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GEODESICS OF QUADRATIC DIFFERENTIALS ON KLEIN
SURFACES

MONICA ROŞIU

Abstract. The objective of this article is to establish the existence of a local
Euclidean metric associated with a quadratic differential on a Klein surface,

and to describe the shortest curve in the neighborhood of a holomorphic point.

1. Introduction

In this paper we develop a technique, based on similar results for Riemann sur-
faces, to determine the geodesics near holomorphic points of a quadratic differential
on a Klein surface. Recent results about this topic are due to Andreian Cazacu [3],
Boloşteanu [5], Bârză [4] and Roşiu [7]. The complex double of a Klein surface is an
important tool in connection with the study of the geometric structure near critical
points of a quadratic differential on a Klein surface. Effectively, we define a metric
associated with a quadratic differential on a Klein surface, which corresponds to a
symmetric metric on its double cover. We introduce special parameters, in terms of
which the quadratic differential has particularly simple representations and we give
explicit descriptions of the geodesics near the holomorphic points of a quadratic
differential.

Throughout this article, by a Klein surface we mean a Klein surface with an
empty boundary, which is not a Riemann surface.

2. Preliminaries

Suppose that X is a compact Klein surface, obtained from a compact surface by
removing a finite number of points. We assume that X has hyperbolic type. Our
study is based on the following theorem (see [6]) due to Klein.

Theorem 2.1. Given a Klein surface X, its canonical (Riemann) double cover
XC admits a fixed point free symmetry σ, such that X is dianalytically equivalent
with XC/〈σ〉, where 〈σ〉 is the group generated by σ. Conversely, given a pair
(XC , σ) consisting of a Riemann surface X and a symmetry σ , the orbit space
XC/〈σ〉 admits a unique structure of Klein surface, such that f : XC → XC/〈σ〉 is
a morphism of Klein surfaces, provided that one regards XC as a Klein surface.
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Following the next theorem we associate a surface NEC group with a compact
Klein surface X. Details can be found in [7].

Theorem 2.2. Let X be a compact Klein surface of algebraic genus g ≥ 2. Then
there exists a surface NEC group Γ, such that X and H/Γ are isomorphic as Klein
surfaces. Moreover, the complex double (XC , f, σ) is isomorphic with H/Γ+, where
Γ+ is the canonical Fuchsian subgroup of Γ.

Then Γ is the group of covering transformations of X and Γ+ is the group of
conformal covering transformations of X. If π′ : H → H/Γ and π : H → H/Γ+

are the canonical projections, then we note with ẑ the local parameter near a
point P̂ ∈ H, z̃ the local parameter near P̃ ∈ XC and z the local parameter near
P = f(P̃ ) ∈ X.

Given A = {(Ui, φi) | i ∈ I} the dianalytic atlas on X, we define U ′i = Ui ×
{i} × {1} and U ′′i = Ui × {i} × {−1}, i ∈ I. Let U ⊂ Ui ∩ Uj 6= ∅ be a connected
component of Ui ∩ Uj . Then, we identify U × {i}× {δ} with U × {j}× {δ}, for
δ = ±1, if φj ◦φ−1

i : φi(U)→ C is analytic and U ×{i}×{δ} with U ×{j}×{−δ},
for δ = ±1, if φj ◦φ−1

i : φi(U)→ C is antianalytic. As in Alling, XC is the quotient
space of X0 = ∪i∈IU ′i ∪ ∪i∈IU ′′i , (i, j) ∈ I × I, with all the identifications above.

We consider p : X0 → XC the canonical projection and Ũi = p(U ′i ∪ U ′′i ), i ∈ I.
Using Schwarz reflection principle, we can associate an analytic structure on XC

by Ã = {(Ũi, φ̃i) : i ∈ I}, where

φ̃i : Ũi → C, φ̃i(P̃ ) =

{
φi(P ), when P̃ ∈ U ′i
φi(P ), when P̃ ∈ U ′′i .

Remark 2.3. Ã′ = {(Ũi, φ̃i) : i ∈ I}is also an analytic atlas on XC .

If XC = (XC , Ã) and XC = (XC , Ã
′), then XC is XC endowed with the second

orientation.
Let f : XC → X, f(P̃ ) = {P̃ , σ(P̃ )} be the covering projection, where σ : XC →

XC is an antianalytic involution, without fixed points. If z̃ is a parameter near
P̃ ∈ XC , then z̃ is a parameter near σ(P̃ ) ∈ XC .

Because two disjoint neighborhoods U ′i and U ′′i of XC , lie over each neighborhood
Ui of X, we can make the restriction at U ′i ∪U ′′i in the local study of the quadratic
differentials on XC .

As in Alling and Greenleaf [2], we associate with the dianalytic atlas A on X,
the nonzero (holomorphic) quadratic differential ϕ = (ϕi)i∈I on X, in the local
parameters (zi)i∈I , such that on each connected component U of Ui ∩ Uj , the
following transformation law

ϕi(zi)(dzi)2 =

{
ϕj(zj)(dzj)2, when φj ◦ φ−1

i is analytic on φi(U)

ϕj(zj)(dzj)2, when φj ◦ φ−1
i is antianalytic on φi(U)

holds whenever zi and zj are parameter values near the same point of X.
The family ϕ̃ = (ϕ̃i)i∈I of holomorphic function elements, in the local parameters

(z̃i)i∈I ,

ϕ̃i(z̃i) =

{
ϕi(zi), when P̃ ∈ U ′i
ϕi(zi), when P̃ ∈ U ′′i ,

(2.1)
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where z̃i is a local parameter near P̃ , is a (holomorphic) quadratic differential on
XC , with respect to the analytic atlas Ã on XC . By analogy, the family ϕ̃ = (ϕ̃i)i∈I
of holomorphic function elements, in the local parameters (z̃i)i∈I is a (holomorphic)
quadratic differential on XC .

3. The natural parameter near holomorphic points

As a consequence of the above results, see [7], the order of a nonzero holomorphic
quadratic differential ϕ on X at a point P is a dianalytic invariant, thus it does
make sense to define the zeroes of the quadratic differential ϕ on a Klein surface.
A holomorphic point is either a regular point or a zero.

In this section, we extend the notion of natural parameter near a holomorphic
point of a quadratic differential on a Riemann surface to a Klein surface, which is
studied in [9].

Let P be a holomorphic point of the quadratic differential ϕ and (Ui, zi), i ∈ I
be a dianalytic chart at P . Then, we can take Ui to be sufficiently small so that a
single valued branch of Φ(zi) =

∫ √
ϕi(zi)dzi can be chosen. We introduce a local

parameter

wi = Φ(zi) =
∫ √

ϕi(zi)dzi

in Ui, uniquely up to a transformation wi → ±wi + const., such that on each
connected component U of Ui ∩ Uj , the following transformation law

wi =

{
wj , when φj ◦ φ−1

i is analytic on φi(U)
wj , when φj ◦ φ−1

i is antianalytic on φi(U)

holds whenever zi and zj are parameter values near the same point P of X.
By the definition of a quadratic differential on a Klein surface, we can see that

the local parameter wi is locally well defined, up to conjugation, see [2].

Remark 3.1. The quadratic differential ϕ on the Klein surface (X,A) has, in
terms of the natural parameter wi, the representation identically equal to one.

As for a Riemann surface, wi will be called the natural parameter near P . Let
wi be the natural parameter in a neighborhood Ui of a holomorphic point P of the
quadratic differential ϕ on X. Then, using the relation (2.1) it follows that

w̃i =

{
wi, when P̃ ∈ U ′i
wi, when P̃ ∈ U ′′i ,

is the natural parameter in the corresponding neighborhood of the point P̃ = p(P ).
The natural parameter on XC is well defined, because the family ϕ̃ is a quadratic
differential on XC , with respect to the analytic atlas Ã on XC .

By analogy, w̃i is the natural parameter in the corresponding neighborhood of
the point σ(P̃ ).

Proposition 3.2. The quadratic differential ϕ̃ on the Riemann surface (XC , Ã)
has, in terms of w̃i, the representation identically equal to one.

Proof. If P̃ ∈ U ′i , the differential dw̃i becomes dwi =
√
ϕ(zi)dzi, therefore by

squaring (dwi)2 = ϕ(zi)(dzi)2 so, in terms of w̃i = wi, the quadratic differential
ϕ̃ has the representation identically equal to one. A similar argument applies if
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P̃ ∈ U ′′i . The differential dw̃i becomes (dwi)2 = ϕ(zi)(dzi)2 and in terms of w̃i = wi,
the quadratic differential ϕ̃ has the representation identically equal to one. �

Remark 3.3. The quadratic differential ϕ̃ on the Riemann surface XC has, in
terms of w̃i, the representation identically equal to one.

In the special case, when P is a zero of the quadratic differential ϕ, then as in
Strebel [9, Theorem 6.2], we can introduce a local parameter ζi in the neighbor-
hood Ui of P , P ↔ ζi = 0, in terms of which the quadratic differential has the
representation

(dwi)2 = ϕ(zi)(dzi)2 =
(n+ 2

2
)2
ζni dζ

2
i . (3.1)

As a function of ζi, the natural parameter becomes wi = Φ(zi) = (ζi)
n+2

2 and the
corresponding natural parameter on XC is

w̃i =

{
(ζi)

n+2
2 , when P̃ ∈ U ′i

(ζi)
n+2

2 , when P̃ ∈ U ′′i .
(3.2)

3.1. The ϕ-length of a curve. In this section, we introduce the ϕ-metric associ-
ated with a quadratic differential on a Klein surface and we study its relation with
the corresponding ϕ̃-metric on its canonical (Riemann) double cover XC , see [9].

Let wi be the natural parameter in a neighborhood Ui of a holomorphic point P
of the quadratic differential ϕ on X. We define the length element of the ϕ-metric,
|dwi|, such that on each connected component U of Ui∩Uj , the transformation law

|dwi| =

{
|dwj |, when φj ◦ φ−1

i is analytic on φi(U)
|dwj |, when φj ◦ φ−1

i is antianalytic on φi(U)

holds whenever zi and zj are parameter values near the same point P of X.

Remark 3.4. The length element of the ϕ-metric is a dianalytic invariant, namely
|dwi| = |dwi| =

√
|ϕ(zi)||dzi|.

The length element of the ϕ̃ -metric is defined by

|dw̃i| =

{
|dwi|, when P̃ ∈ U ′i
|dwi|, when P̃ ∈ U ′′i .

(3.3)

Let Ui be a neighborhood of a regular point P of the quadratic differential ϕ on
X and f−1(Ui) = U ′i ∪ U ′′i . Let γ be a piecewise smooth curve in Ui. The curve γ
has exactly two liftings at f−1(Ui) . If γ has the initial point P and γ̃ is the lifting
of γ at P̃ ∈ U ′i , then σ(γ̃) is the lifting of γ at P̃ ∈ U ′′i .

Remark 3.5. Because σ : XC → XC is an antianalytic involution, without fixed
points, we get that if γ̃ is the lifting of γ at P̃ ∈ U ′′i , then σ(γ̃) is the lifting of γ at
P̃ ∈ U ′i .

The curves γ̃ and σ(γ̃) are called symmetric on XC . Next, we will identify γ̃ and
σ(γ̃), with their images in the complex plane, from the corresponding charts.

The curve γ is mapped by a branch of Φ(zi) =
∫ √

ϕi(zi)dzi onto a curve γ0

in the w-plane. The Euclidean length of γ0 does not depend on the branch of Φ
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which we have chosen. The ϕ-length of γ can be computed, in terms of the natural
parameter wi, by

lϕ(γ) =
∫
γ0

|dwi| =
∫
γ

√
|ϕi(zi)||dzi|,

then the ϕ-length of γ is the Euclidean length of γ0.
Thus, the natural parameter is the local isometry between the ϕ- metric and the

Euclidean metric.

Remark 3.6. By the definition of the quadratic differential ϕ on X, we obtain
that the ϕ-length of γ is a dianalytic invariant.

From (3.3), we deduce that the ϕ̃-length of γ̃ is

leϕ(γ̃) =

{
lϕ(γ), when γ̃ ∈ U ′i
lϕ(γ), when γ̃ ∈ U ′′i ,

where lϕ(γ) =
∫
γ

√
|ϕi(zi)||dzi|.

Proposition 3.7. The symmetric curves γ̃ and σ(γ̃) have the same ϕ̃-length,
namely leϕ(γ̃) = leϕ(σ(γ̃)) = lϕ(γ). Therefore, the ϕ̃-metric is a symmetric met-
ric on XC .

Proof. We assume without loss of generality, that γ̃ ∈ U ′i . Then, σ(γ̃) ∈ U ′′i . By
definition, the ϕ̃-length of γ̃ is

leϕ(γ̃) = lϕ(γ) =
∫
γ0

|dwi| =
∫
γ

√
|ϕi(zi)||dzi|

and the ϕ̃-length of σ(γ̃) is

leϕ(σ(γ̃)) = lϕ(γ) =
∫
γ0

|dwi| =
∫
γ

√
|ϕi(zi)||dzi|

where γ0 is the image of γ by a branch of Φ. Thus, leϕ(γ̃) = leϕ(σ(γ̃)). �

Next, we consider a point from the surface as being its image through the cor-
responding local chart. The ϕ-distance between two points z1 and z2 in Ui is, by
definition,

dϕ(z1, z2) = inf
γ
lϕ(γ) = inf

γ

∫
γ

√
|ϕi(zi)||dzi|

where γ ranges over the piecewise smooth curves in Ui joining z1 and z2. The
ϕ-distance depends of the domain which is selected.

Because XC is compact, any two points z̃1 and z̃2 can be connected with a
shortest curve whose length is the ϕ̃-distance between z̃1 and z̃2. We note this
distance with deϕ(z̃1, z̃2).

Using the definition of the ϕ̃-length of a curve, we can observe that

deϕ(z̃1, z̃2) = deϕ(z̃1, z̃2) and deϕ(z̃1, z̃2) = deϕ(z̃2, z̃1).

A piecewise smooth curve is called geodesic if it is locally shortest. The similar
notion defined on Riemann surfaces is studied in [9].

A straight arc with respect to the quadratic differential ϕ is a smooth curve γ
along which

arg(dw)2 = argϕ(z)(dz)2 = θ = const., 0 ≤ θ < 2π.
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Remark 3.8. A straight arc only contains regular points of ϕ.

3.2. The ϕ-metric near holomorphic points. Given a holomorphic quadratic
differential ϕ on a Klein surface X, a ϕ-disk is a region which is mapped homeo-
morphically onto a disk in the complex plane by a branch of Φ. The ϕ-radius of a
ϕ-disk is the Euclidean radius of the corresponding disk in the complex plane.

We want to determine the shortest curve (in the ϕ-metric) near holomorphic
points. In this case the ϕ-length of a curve γ has sense and is finite, even if γ goes
through a zero of ϕ. Further, we consider a point from the surface X or XC as
being its image through the corresponding local charts.

The following theorem is an extension of Strebel’s Theorem 5.4., see [9], from
Riemann surfaces to Klein surfaces.

Theorem 3.9. Let P be a regular point P of ϕ. Then there exists a neighborhood U
of P such that any two points P1 and P2 in U can be joined by a uniquely determined
shortest curve γ (in the ϕ-metric) in U . The geodesic γ is the pre-image of a straight
line segment under a branch of Φ.

Proof. Let U0 be the largest ϕ-disk around a regular point P . Choose a branch Φ0

of Φ in U0, such that Φ0(P ) = 0. If the radius of U0 is r, let V be the disk |w| < r
2

and U = Φ−1
0 (V ). Then w = Φ0(z) =

∫ √
ϕ0(z)dz is the natural parameter in U ,

where ϕ0(z)(dz)2 is the local representation of the quadratic differential on X.
Let P1 and P2 be two points from U and wi = Φ0(Pi), i = 1, 2. We lift P1 and

P2 to XC . Let P̃i and σ(P̃i) be the two points of XC which lie over the same point
Pi of X, i = 1, 2.

We notice that γ does not pass through any zeroes of ϕ. If γ is an arbitrary
curve joining P1 and P2 in U , then either γ̃ preserves the orientation or γ̃ changes
the orientation in a point of it.

In the first case, either γ̃ is contained in U ′ or γ̃ is contained in U ′′.
If γ̃ is contained in U ′, by Strebel’s Theorem 5.4., see [9], P̃1 and P̃2 can be

joined by a uniquely determined shortest arc γ̃ on XC (in the ϕ̃-metric). The arc
γ̃ is the pre-image of the straight line segment joining w1 and w2 in the w-plane,
under Φ0. Then lϕ(γ) = leϕ(γ̃) =

∫
γ

√
|ϕ0(z)||dz| = |w2 − w1|.

Similarly, if γ̃ is contained in U ′′, both σ(P̃1) and σ(P̃2) are in U ′′ and the
uniquely determined shortest arc γ̃ is the pre-image of the straight line segment join-

ing w1 and w2 in the w-plane, under Φ0. Then lϕ(γ) = leϕ(σ(γ̃)) =
∫
γ

√
|ϕ0(z)||dz| =

|w2 − w1|.
In the second case, because γ does not pass through a zero of ϕ, then we consider

the direct analytic continuation of Φ−1
0 along the straight line segment joining w1

and w2 in the w-plane. Thus, the points P̃1 and σ(P̃2) are joined by the shortest
curve γ̃ with respect to the ϕ̃-metric on XC , which is composed of straight arcs
of the above type and the length of γ̃ is the sum of the lengths of the component
straight arcs. Applying the above results, we obtain lϕ(γ) = leϕ(γ̃) = |w2 − w1|.

In conclusion, if |w2 − w1| ≤ |w2 − w1|, the geodesic γ is the pre-image of the
straight line segment [w1, w2] under Φ0 and if |w2 − w1| ≤ |w2 − w1|, the geodesic
γ is the pre-image of the straight line segment [w1, w2] under a branch of Φ. �

Corollary 3.10. The ϕ-distance between P1 and P2 ,

dϕ(z1, z2) = min(|w2 − w1|, |w2 − w1|)



EJDE-2014/118 GEODESICS OF QUADRATIC DIFFERENTIALS 7

thus dϕ(z1, z2) = min
(
deϕ(z̃1, z̃2), deϕ(z̃1, z̃2)

)
.

The following theorem is an extension of Strebel’s Theorem 8.1., see [9], from
Riemann surfaces to Klein surfaces.

Theorem 3.11. Let P be a zero of ϕ of order n. Then there exists a neighborhood
U of P such that any two points P1 and P2 in U can be joined by a uniquely
determined shortest curve in U (in the ϕ-metric). The geodesic γ is either the
pre-image of a straight line segment under a branch of Φ or is composed of the
pre-images of two radii under branches of Φ.

Proof. Let P be zero of ϕ of order n. Using (3.1), in the neighborhood U of P , there
is a parameter ζ, P ↔ ζ = 0 such that the local representation of ϕ is ϕ(z)(dz)2 =
(n+2

2 )2ζn(dζ)2. Thus the corresponding natural parameter is w = Φ(ζ) = ζ
n+2

2 .
The function Φ maps each one of the sector

{ζ ∈ C| 2π
n+ 2

k ≤ argζ ≤ 2π
n+ 2

(k + 1), k = 0, 1, . . . , n+ 1}

onto an upper or lower half-plane.
The ϕ-length of the radius of the circle |ζ| = ρ is equal to ρ

n+2
2 . Let V be the

disk |w| < 1
2ρ

n+2
2 and U = Φ−1

0 (V ).
Let P1 and P2 be two points in U and wi = Φ0(Pi), i = 1, 2. We lift P1 and P2

to XC . Let P̃i and σ(P̃i) be the two points of XC which lie over the same point Pi
of X, i = 1, 2.

If γ is an arbitrary curve joining P1 and P2 in U , then either γ̃ preserves the
orientation or γ̃ changes the orientation in a point of it. We may assume, without
loss of generality, that z1 6= 0 and arg z1 = 0.

In the first case, either γ̃ is contained in U ′ or γ̃ is contained in U ′′.
If γ̃ is contained in U ′, by Strebel’s Theorem 8.1., see [9] and (3.2), P̃1 and P̃2

can be joined by a uniquely determined shortest curve γ̃ on XC (in the ϕ̃-metric).
Furthermore,

(a) if | arg ζ̃ − arg ζ̃1| ≤ 2π
n+2 for any ζ̃ ∈ γ̃, ζ̃ 6= 0, then γ̃ is the pre-image

of the straight line segment joining w1 and w2 in the w-plane, under Φ0. Hence
lϕ(γ) = leϕ(γ̃) =

∫
γ

√
|ϕ0(z)||dz| = |w2 − w1|.

(b) If there is a ζ̃ ∈ γ̃ such that | arg ζ̃ − arg ζ̃1| > 2π
n+2 , then the curve γ̃ is

composed, in terms of ζ̃, of two radii enclosing angles ≥ 2π
n+2 . Hence lϕ(γ) =

leϕ(γ̃) = |w1|+ |w2|.
Analogously, for γ̃ contained in U ′′, we have:
(c) If |argζ̃ − argζ̃1| ≤ 2π

n+2 for any ζ̃ ∈ γ̃, ζ̃ 6= 0, then γ̃ is the pre-image
of the straight line segment joining w1 and w2 in the w-plane, under Φ0. Hence

lϕ(γ) = leϕ(γ̃) =
∫
γ

√
|ϕ0(z)||dz| = |w2 − w1|.

(d) If there is a ζ̃ ∈ γ̃ such that | arg ζ̃ − arg ζ̃1| > 2π
n+2 , then the curve γ̃ is

composed, in terms of ζ̃, of two radii enclosing angles greater than or equal 2π
n+2 .

Hence lϕ(γ) = leϕ(γ̃) = |w1|+ |w2|.
In the second case, we have:
(e) If | arg ζ̃ − arg ζ̃1| ≤ 2π

n+2 for any ζ̃ ∈ γ̃, ζ̃ 6= 0 we consider the direct analytic
continuation of Φ−1

0 along the straight line segment joining w1 and w2 in the w-
plane. The points P̃1 and σ(P̃2) can be joined by a uniquely determined shortest
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curve γ̃ with respect to the ϕ̃-metric on XC which is composed of straight arcs of
the above type. Then, lϕ(γ) = leϕ(γ̃) = |w2 − w1|.

(f) If there is a ζ̃ ∈ γ̃ such that | arg ζ̃ − arg ζ̃1| > 2π
n+2 , then the curve γ̃ is

composed, in terms of ζ̃, of two radii enclosing angles greater than or equal to 2π
n+2 .

Hence lϕ(γ) = leϕ(γ̃) = |w1|+ |w2|.
In conclusion, if | arg ζ̃ − arg ζ̃1| ≤ 2π

n+2 , then the geodesic γ is the pre-image of
one of the straight line segments, [w1, w2] or [w1, w2], namely the one that has the
smallest Euclidean length, under a branch of Φ and if there is a ζ̃ ∈ γ̃ such that
| arg ζ̃ − arg ζ̃1| > 2π

n+2 , then the geodesic γ is composed either of the pre-images
of the radii [0, w1] and [0, w2] or of the pre-images of the radii [0, w1] and [0, w2],
namely those that have the smallest sum of the Euclidean lengths, under branches
of Φ. �

Corollary 3.12. The ϕ-distance between the points P1 and P2,

dϕ(z1, z2) = min
(
|w2 − w1|, |w2 − w1|, |w1|+ |w2|

)
,

thus dϕ(z1, z2) = min(deϕ(z̃1, z̃2), deϕ(z̃1, z̃2))
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