −
∫ x(t)

x2

x2(θ + y2)
θ(x2 + y2)

dθ + ed1τy2g
(y(t)
y2

)
+
aed1τ

p
z2g

(
z(t)
z2

)
+ ed1τ (d2y2 + ay2z2)

∫ t

t−τ
g
( βx(θ)y(θ)
ed1τ (d2y2 + ay2z2)(x(θ) + y(θ))

)
dθ.

Calculating the time derivative of L2 along the solution of (1.1), we obtain

dL2

dt

∣∣∣
(1.1)

=
[
1− x2(x+ y2)

x(x2 + y2)

][
d1(x2 − x) +

( βx2y2
x2 + y2

− βxy

x+ y

)]
+
[ βx(t− τ)y(t− τ)
x(t− τ) + y(t− τ)

− ed1τ (d2y(t)− ay(t)z(t))
](

1− y2
y

)
+
aed1τ

p
(pyz − d3z)

(
1− z2

z

)
+

βxy

x+ y
− βx(t− τ)y(t− τ)
x(t− τ) + y(t− τ)

− βx2y2
x2 + y2

ln
βxy

βx2y2
x2+y2

(x+ y)
+

βx2y2
x2 + y2

ln
βx(t− τ)y(t− τ)

βx2y2
x2+y2

(x(t− τ) + y(t− τ))
.

(3.4)
Here we used that

λ = d1x2 +
βx2y2
x2 + y2

, d2y2 + ay2z2 =
βe−d1τx2y2
x2 + y2

, py2 = d3. (3.5)

Combining (3.4) and (3.5) we obtain
dL2

dt

∣∣∣
(1.1)

= d1(x2 − x)
[
1− x2(x+ y2)

x(x2 + y2)

]
+

βx2y2
x2 + y2

[
1− x2(x+ y2)

x(x2 + y2)
+
y(x+ y2)
y2(x+ y)

− y

y2

]
+

βx2y2
x2 + y2

− y2
y

x(t− τ)y(t− τ)
x(t− τ) + y(t− τ)

− βx2y2
x2 + y2

ln
βxy

βx2y2
x2+y2

(x+ y)
+

βx2y2
x2 + y2

ln
βx(t− τ)y(t− τ)

βx2y2
x2+y2

(x(t− τ) + y(t− τ))

= d1(x2 − x)
[
1− x2(x+ y2)

x(x2 + y2)

]
+

βx2y2
x2 + y2

[(
1− y(x+ y2)

y2(x+ y)

)( x+ y

x+ y2
− 1
)

−
( x+ y

x+ y2
− 1− ln

x+ y

x+ y2

)
−
(x2(x+ y2)
x(x2 + y2)

− 1− ln
x2(x+ y2)
x(x2 + y2)

)
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− ln
x+ y

x+ y2
− ln

x2(x+ y2)
x(x2 + y2)

]
− βx2y2
x2 + y2

[ (x2 + y2)x(t− τ)y(t− τ)
x2y(x(t− τ) + y(t− τ)

− 1− ln
(x2 + y2)x(t− τ)y(t− τ)
x2y(x(t− τ) + y(t− τ)

]
− βx2y2
x2 + y2

[
ln

(x2 + y2)x(t− τ)y(t− τ)
x2y(x(t− τ) + y(t− τ)

+ ln
βxy

βx2y2
x2+y2

(x+ y)

− ln
βx(t− τ)y(t− τ)

βx2y2
x2+y2

(x(t− τ) + y(t− τ))

]
= d1(x2 − x)

[
1− x2(x+ y2)

x(x2 + y2)

]
+

βx2y2
x2 + y2

(
1− y(x+ y2)

y2(x+ y)

)( x+ y

x+ y2
− 1
)

− βx2y2
x2 + y2

g
( x+ y

x+ y2

)
− βx2y2
x2 + y2

g
(x2(x+ y2)
x(x2 + y2)

)
− βx2y2
x2 + y2

g
( (x2 + y2)x(t− τ)y(t− τ)
x2y(x(t− τ) + y(t− τ))

)
.

Similar to the proof of Theorem 3.2, the terms of dL2/dt always are non-positive.
Hence dL2/dt for all x > 0, y > 0and z > 0, and dL2/dt = 0 if and only if x = x2

and y = y2, z = z2. The largest invariant set in {(xt, yt, zt) | dL2/dt = 0} is
E2. From the Lyapunov-LaSalle invariance principle, it shows that equilibrium
E2(x1, y2, z2) is globally asymptotically stable. �

4. Summary and Discussion

In this article, we have modified the delay differential equation model for cell-
to-cell infection of HBV in tissue cultures proposed by Gourley et al [6] by incor-
porating a Cytotoxic T lymphocytes (CTLs) immune response to model the role
in antiviral by attacking virus infected cells. Since immune response after viral in-
fection is universal and necessary to eliminate or control the disease. Our analysis
provides a quantitative understandings of HBV replication dynamics in vivo and
has implications for the optimal timing of drug treatment and immunotherapy in
chronic HBV infection.

By constructing Lyapunov functionals, we obtain the global stability of the equi-
libria of (1.3) that depends only on the basic reproductive number <0 and the basic
immune reproductive number <1. For delay differential equations model (1.3), the
basic reproductive number is given by <0 = βe−dτ

d2
and it is a decreasing function

on intracellular delay τ such that <0(∞) = 0.
Theorems 3.1-3.3 show that when <0 ≤ 1, the infection-free equilibrium is glob-

ally asymptotically stable, which means that the viruses are cleared and immune
is not active; when <1 ≤ 1 < <0, the CTL-inactivated infection equilibrium exists
and is globally asymptotically stable, which means that CTLs immune response
would not be activated and viral infection becomes chronic but with a low level of
proviral load; and when <1 > 1, the CTL-activated infection equilibrium exists and
is globally asymptotically stable, in this case the infection causes a persistent CTLs
immune response and is chronic with a high level of proviral load. We can see that
under the condition <1(τ) > 1, as delay τ increases, the number of CTLs immune
response does not change in this situation. However, when the delay τ is sufficiently
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large, and brings <1(τ)) to a level lower than unity, the CTL-inactivated infection
equilibrium E1 becomes globally asymptotically stable.

It has been repointed in Nowak [20] that “Treatment of chronic HBV infections
with lamivudine leads to a rapid and sustained decline of plasma virus levels, but
clinical benefit with a reduced risk of cirrhosis and development of liver cancer will
greatly depend on the decline of infected cells. Immunotherapy without antiviral
treatment could be problematic because of the very large number of infected liver
cells in the typical HBV carrier. Therefore, the drugs which can prolong the latent
period, and/or decrease the needed time of immune response activation and/or
inhibit infection can slow down the virus production process. This gives us a good
guidance on the development of treatment strategies.

On the other hand, cell-to-cell models may be applicable to study the within-
host dynamics of other types of viral infections such as human T-cell leukaemia
virus type 1 (HTLV-1), hepatitis C, etc. We leave the modeling and study of the
cell-to-cell HTLV-1 infection for future consideration. Other realistic modifications
can be made. For example, we can modify target-cell dynamics to be a mitosis
component given by a logistic term and the loss/gain term as nonlinear incidence
function. Another possible modification would be to incorporate diffusion term
into the delayed model to more accurately reflect the realistic situation in tissue
cultures.
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