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A FRICTIONAL CONTACT PROBLEM WITH DAMAGE AND
ADHESION FOR AN ELECTRO ELASTIC-VISCOPLASTIC BODY

ADEL AISSAOUI, NACERDINE HEMICI

Abstract. We consider a quasistatic frictional contact problem for an electro

elastic-viscopalastic body with damage and adhestion. The contact is modelled

with normal compliance. The adhesion of the contact surfaces is taken into
account and modelled by a surface variable. We derive variational formulation

for the model which is in the form of a system involving the displacement field,

the electric potential field, the damage field and the adhesion field. We prove
the existence of a unique weak solution to the problem. The proof is based on

arguments of time-dependent variational inequalities, parabolic inequalities,
differential equations and fixed point.

1. Introduction

Considerable progress has been achieved recently in modeling, mathematical
analysis and numerical simulations of various contact processes and, as a result, a
general mathematical theory of contact mechanics (MTCM) is currently maturing.
It is concerned with the mathematical structures which underlie general contact
problems with different constitutive laws (i.e., different materials), varied geome-
tries and settings, and different contact conditions, see for instance [7, 20, 21] and
the references therein. The theory’s aim is to provide a sound, clear and rigorous
background for the constructions of models for contact between deformable bod-
ies; proving existence, uniqueness and regularity results; assigning precise meaning
to solutions; and the necessary setting for finite element approximations of the
solutions.

There is a considerable interest in frictional or frictionless contact problems in-
volving piezoelectric materials, see for instance [3, 16, 23] and the references therein.
Indeed, many actuators and sensors in engineering controls are made of piezoelec-
tric ceramics. However, there exists virtually no mathematical results about contact
problems for such materials and there is a need to expand the MTCM to include
the coupling between the mechanical and electrical material properties.

The piezoelectric effect is characterized by such a coupling between the mechani-
cal and electrical properties of the materials. This coupling, leads to the appearance
of electric field in the presence of a mechanical stress, and conversely, mechanical
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stress is generated when electric potential is applied. The first effect is used in
sensors, and the reverse effect is used in actuators.

On a nano-scale, the piezoelectric phenomenon arises from a nonuniform charge
distribution within a crystal’s unit cell. When such a crystal is deformed mechani-
cally, the positive and negative charges are displaced by a different amount causing
the appearance of electric polarization. So, while the overall crystal remains elec-
trically neutral, an electric polarization is formed within the crystal. This electric
polarization due to mechanical stress is called piezoelectricity. A deformable mate-
rial which exhibits such a behavior is called a piezoelectric material. Piezoelectric
materials for which the mechanical properties are elastic are also called electro-
elastic materials and piezoelectric materials for which the mechanical properties
are viscoelastic are also called electro-viscoelastic materials.

Only some materials exhibit sufficient piezoelectricity to be useful in applica-
tions. These include quartz, Rochelle salt, lead titanate zirconate ceramics, barium
titanate, and polyvinylidene flouride (a polymer film), and are used extensively as
switches and actuators in many engineering systems, in radioelectronics, electroa-
coustics and in measuring equipment. General models for electro-elastic materials
can be found in [14, 15] and, more recently, in [1, 12, 18]. A static and a slip-
dependent frictional contact problems for electro-elastic materials were studied in
[3, 16] and in [22], respectively. A contact problem with normal compliance for
electro-viscoelastic materials was investigated in [13, 23]. In the last two references
[22, 23] the foundation was assumed to be insulated.

The variational formulations of the corresponding problems were derived and
existence and uniqueness of weak solutions were obtained.

Here we continue this line of research and study a quasistatic frictionless contact
problem for an electro-viscoelastic material, in the framework of the MTCM, when
the foundation is conductive; our interest is to describe a physical process in which
both contact, friction and piezoelectric effect are involved, and to show that the
resulting model leads to a well-posed mathematical problem. Taking into account
the conductivity of the foundation leads to new and nonstandard boundary condi-
tions on the contact surface, which involve a coupling between the mechanical and
the electrical unknowns.

The rest of the article is structured as follows. In Section 2 we describe the
model of the frictional contact process between an electro-viscoplastic body and a
conductive deformable foundation. In Section 3 we introduce some notation, list the
assumptions on the problem’s data, and derive the variational formulation of the
model. It consists of a variational inequality for the displacement field coupled with
a nonlinear time-dependent variational equation for the electric potential. We state
our main result, the existence of a unique weak solution to the model in Theorem
3.3. The proof of the theorem is provided in Section 4, where it is carried out in
several steps and is based on arguments of evolutionary inequalities with monotone
operators, and a fixed point theorem.

2. The model

We describe the model for the process, we present its variational formulation.
The physical setting is the following. An electro elastic-viscoplastic body occupies
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a bounded domain Ω ⊂ Rd (d = 2, 3) with outer Lipschitz surface Γ. The body un-
dergoes the action of body forces of density f0 and volume electric charges of density
q0. It also undergoes the mechanical and electric constraint on the boundary.

We consider a partition of Γ into three disjoint parts Γ1, Γ2 and Γ3, on one hand,
and a partition of Γ1 ∪ Γ2 into two open parts Γa and Γb, on the other hand. We
assume that meas(Γ1) > 0 and meas(Γa) > 0. Let T > 0 and let [0, T ] be the
time interval of interest. The body is clamped on Γ1 × (0, T ), so the displacement
field vanishes there. A surface traction of density f2 act on Γ2 × (0, T ) and a body
force of density f0 acts in Ω× (0, T ). We also assume that the electrical potential
vanishes on Γa × (0, T ) and a surface electric charge of density q2 is prescribed on
Γb × (0, T ). The body is in adhesive contact with an obstacle, or foundation, over
the contact surface Γ3.

We denote by u the displacement field, by σ the stress tensor field and by ε(u)
the linearized strain tensor. We use an electro elastic-viscoplastic constitutive law
with damage given by

σ(t) = A(ε(u̇(t))) + B(ε(u(t)))

+
∫ t

0

G
(
σ(s)−A(ε(u̇(s))) + E∗E(ϕ), ε(u(s)), β(s)

)
ds− E∗E(ϕ),

D = Eε(u) +BE(ϕ),

where A and B are nonlinear operators describing the purely viscous and the elastic
properties of the material, respectively, E(ϕ) = −∇ϕ is the electric field, E =
(eijk) represents the third order piezoelectric tensor E∗ is its transpose and B
denotes the electric permittivity tensor, and G is a nonlinear constitutive function
which describes the visco-plastic behavior of the material, where β is an internal
variable describing the damage of the material caused by elastic deformations. The
differential inclusion used for the evolution of the damage field is

β̇ − k∆β + ∂ϕk(β) 3 S(σ −Aε(u̇) + E∗E(ϕ), ε(u), β)

where K denotes the set of admissible damage functions defined by

K = {ξ ∈ V : 0 ≤ ξ(x) ≤ 1 a.e. x ∈ Ω},
where k is a positive coefficient, ∂ϕk denotes the subdifferential of the indicator
function of the set K and S is a given constitutive function which describes the
sources of the damage in the system. When β = 1 the material is undamaged,
when β = 0 the material is completely damaged, and for 0 < β < 1 there is
partial damage. General models of mechanical damage, which were derived from
thermodynamical considerations and the principle of virtual work, can be found in
[8] and [9] and references therein. The models describe the evolution of the material
damage which results from the excess tension or compression in the body as a
result of applied forces and tractions. Mathematical analysis of one-dimensional
damage models can be found in [10]. We denote by x ∈ Ω ∪ Γ and t ∈ [0, T ]
the spatial and the time variable, respectively, and, to simplify the notation, we
do not indicate in what follows the dependence of various functions on x and t.
In this paper i, j, k, l = 1, . . . , d, summation over two repeated indices is implied,
and the index that follows a comma represents the partial derivative with respect
to the corresponding component of x. A dot over a variable represents the time
derivative. We use the notation Sd for the space of second order symmetric tensors
on Rd and “ · ” and ‖ · ‖ represent the inner product and the Euclidean norm on
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Sd and Rd, respectively, that is u · v = uivi, ‖v‖ = (v · v)1/2 for u,v ∈ Rd, and
σ ·τ = σijτij , ‖τ‖ = (τ ·τ )1/2 for σ, τ ∈ Sd. We also use the usual notation for the
normal components and the tangential parts of vectors and tensors, respectively,
by uν = u · ν, uτ = u − unν, σν = σijνiνj , and στ = σν − σνν. The classical
model for the process is as follows.

Problem P. Find a displacement field u : Ω × [0, T ] → Rd, a stress field σ :
Ω × [0, T ] → Sd, an electric potential ϕ : Ω × [0, T ] → R, an electric displacement
field D : Ω × [0, T ] → Rd, a damage field β : Ω × [0, T ] → R, and a bonding field
α : Γ3 × [0, T ]→ R such that

σ(t) = Aε(u̇(t)) + Bε(u(t)) +
∫ t

0

G
(
σ(s)−Aε(u̇(s))

− E∗∇ϕ(s), ε(u(s)), β(s)
)
ds+ E∗∇ϕ(t) in Ω× (0, T ),

(2.1)

D = Eε(u)−B∇(ϕ) in Ω× (0, T ), (2.2)

β̇ − k∆β + ∂ϕK(β) 3 S(σ −Aε(u̇)− E∗∇(ϕ), ε(u), β), (2.3)

Divσ + f0 = 0 in Ω× (0, T ), (2.4)

div D− q0 = 0 in Ω× (0, T ), (2.5)

u = 0 on Γ1 × (0, T ), (2.6)

σν = f2 on Γ2 × (0, T ), (2.7){
−σν = pν(uν − g)
‖στ‖ ≤ pτ (uν − g) on Γ3 × (0, T ), (2.8)

u̇τ 6= 0⇒ στ = −pτ (uν − g)
u̇τ
‖u̇τ‖

on Γ3 × (0, T ), (2.9)

α̇ = −(α(γνRν(uν))2 + γτ‖Rτ (uτ )‖2)− εa)+ on Γ3 × (0, T ), (2.10)
∂β

∂ν
= 0 on Γ× (0, T ), (2.11)

ϕ = 0 on Γa × (0, T ), (2.12)

D · ν = q2 on Γb × (0, T ), (2.13)

D · ν = ψ(uν − g)φl(ϕ− ϕ0) on Γ3 × (0, T ), (2.14)

u(0) = u0, β(0) = β0 in Ω, (2.15)

α(0) = α0 on Γ3. (2.16)

We now describe problem (2.1)-(2.16) and provide explanation of the equations
and the boundary conditions.

Equations(2.1) and (2.2) represent the electro elastic-viscoplastic constitutive
law with damage,the evolution of the damage field is governed by the inclusion
of parabolic type given by the relation (2.3) where S is the mechanical source
of the damage growth, assumed to be rather general function of the strains and
damage itself, ∂ϕk is the subdifferential of the indicator function of the admissible
damage functions set K. Next equations(2.4) and (2.5) are the steady equations
for the stress and electric-displacement field, respectively, in which “Div” and “div”
denote the divergence operator for tensor and vector valued functions, i.e.,

Divσ = (σij,j), div D = (Di,i).
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We use these equations since the process is assumed to be mechanically qua-
sistatic and electrically static.

Conditions (2.6) and (2.7) are the displacement and traction boundary condi-
tions, whereas (2.12) and (2.13) represent the electric boundary conditions; the
displacement field and the electrical potential vanish on Γ1 and Γa, respectively,
while the forces and free electric charges are prescribed on Γ2 and Γb, respectively.

We turn to the boundary condition (2.8)and (2.9) which describe the mechanical
conditions on the potential contact surface Γ3. The normal compliance function pν
in(2.8),is described below, and g represents the gap in the reference configuration
between Γ3 and the foundation, measured along the direction of ν. When positive,
uν − g represents the interpenetration of the surface asperities into those of the
foundation. This condition was first introduced in [12] and used in a large number
of papers, see for instance[6, 9, 10, 16] and the references therein.

Conditions (2.9)is the associated friction law where pτ is a given function. Ac-
cording to (2.9) the tangential shear cannot exceed the maximum frictional resis-
tance pτ (uν − g), the so-called friction bound. Moreover, when sliding commences,
the tangential shear reaches the friction bound and opposes the motion. Frictional
contact conditions of the form (2.8), (2.9) have been used in various papers, see,
e.g., [7, 8, 20] and the references therein.

Equation (2.10) represents the ordinary differential equation which describes the
evolution of the bonding field and it was already used in [4] see also [20, 21] for
more details. Here, besides γν , two new adhesion coefficients are involved, γτ and εa.
Notice that in this model once debonding occurs bonding cannot be reestablished
since, as it follows form equation (2.10), α̇ ≤ 0.

The contribution of the adhesive to the normal traction is represented by the
term γνα

2Rν(uν), the adhesive traction is tensile and is proportional, with propor-
tionality coefficient γν , to the square of the intensity of adhesion and to the normal
displacement, but as long as it does not exceed the bond length L. The maximal
tensile traction is γνL.Rν is the truncation operator defined by

Rν(s) =


L if s < −L,
−s if − L ≤ s ≤ 0,
0 if s > 0

Here L > 0 is the characteristic length of the bond, beyond which it does not
offer any additional traction. The introduction of the operator Rν , together with
the operator Rτ defined below, is motivated by mathematical arguments but it is
not restrictive from the physical point of view, since no restriction on the size of
the parameter L is made in what follows. Condition (2.10) represents the adhesive
contact condition on the tangential plane, in which pτ is a given function and Rτ

is the truncation operator given by

Rτ (v) =

{
v if |v| ≤ L,
L v
|v| if |v| > L .

This condition shows that the shear on the contact surface depends on the bond-
ing field and on the tangential displacement, but as long as it does not exceed the
bond length L. The frictional tangential traction is assumed to be much smaller
than the adhesive one and, therefore, omitted. The introduction of the operator
Rν , together with the operator Rτ defined above, is motivated by mathematical
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arguments but it is not restrictive for physical point of view, since no restriction on
the size of the parameter L is made in what follows.

The relation (2.11) describes a homogeneous Neumann boundary condition where
∂β/∂ν is the normal derivative of β. (2.12) and (2.13) represent the electric bound-
ary conditions.

Next,(2.14) is the electrical contact condition on Γ3, introduced in [13]. It may
be obtained as follows. First, unlike previous papers on piezoelectric contact, we
assume that the foundation is electrically conductive and its potential is maintained
at ϕ0. When there is no contact at a point on the surface (i.e., uν < g), the gap
is assumed to be an insulator (say, it is filled with air), there are no free electrical
charges on the surface and the normal component of the electric displacement field
vanishes. Thus,

uν < g ⇒ D · ν = 0. (2.17)
During the process of contact (i.e., when uν ≥ g) the normal component of the

electric displacement field or the free charge is assumed to be proportional to the
difference between the potential of the foundation and the body’s surface potential,
with k as the proportionality factor. Thus,

uν ≥ g ⇒ D · ν = k (ϕ− ϕ0). (2.18)

We combine (2.17), (2.18) to obtain

D · ν = k χ[0,∞)(uν − g)(ϕ− ϕ0), (2.19)

where χ[0,∞) is the characteristic function of the interval [0,∞); that is,

χ[0,∞)(r) =

{
0 if r < 0,
1 if r ≥ 0.

Condition (2.19) describes perfect electrical contact and is somewhat similar
to the well-known Signorini contact condition. Both conditions may be over-
idealizations in many applications. To make it more realistic, we regularize condi-
tion (2.19) and write it as(2.14) in which k χ[0,∞)(uν−g) is replaced with ψ which is
a regular function which will be described below, and φl is the truncation function

φl(s) =


−l if s < −l,
s if − l ≤ s ≤ l,
l if s > l,

where l is a large positive constant. We note that this truncation does not pose any
practical limitations on the applicability of the model, since l may be arbitrarily
large, higher than any possible peak voltage in the system, and therefore in appli-
cations φl(ϕ−ϕ0) = ϕ−ϕ0. The reasons for the regularization (2.14) of (2.19) are
mathematical. First, we need to avoid the discontinuity in the free electric charge
when contact is established and, therefore, we regularize the function kχ[0,∞) in
(2.19) with a Lipschitz continuous function ψ. A possible choice is

ψ(r) =


0 if r < 0,
kδr if 0 ≤ r ≤ 1/δ,
k if r > δ,

(2.20)

where δ > 0 is a small parameter. This choice means that during the process
of contact the electrical conductivity increases as the contact among the surface
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asperities improves, and stabilizes when the penetration uν − g reaches the value δ.
Secondly, we need the term φl(ϕ− ϕ0) to control the boundednes of ϕ− ϕ0. Note
that when ψ ≡ 0 in (2.14) then

D · ν = 0, on Γ3 × (0, T ), (2.21)

which decouples the electrical and mechanical problems on the contact surface.
Condition (2.21) models the case when the obstacle is a perfect insulator and was
used in [3, 16, 22, 23]. Condition (2.14), instead of (2.21), introduces strong coupling
between the mechanical and the electric boundary conditions and leads to a new
and nonstandard mathematical model.

Because of the friction condition (2.9), which is non-smooth, we do not expect
the problem to have, in general, any classical solutions.

In equation (2.15) u0 is the initial displacement, and β0 is the initial damage.
Finally, in equation (2.16) α0 denotes the initial bonding.

To obtain the variational formulation of the problem (2.1)-(2.16) we introduce
for the bonding field the set

Z =
{
θ ∈ L∞(0, T ;L2(Γ3)) : 0 ≤ θ(t) ≤ 1, ∀t ∈ [0, T ], a.e. on Γ3

}
For this reason, we derive in the next section a variational formulation of the

problem and investigate its solvability. Moreover, variational formulations are also
starting points for the construction of finite element algorithms for this type of
problems.

3. Variational formulation and the main result

We use standard notation for the Lp and the Sobolev spaces associated with Ω
and Γ and, for a function ζ ∈ H1(Ω) we still write ζ to denote its trace on Γ. We
recall that the summation convention applies to a repeated index. For the electric
displacement field we use two Hilbert spaces

W = L2(Ω)d, W1 = { D ∈ W : div D ∈ L2(Ω)},
endowed with the inner products

(D,E)W =
∫

Ω

DiEi dx, (D,E)W1 = (D,E)W + (div D,div E)L2(Ω),

and the associated norms ‖ · ‖W and ‖ · ‖W1 , respectively. The electric potential
field is to be found in

W = {ζ ∈ H1(Ω) : ζ = 0 on Γa}.
Since meas Γa > 0, the Friedrichs-Poincaré inequality holds, thus,

‖∇ζ‖W ≥ cF ‖ζ‖H1(Ω), ∀ ζ ∈W, (3.1)

where cF > 0 is a constant which depends only on Ω and Γa. On W , we use the
inner product

(ϕ, ζ)W = (∇ϕ,∇ζ)W ,
and let ‖ · ‖W be the associated norm. It follows from (3.1) that ‖ · ‖H1(Ω) and
‖ · ‖W are equivalent norms on W and therefore (W, ‖ · ‖W ) is a real Hilbert space.
Moreover, by the Sobolev trace theorem, there exists a constant c0, depending only
on Ω, Γa and Γ3, such that

‖ζ‖L2(Γ3) ≤ c0‖ζ‖W , ∀ ζ ∈W. (3.2)
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We recall that when D ∈ W1 is a sufficiently regular function, the Green type
formula holds:

(D,∇ζ)W + (div D, ζ)W =
∫

Γ

D · νζda, ∀ζ ∈ H1(Ω). (3.3)

For the stress and strain variables, we use the real Hilbert spaces

Q = {τ = (τij) : τij = τji ∈ L2(Ω)} = L2(Ω)d×dsym,

Q1 = {σ = (σij) ∈ Q : divσ = (σij,j) ∈ W},
endowed with the respective inner products

(σ, τ )Q =
∫

Ω

σijτijdx, (σ, τ )Q1 = (σ, τ )Q + (divσ,div τ )W ,

and the associated norms ‖ · ‖Q and ‖ · ‖Q1 . For the displacement variable we use
the real Hilbert space

H1 = {u = (ui) ∈ W : ε(u) ∈ Q},
endowed with the inner product

(u,v)H1 = (u,v)W + (ε(u), ε(v))Q,

and the norm ‖ · ‖H1 . When σ is a regular function, the following Green’s type
formula holds,

(σ, ε(v))Q + (Divσ,v)W =
∫

Γ

σν · vda, ∀v ∈ H1. (3.4)

Next, we define the space

V = {v ∈ H1 : v = 0 on Γ1}.
Since meas Γ1 > 0, Korn’s inequality (e.g.,[5, pp. 16–17]) holds and

‖ε(v)‖Q ≥ cK ‖v‖H1 , ∀v ∈ V, (3.5)

where cK > 0 is a constant which depends only on Ω and Γ1. On the space V we
use the inner product

(u,v)V = (ε(u), ε(v))Q, ‖v‖V = ‖ε(v)‖Q, (3.6)

and let ‖·‖V be the associated norm. It follows from (3.5) that the norms ‖·‖H1 and
‖·‖V are equivalent on V and, therefore, the space (V, (·, ·)V ) is a real Hilbert space.
Moreover, by the Sobolev trace theorem, there exists a constant c̃0, depending only
on Ω, Γ1 and Γ3, such that

‖v‖L2(Γ3)d ≤ c̃0‖v‖V , ∀v ∈ V. (3.7)

Finally, for a real Banach space (X, ‖ · ‖X) we use the usual notation for the
spaces Lp(0, T ;X) and W k,p(0, T ;X) where 1 ≤ p ≤ ∞, k = 1, 2, . . . ; we also
denote by C([0, T ];X) and C1([0, T ];X) the spaces of continuous and continuously
differentiable functions on [0, T ] with values in X, with the respective norms

‖x‖C([0,T ];X) = max
t∈[0,T ]

‖x(t)‖X ,

‖x‖C1([0,T ];X) = max
t∈[0,T ]

‖x(t)‖X + max
t∈[0,T ]

‖ẋ(t)‖X .

We complete this section with the following version of the classical theorem of
Cauchy-Lipschitz (see, e.g., [21],p.48]).
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Theorem 3.1. Assume that (X, | · |X) is a real Banach space and T > 0. Let
F (t, .) : X → X be an operator defined a.e. on (0, T ) satisfying the following
conditions:

(1) There exists a constant LF > 0 such that

‖F (t, x)− F (t, y)‖X ≤ LF ‖x− y‖X ∀x, y ∈ X, a.e. t ∈ (0, T ).

(2) There exists p ≥ 1 such that t 7→ F (t, x) ∈ Lp(0, T ;X) for all x ∈ X, then
for any x0 ∈ X, there exists a unique function x ∈W 1,p(0, T ;X) such that

ẋ(t) = F (t, x(t)) a.e. t ∈ (0, T ), x(0) = x0.

Theorem 3.1 will be used in section 4 to prove the unique solvability of the
intermediate problem involving the bonding field. Moreover, if X1 and X2 are
real Hilbert spaces then X1 ×X2 denotes the product Hilbert space endowed with
the canonical inner product (·, ·)X1×X2 . Recall that the dot represents the time
derivative.

We now list the assumptions on the problem’s data. The viscosity operator A
and the elasticity operator B are assumed to satisfy the conditions:

(a) A : Ω× Sd → Sd.
(b) There exists LA > 0 such that ‖A(x, ξ1)−A(x, ξ2)‖ ≤ LA‖ξ1− ξ2‖
for all ξ1, ξ2 ∈ Sd, a.e. x ∈ Ω.
(c) There exists mA > 0 such that (A(x, ξ1) − A(x, ξ2)) · (ξ1 − ξ2) ≥
mA‖ξ1 − ξ2‖2 for all ξ1, ξ2 ∈ Sd, a.e. x ∈ Ω.
(d) The mapping x 7→ A(x, ξ) is Lebesgue measurable on Ω, for any
ξ ∈ Sd.
(e) The mapping x 7→ A(x,0) belongs to Q.

(3.8)

(a) B : Ω× Sd → Sd.
(b) There exists LB > 0 such that ‖B(x, ξ1)− B(x, ξ2)‖ ≤ LB‖ξ1 − ξ2‖
for all ξ1, ξ2 ∈ Sd, a.e. x ∈ Ω.
(c) The mapping x 7→ B(x, ξ) is Lebesque measurable on Ω, for any
ξ ∈ Sd.
(d) The mapping x 7→ B(x,0) belongs to Q.

(3.9)

The plasticity operator G : Ω× Sd × Sd × R× R→ Sd satisfies

(a) There exists a constant LG > 0 such that ‖G(x,σ1, ε1, θ1, ς1) −
G(x,σ2, ε2, θ2, ς2)‖ ≤ LG(‖σ1−σ2‖+ ‖ε1− ε2‖+ ‖θ1− θ2‖+ ‖ς1− ς2‖)
for all σ1,σ2 ∈ Sd, for all ε1, ε2 ∈ Sd for all θ1, θ2 ∈ R, for all ς1, ς2 ∈ R
a.e. x ∈ Ω;
(b) The mapping x → G(x,σ, ε, θ, ς) is Lebesgue measurable on Ω for
all σ, ε ∈ Sd, for all θ, ς ∈ R,
(c) The mapping x→ G(x, 0, 0, 0, 0) ∈ Q.

(3.10)

The electric permittivity operator B = (Bij) : Ω× Rd → Rd satisfies

(a) B(x,E) = (Bij(x)Ej) for all E = (Ei) ∈ Rd, a. e. x ∈ Ω.
(b) Bij = Bji ∈ L∞(Ω), 1 ≤ i, j ≤ d.
(c) There exists a constant MB > 0 such that BE.E ≥ MB|E|2 for all
E = (Ei) ∈ Rd, a. e. in Ω.

(3.11)
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The piezoelectric operator E : Ω× Sd → Rd satisfies

(a) E = (eijk), 4eijk ∈ L∞(Ω), 1 ≤ i, j, k ≤ d.
(b) E(x)σ.τ = σ.E∗τ for all σ ∈ Sd and all τ ∈ Rd. (3.12)

The damage source function S : Ω× Sd ××Sd × R→ R satisfies

(a) There exists a constant MS > 0 such that ‖S(x,σ1, ε1, β1) −
S(x,σ2, ε2, β2)‖ ≤ MS(‖σ1 − σ2‖ + ‖ε1 − ε2‖ + ‖β1 − β2‖) for all
σ1,σ2, ε1, ε2 ∈ Sd, for all β1, β2 ∈ R, a.e. x ∈ Ω.
(b) for all σ, ε ∈ Sd, β ∈ R, S(x,σ, ε, β) is Lebesgue measurable on Ω.
(c) The mapping x 7→ S(x, 0, 0, 0) belongs to L2(Ω).

(3.13)

The normal compliance functions pr : Γ3 × R→ R+, (r = ν, τ) satisfy

(a) There exists Lr > 0 such that ‖pr(x, u1)− pr(x, u2)‖ ≤ Lr‖u1 − u2‖
for all u1, u2 ∈ R, a.e. x ∈ Γ3.
(b) x 7→ pr(x, u) is measurable on Γ3 for all u ∈ R.
(c) x 7→ pr(x, u) = 0 for all u ≤ 0.

(3.14)

An example of a normal compliance function pν which satisfies conditions (3.14)
is pν(u) = cνu+ where cν ∈ L∞(Γ3) is a positive surface stiffness coefficient, and
u+ = max {0, u}. The choices pτ = µpν and pτ = µpν(1 − δpν)+ in (2.9), where
µ ∈ L∞(Γ3) and δ ∈ L∞(Γ3) are positive functions, lead to the usual or to a
modified Coulomb’s law of dry friction, respectively, see [7, 8, 24] for details. Here,
µ represents the coefficient of friction and δ is a small positive material constant
related to the wear and hardness of the surface. We note that if pν satisfies condition
(3.14) then pτ satisfies it too, in both examples. Therefore, we conclude that the
results below are valid for the corresponding piezoelectric frictional contact models.

The surface electrical conductivity function ψ : Γ3 × R→ R+ satisfies:

(a) There exists Lψ > 0 such that ‖ψ(x, u1)− ψ(x, u2)‖ ≤ Lψ‖u1 − u2‖
for all u1, u2 ∈ R, a.e. x ∈ Γ3.
(b) There exists Mψ > 0 such that ‖ψ(x, u)‖ ≤ Mψ for all u ∈ R, a.e.
x ∈ Γ3.
(c) x 7→ ψ(x, u) is measurable on Γ3, for all u ∈ R.
(d) x 7→ ψ(x, u) = 0 for all u ≤ 0.

(3.15)

An example of a conductivity function which satisfies condition (3.15) is given by
(2.20) in which case Mψ = k. Another example is provided by ψ ≡ 0, which models
the contact with an insulated foundation, as noted in Section 2. We conclude that
our results below are valid for the corresponding piezoelectric contact models.

The adhesion coefficients and the limit bound satisfy

γν , γτ ∈ L∞(Γ3), εa ∈ L2(Γ3), γν , γτ , εa ≥ 0, a.e. on Γ3. (3.16)

the initial bonding field satisfies

α0 ∈ L2(Γ3), 0 ≤ α0 ≤ 1, a.e. on Γ3. (3.17)

and the initial damage field satisfies

β0 ∈ K. (3.18)

Finally, we assume that the gap function, the given potential and the initial dis-
placement satisfy

g ∈ L2(Γ3), g ≥ 0, a.e. on Γ3, (3.19)
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ϕ0 ∈ L2(Γ3), (3.20)

u0 ∈ V. (3.21)

The forces, tractions, volume and surface free charge densities satisfy

f0 ∈W 1,p(0, T ;W), f2 ∈W 1,p(0, T ;L2(Γ2)d), (3.22)

q0 ∈W 1,p(0, T ;L2(Ω)), q2 ∈W 1,p(0, T ;L2(Γb)). (3.23)

Here, 1 ≤ p ≤ ∞. We define the bilinear form a : H1(Ω)×H1(Ω)→ R

a(ξ, ϕ) = k

∫
Ω

∇ξ.∇ϕdx. (3.24)

Next, we define the four mappings j : V ×V → R, h : V ×W →W , f : [0, T ]→ V
and q : [0, T ]→W , respectively, by

j(u,v) =
∫

Γ3

pν(uν − g)vν da+
∫

Γ3

pτ (uν − g)‖vτ‖ da, (3.25)

(h(u, ϕ), ζ)W =
∫

Γ3

ψ(uν − g)φl(ϕ− ϕ0)ζ da, (3.26)

(f(t),v)V =
∫

Ω

f0(t) · v dx+
∫

Γ2

f2(t) · v da, (3.27)

(q(t), ζ)W =
∫

Ω

q0(t)ζ dx−
∫

Γb

q2(t)ζ da, (3.28)

for all u,v ∈ V , ϕ, ζ ∈ W and t ∈ [0, T ]. We note that the definitions of h, f
and q are based on the Riesz representation theorem, moreover, it follows from
assumptions (3.13)-(3.21) that the integrals in (3.25)-(3.28) are well-defined. Using
Green’s formulas (3.3) and (3.4),it is easy to see that if (u,σ, ϕ,D) are sufficiently
regular functions which satisfy (2.4)–(2.9)and(2.12)–(2.14) then

(σ(t), ε(v)− ε(u̇(t))Q + j(u(t),v)− j(u(t), u̇(t)) ≥ (f(t),v − u̇(t))V , (3.29)

(D(t),∇ζ)W + (q(t), ζ)W = (h(u(t), ϕ(t)), ζ)W , (3.30)

for all v ∈ V , ζ ∈ W and t ∈ [0, T ]. We substitute (2.1) in (3.29), (2.2) in (3.30),
we use the initial condition (2.15) and derive a variational formulation of problem
P.

Problem PV . Find a displacement field u : [0, T ] → V , σ : [0, T ] → Q and an
electric potential ϕ : [0, T ]→W ,a damage field β : [0, T ]→ H1(Ω) and a bonding
field α : [0, T ]→ L∞(Γ3) such that

σ(t) = Aε(u̇(t)) + Bε(u(t)) + E∗∇ϕ(t) +
∫ t

0

G
(
σ(s)−Aε(u̇(s))

− E∗∇ϕ(s), ε(u(s)), β(s)
)
ds in Ω× (0, T ),

(3.31)

(σ(t), ε(v)− ε(u̇(t))Q + j(u(t),v)− j(u(t), u̇(t)) ≥ (f(t),v − u̇(t))V , (3.32)

for all v ∈ V and t ∈ [0, T ],

(B∇ϕ(t),∇ζ)W − (Eε(u(t)),∇ζ)W + (h(u(t), ϕ(t)), ζ)W = (q(t), ζ)W , (3.33)
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for all ζ ∈W and t ∈ [0, T ], we have β(t) ∈ K, and

(β̇(t), ξ − β(t))L2(Ω) + a(β(t), ξ − β(t))

≥ (S(σ(t)−Aε(u̇(t))− E∗∇ϕ(t), ε(u(t)), β(t)), ξ − β(t))L2(Ω),
(3.34)

for all ξ ∈ K and t ∈ [0, T ],

α̇ = −(α(γνRν(uν))2 + γτ‖Rτ (uτ )‖2)− εa)+ on Γ3 × (0, T ), (3.35)

and
u(0) = u0, β(0) = β0, α(0) = α0. (3.36)

To study problem PV we use the smallness assumption

Mψ <
mB

c20
, (3.37)

where Mψ, c0 and mβ are given in (3.15), (3.2) and (3.11), respectively. We note
that only the trace constant, the coercivity constant of B and the bound of ψ are
involved in (3.37); therefore, this smallness assumption involves only the geometry
and the electrical part, and does not depend on the mechanical data of the problem.
Moreover, it is satisfied when the obstacle is insulated, since then ψ ≡ 0 and so
Mψ = 0.

Removing this assumption remains a task for future research, since it is made
for mathematical reasons, and does not seem to relate to any inherent physical
constraints of the problem.

Remark 3.2. We note that, in Problem P and in Problem PV, we do not need
to impose explicitly the restriction 0 ≤ α ≤ 1. Indeed, (3.35) guarantees that
α(x, t) ≤ α0(x) and, therefore, assumption (3.31) shows that α(x, t) ≤ 1 for t ≥ 0,
a.e. x ∈ Γ3. On the other hand, if α(x, t0) = 0 at time t0, then it follows from
(3.35) that α̇(x, t) = 0 for all t ≥ t0 and therefore, α(x, t) = 0 for all t ≥ t0, a.e.
x ∈ Γ3. We conclude that 0 ≤ α(x, t) ≤ 1 for all t ∈ [0;T ], a.e. x ∈ Γ3.

Now, we propose our existence and uniqueness result.

Theorem 3.3. Assume that (3.7)-(3.23) hold. Then there exists a unique solution
u, ϕ, β, α to problem PV. Moreover, the solution satisfies

u ∈W 2,p(0, T ;V ) ∩ C1(0, T ;V ), (3.38)

ϕ ∈W 1,p(0, T ;W ), (3.39)

σ ∈W 1,p(0, T ;Q), Diυσ ∈W 1,p(0, T ;W), (3.40)

β ∈W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), (3.41)

α ∈W 1,∞(0, T ;L2(Γ3)) ∩ Z. (3.42)

The functions u, ϕ,σ,D, β and α which satisfy (3.31)-(3.36)are called a weak
solution of the contact problem P. We conclude that, under the assumptions(3.8)-
(3.23)and (3.37), the mechanical problem (2.1)-(2.16) has a unique weak solution
satisfying (3.38)-(3.42).

The regularity of the weak solution is given by(3.38)-(3.42) and, in term of
electric displacement

D ∈W 1,p(0, T ;W). (3.43)
It follows from (3.33) that div D(t)−q0(t) = 0 for all t ∈ [0, T ], and therefore the

regularity (3.39) of ϕ, combined with (3.11),(3.12), and (3.23) implies (3.43). In
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this section we suppose that assumptions of Theorem3.3 hold, and we consider that
C is a generic positive constant which depends on Ω,Γ1,Γ2,Γ3, pν , pτ , γν , γτ and L
and may change from place to place. Let η ∈ C(0, T ;V ) be given. In the first step
we consider the following variational problem Our main existence and uniqueness
result that we state now and prove in the next section is the following.

4. Existence and uniqueness of a solution

Let η ∈ C([0, T ], Q) be given, and in the first step consider the following inter-
mediate mechanical problem.

Problem PV1
η. Find a displacement field uη : [0, T ]→ V such that

(Aε(u̇η(t)), ε(v)− ε(u̇η(t)))Q + (Bε(uη(t)), ε(v)− ε(u̇η(t)))Q
+ (η(t), ε(v)− ε(u̇η(t)))Q + j(uη(t),v)− j(uη(t), u̇η(t))

≥ (f(t),v − u̇η(t))V , ∀v ∈ V, t ∈ [0, T ],
(4.1)

uη(0) = u0. (4.2)

We have the following result for PV1
η.

Lemma 4.1. (1) There exists a unique solution uη ∈ C1([0, T ];V ) to the problem
(4.1) and (4.2).

(2) If u1 and u2 are two solutions of (4.1) and (4.2) corresponding to the data
η1,η2 ∈ C([0, T ];Q), then there exists c > 0 such that

‖u̇1(t)− u̇2(t)‖V ≤ c (‖η1(t)− η2(t)‖Q + ‖u1(t)− u2(t)‖V ), ∀ t ∈ [0, T ]. (4.3)

(3) If, moreover, η ∈W 1,p(0, T ;Q) for some p ∈ [1,∞], then the solution satis-
fies uη ∈W 2,p(0, T ;V ).

The proof of the above lemma, we use an abstract existence and unique result
which may be found in [13, pp. 12]. In the next step we use the solution uη ∈
C1([0, T ], V ), obtained in Lemma 4.1, to construct the following variational problem
for the electrical potential.

Problem PV2
η. Find an electrical potential ϕη : [0, T ]→W such that

(B∇ϕη(t),∇ζ)W − (Eε(uη(t)),∇ζ)W + (h(uη(t), ϕη(t)), ζ)W = (q(t), ζ)W (4.4)

for all ζ ∈W , t ∈ [0, T ].
The well-posedness of problem PV2

η follows.

Lemma 4.2. There exists a unique solution ϕη ∈ W 1,p(0, T ;W ) which satisfies
(4.4). Moreover, if ϕη1

and ϕη2
are the solutions of (4.4) corresponding to η1,

η2 ∈ C([0, T ];Q) then, there exists c > 0, such that

‖ϕη1(t)− ϕη2(t)‖W ≤ c ‖uη1(t)− uη2(t)‖V ∀t ∈ [0, T ]. (4.5)

To prove the above lemma, we use an abstract existence and unique result which
may be found in [13, pp. 13].

In the third step we let θ ∈ L2(0, T ;L2(Ω)) be given and consider the following
variational problem for the damage filed.



14 A. AISSAOUI, N. HEMICI EJDE-2014/11

Problem PVθ. Find the damage field βθ : [0, T ] → H1(Ω) such that βθ(t) ∈ K
and

(β̇θ(t), ξ − βθ)L2(Ω) + a(βθ(t), ξ − βθ(t))
≥ (θ(t), ξ − βθ(t))L2(Ω) ∀ξ ∈ K, a.e. t ∈ (0, T ),

(4.6)

βθ(0) = β0. (4.7)

For the study of problem PVθ, we have the following result.

Lemma 4.3. There exists a unique solution βθ to the auxiliary problem PVθ sat-
isfying (3.41).

The above lemma follows from a standard result for parabolic variational in-
equalities, see [21, p.47].

Problem PVα. Find the adhesion field αη : [0, T ]→ L2(Γ3) such that

α̇η = −(αη(γνRν(uην)2 + γτ‖Rτ (uητ )‖2)− εa)+ (4.8)

αη(0) = α0 ∈ Ω. (4.9)

We have the following result.

Lemma 4.4. There exists a unique solution αη ∈W 1,∞(0, T ;L2(Γ3))∩Z to Prob-
lem PVα.

The above lemma follows from a standard result for differential equations, see
[19, pp.108-109].

In the fifth step, we use uη, ϕη, βθ and αη obtained in Lemmas 4.1, 4.2, 4.3 and
4.4, respectively to construct the following Cauchy problem for the stress field.

ProblemPVη,θ. Find the stress field ση,θ : [0, T ] → Q which is a solution of the
problem

ση,θ(t) = B(ε(uη(t))) +
∫ t

0

G
(
ση,θ(s), ε(uη(s)), βθ(s)

)
ds, a.e. t ∈ (0, T ). (4.10)

Lemma 4.5. There exists a unique solution of Problem PVη,θ and it satisfies
(3.40). Moreover, if uηi

, βθi
and σηi,θi

represent the solutions of problems PV1
ηi

,
PVθi and PVηi,θi , respectively, for (ηi, θi) ∈ W 1,p(0, T ;Q × L2(Ω)) i = 1, 2, then
there exists C > 0 such that

‖ση1,θ1(t)− ση2,θ2(t)‖2Q ≤ C
(
‖uη1(t)− uη2(t)‖2V +

∫ t

0

‖uη1(s)− uη2(s)‖2V

+
∫ t

0

‖βθ1(s)− βθ2(s)‖2L2(Ω)ds
)
.

(4.11)

Proof. Let Ση,θ : W 1,p(0, T ;Q)→W 1,p(0, T ;Q) be the mapping given by

Ση,θσ(t) = B(ε(uη(t)) +
∫ t

0

G(σ(s), ε(uη(s)), βθ(s))ds, (4.12)

for all σ ∈ W 1,p(0, T ;Q) and t ∈ (0, T ). For σ1, σ2 ∈ W 1,p(0, T ;Q) we use (3.10)
and (4.12) to obtain for all t ∈ (0, T ),

‖Ση,θσ1(t)−Ση,θσ2(t)‖Q ≤ LG
∫ t

0

‖σ1(s)− σ2(s)‖Qds. (4.13)
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It follows from this inequality that for n large enough, a power Σn
η,θ of the

mapping Ση,θ is a contraction on the Banach space W 1,p(0, T ;Q) and, therefore,
exists a unique element σ ∈W 1,p(0, T ;Q) such that Ση,θσ = σ. Moreover, which σ
is the unique solution to problem PVη,θ. And using (4.10), the regularity of uη, βθ
and the properties of the operators B and G, it follows that σi ∈ W 1,p(0, T ;Q).
Consider now (η1, θ1), (η2, θ2) ∈ W 1,p(0, T ;Q × L2(Ω)) and for i = 1, 2, denote
uηi

= ui, σηi,θi
= σi, βθi

= βi, ϕθi
= ϕi. We have

σi(t) = B(ε(ui(t)) +
∫ t

0

G
(
σi(s), ε(ui(s)), βi(s)

)
ds, a.e. t ∈ (0, T ), (4.14)

and using the properties (3.9) and (3.11) of B and G, we find

‖σ1(t)− σ2(t)‖2Q

≤ C
(
‖u1(t)− u2(t)‖2V +

∫ t

0

‖σ1(s)− σ2(s)‖2Qds

+
∫ t

0

‖u1(s)− u2(s)‖2V ds+
∫ t

0

‖β1(s)− β2(s)‖2L2(Ω)ds
)
, ∀t ∈ [0, T ].

(4.15)

We use a Gronwall argument in the obtained inequality to deduce (4.11), which
concludes the proof of Lemma 4.5 �

Finally, as a consequence of these results and using the properties of the operator
G the operator E , the function S for t ∈ (0, T ), we consider the element

Λ(η, θ)(t) = (Λ1(η, θ)(t),Λ2(η, θ)(t)) ∈ Q× L2(Ω), (4.16)

defined by

(Λ1(η, θ)(t),v)Q×V

= (E∗∇ϕη(t), ε(v))Q +
(∫ t

0

G
(
ση,θ(s), ε(uη(s)), βθ(s)

)
ds, ε(v)

)
Q
, ∀v ∈ V.

(4.17)

Λ2(η, θ)(t) = S
(
ση,θ(t), ε(uη(t)), βθ(t)

)
. (4.18)

Let us consider the mapping

Λ : W 1,p(0, T ;Q× L2(Ω))→W 1,p(0, T ;Q× L2(Ω)),

which maps every element (η, θ) ∈W 1,p(0, T ;Q× L2(Ω)) to the element Λ(η, θ) ∈
W 1,p(0, T ;Q × L2(Ω)). uη, ϕη, βθ, αη and ση,θ, represent the displacement field,
the potential field, the damage field and the stress field obtained in Lemmas (4.1),
(4.2), (4.3), (4.4) and (4.5).

Lemma 4.6. The mapping Λ has a fixed point (η∗, θ∗) ∈ W 1,p(0, T ;Q × L2(Ω)).
Such that Λ(η∗, θ∗) = (η∗, θ∗)

Proof. Let t ∈ (0, T ) and (η1, θ1), (η2, θ2) ∈ W 1,p(0, T ;Q × L2(Ω)). We use the
notation uηi

= ui, u̇ηi
= u̇i, αηi

= αi, ϕηi
= ϕi and σηi,θi

= σi, for i = 1, 2. Let
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us start by using (3.7) hypotheses (3.10), (3.12) and (3.14), we have.

‖Λ1(η1, θ1)(t)− Λ1(η2, θ2)(t)‖2Q
≤ ‖E∗∇ϕ1(t)− E∗∇ϕ2(t)‖2Q

+
∫ t

0

‖G(σ1(s), ε(u1(s)), β1(s))− G(σ2(s), ε(u2(s)), β2(s))‖2Qds

≤ C
(
‖ϕ1(t)− ϕ2(t)‖2Q +

∫ t

0

‖σ1(s)− σ2(s)‖2Qds

+
∫ t

0

‖β1(s)− β2(s)‖2L2(Ω) +
∫ t

0

‖u1(s)− u2(s)‖2V ds
)
.

(4.19)

We use estimates (4.5), (4.11) to obtain

‖Λ1(η1, θ1)(t)− Λ1(η2, θ2)(t)‖2Q

≤ C
(
‖u1(s)− u2(s)‖2V +

∫ t

0

‖u1(s)− u2(s)‖2V ds

+ ‖α1(s)− α2(s)‖2L2(Γ3) +
∫ t

0

‖β1(s)− β2(s)‖2L2(Ω)ds
)
.

(4.20)

By similar arguments, from (4.18), (4.11) and (3.13) we obtain

‖Λ2(η1, θ1)(t)− Λ2(η2, θ2)(t)‖2Q

≤ C
(
‖u1(t)− u2(t)‖2V +

∫ t

0

‖u1(s)− u2(s)‖2V

+ ‖β1(t)− β2(t)‖2L2(Ω) +
∫ t

0

‖β1(s)− β2(s)‖2L2(Ω)ds
)

a.e. t ∈ (0, T ).

(4.21)

Therefore,

‖Λ(η1, θ1)(t)− Λ(η2, θ2)(t)‖2Q×L2(Ω)

≤ C
(
‖u1(t)− u2(t)‖2V +

∫ t

0

‖u1(s)− u2(s)‖2V ds+ ‖β1(t)− β2(t)‖2L2(Ω)

+
∫ t

0

‖β1(s)− β2(s)‖2L2(Ω)ds+ ‖α1(t)− α2(t)‖2L2(Γ3)

)
a.e. t ∈ (0, T ).

(4.22)

On the other hand, since ui(t) = u0 +
∫ t

0
u̇i(s)ds, we know that for a.e. t ∈ (0, T ),

‖u1(t)− u2(t)‖V ≤
∫ t

0

‖u̇1(s)− u̇2(s)‖V ds, (4.23)

and using this inequality in (4.3) yields

‖u̇1(t)− u̇2(t)‖V ≤ c
(
‖η1(t)− η2(t)‖Q +

∫ t

0

|u̇1(s)− u̇2(s)|V ds
)
, (4.24)

for all t ∈ [0, T ]. It follows now from a Gronwall-type argument that∫ t

0

‖u̇1(s)− u̇2(s)‖V ds ≤ c
∫ t

0

‖η1(t)− η2(t)‖Qds, (4.25)

which also implies, using a variant of (4.23), that

‖u1(s)− u2(s)‖2V ≤ C
∫ t

0

‖η1(s)− η2(s)‖2Qds, a.e. t ∈ (0, T ). (4.26)
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On the other hand, from the Cauchy problem (4.8)-(4.9) we can write

αi(t) = α0 −
∫ t

0

(αi(s)(γνRν(uiν(s))2 + γτ‖Rτ (uiτ (s))‖2)− εa)+ds,

and then

‖α1(t)− α2(t)‖L2(Γ3)

≤ C
∫ t

0

‖α1(s)(Rν(u1ν(s))2 − α2(s)(Rν(u2ν(s))2‖L2(Γ3)ds

+ C

∫ t

0

‖α1(s)‖Rτ (u1τ (s))‖2 − α2(s)‖Rτ (u2τ (s))‖2‖L2(Γ3)ds,

Using the definition of Rν and Rτ and writing α1 = α1 − α2 + α2, we obtain

‖α1(t)− α2(t)‖L2(Γ3)

≤ C
(∫ t

0

‖α1(s)− α2(s)‖L2(Γ3)ds+
∫ t

0

‖u1(s)− u2(s)‖L2(Γ3)d

)
ds.

(4.27)

Next, we apply Gronwall’s inequality to deduce

‖α1(t)− α2(t)‖L2(Γ3) ≤ C
∫ t

0

‖u1(s)− u2(s)‖L2(Γ3)dds,

and from (3.7), we obtain

‖α1(t)− α2(t)‖2L2(Γ3) ≤ C
∫ t

0

‖u1(s)− u2(s)‖2V ds. (4.28)

Form (4.6), we deduce that

(β̇1− β̇2, β1− β2)L2(Ω) + a(β1− β2, β1− β2) ≤ (θ1− θ2, β1− β2)L2(Ω), ∀ t ∈ [0, T ].

Integrating the previous inequality with respect to time, using the initial conditions
β1(0) = β2(0) = β0 and inequality a(β1 − β2, β1 − β2) ≥ 0 to find

1
2
‖β1(t)− β2(t)‖2L2(Ω) ≤

∫ t

0

(θ1(s)− θ2(s), β1(s)− β2(s))L2(Ω)ds, (4.29)

which implies

‖β1(t)− β2(t)‖2L2(Ω) ≤
∫ t

0

‖θ1(s)− θ2(s)‖2L2(Ω)ds+
∫ t

0

‖β1(s)− β2(s)‖2L2(Ω)ds.

This inequality, combined with Gronwall’s inequality, leads to

‖β1(t)− β2(t)‖2L2(Ω) ≤ C
∫ t

0

‖θ1(s)− θ2(s)‖2L2(Ω)ds, ∀t ∈ [0, T ]. (4.30)

Form the previous inequality and estimates (4.22), (4.26), (4.28) and (4.30) it fol-
lows now that

‖Λ(η1, θ1)(t)− Λ(η2, θ2)(t)‖2Q×L2(Ω) ≤ C
∫ t

0

‖(η1, θ1)(s)− (η2, θ2)(s)‖2Q×L2(Ω)ds.

Reiterating this inequality n times leads to

‖Λn(η1, θ1)− Λn(η2, θ2)‖2W 1,p(0,T ;Q×L2(Ω))

≤ CnTn

n!
‖(η1, θ1)− (η2, θ2)‖2W 1,p(0,T ;Q×L2(Ω)).
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Thus, for n sufficiently large, Λn is a contraction on W 1,p(0, T ;Q× L2(Ω)), and so
Λ has a unique fixed point in this Banach space. �

Now, we have all the ingredients to prove Theorem 3.3.

Existence. Let (η∗, θ∗) ∈ W 1,p(0, T ;Q× L2(Ω)) be the fixed point of Λ defined
by (4.16)-(4.18) and denote

u = uη∗ , ϕη∗ = ϕ, σ = Aε(u̇) + E∗∇(ϕ) + ση∗θ∗ , (4.31)

β = βθ∗ , α = αη∗ . (4.32)

We prove that (u, ϕ,σ, β, α) satisfies (3.31)–(3.36) and (3.38), (3.42). Indeed, we
write (4.10) for η∗ = η, θ∗ = θ and use (4.31), (4.32) to obtain that (3.31) is
satisfied. Now we consider (4.1) for η∗ = η and use the first equality in (4.31) to
find

(Aε(u̇(t)), ε(v)− ε(u̇(t)))Q + (Bε(u(t)), ε(v)− ε(u̇(t)))Q
+ (η∗(t), ε(v)− ε(u̇(t)))Q + j(u(t),v)− j(u(t), u̇(t))

≥
(
f(t),v − u̇(t)

)
V
, ∀v ∈ V, t ∈ [0, T ].

(4.33)

The equalities Λ1(η∗, θ∗) = η∗ and Λ2(η∗, θ∗) = θ∗ combined with (4.17), (4.18),
(4.31) and (4.32) show that for all v ∈ V ,

(η∗(t),v)Q×V = (E∗∇ϕ(t), ε(v))Q +
(∫ t

0

G
(
σ(s)−Aε(u̇(s))

− E∗∇ϕ(s), ε(u(s)), β(s)
)
ds, ε(v)

)
Q
,

(4.34)

θ∗(t) = S
(
σ(t)−A(ε(u̇(t)))− E∗∇ϕ(t), ε(u(t)), β(t)

)
. (4.35)

We now substitute (4.34) in (4.35) and use (3.31) to see that (3.32) is satisfied. We
write (4.6) for θ∗ = θ and use (4.32) and (4.35) to find that (3.34) is satisfied. We
consider now (4.8) for η∗ = η and use (4.31), (4.32) to obtain that (3.35) is satisfied.
Next (3.36), and regularities (3.38), (3.39), (3.41) and (3.42) follow Lemmas 4.1,
4.4 and 4.5. The regularity σ ∈ W 1,p(0, T ;Q) follows from Lemmas 4.1 and 4.6,
the second equality in 4.31 and 3.8. Finally (3.32) implies that

Divσ(t) + f0(t) = 0 in W, a.e. t ∈ (0, T ),

and therefore by (3.22) we obtain that Divσ ∈W 1,p(0, T ;W). We deduce that the
regularity (3.40) holds which concludes the existence part of the theorem.

Uniqueness. The uniqueness part of theorem (3.3) is a consequence of the unique-
ness of the fixed point of the operator Λ defined by (4.16), (4.18) and the unique
solvability of the Problem PV1

η, PVθ and PVη,θ which completes the proof.
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[10] M. Frémond and B. Nedjar; Damage, Gradient of Damage and Principle of Virtual Work,

Int. J. Solids Structures, 33 (8), 1083-1103. (1996).
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