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BIFURCATION OF TRAVELING WAVE SOLUTIONS OF A
GENERALIZED K(n, n) EQUATION

XIAOSHAN ZHAO, GUANHUA ZHAO, LINPING PENG

Abstract. In this article, a generalized K(n, n) equation is studied by the

qualitative theory of bifurcations and the method of dynamical systems. The

result shows the existence of the different kinds of traveling solutions of the
generalized K(n, n) equation, including solitary waves, kink waves, periodic

wave and compacton solutions, which depend on different parametric ranges.

Moreover, various sufficient conditions to guarantee the existence of the above
traveling solutions are provided under different parameters conditions.

1. Introduction

The well-known K(m,n) equation [10] takes the form

ut + a(un)x + (um)xxx = 0, n > 1. (1.1)

which generates the so termed compactons: solitary waves with exact compact
support. Compactons are defined as solitons with finite wavelengths or solitons
free of exponential tails [1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15]. Wazwaz [13] used the
tanh and sine-cosine method to study the generalized K(n, n) equation given by

ut + α(un)x + β(u2n(u−n)xx)x = 0, n > 1. (1.2)

In this paper, we aim to consider the bifurcation behavior of the traveling wave so-
lutions of equation (1.2) in the parameter space and obtain bifurcations of traveling
solutions under different parameter conditions. Let u(x, t) = ψ(ξ), ξ = x−ct, where
c is wave speed. Substituting the above traveling transformation into equation (1.2)
and integrating once, we have

nβψn−1ψξξ − n(n+ 1)βψn−2ψ2
ξ − αψn + cψ − g = 0, (1.3)

where g is an integral constant. equation (1.3) is equivalent to the two dimensional
system as follows

dψ/dξ = y,

dy/dξ = (n(n+ 1)ψn−2y2 + ρ(ψn − µψ + ν))/(nψn−1),
(1.4)

where ρ = α/β, µ = c/α, ν = g/α. And the system (1.4) has the first integral

H(ψ, y) = −1/2ψ−2(n+1)y2−ρψ−3n(1/(2n)ψn+µ/(1−3n)ψ+ν/(3n)) = h. (1.5)
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In fact, system (1.4) is a three-parameter planar dynamical system depending on
the parameter group (ρ, µ, ν). Because the phase orbits defined by the vector fields
of system (1.4) determine types of traveling wave solutions of equation (1.2), we
should consider the bifurcations of phase portraits of system (1.4) in the phase plane
(ψ, y) as the parameters ρ, µ, ν change. Since only physical models with bounded
traveling waves are meaningful, we just focus on the bounded solutions of system
(1.4).

The paper is organized as follows. In Section 2, we discuss bifurcation curves
and phase portraits of system (1.4). In Section 3, we show the existence of solitary
and periodic kink wave and compacton solutions of (1.2). In Section 4, we present
some exact explicit solutions for (1.2).

2. Bifurcation set and phase portraits of system (1.4)

In this section, we will study all phase portraits and bifurcation set of system
(1.4) in the parameter space. Let dξ = nψn−1dω. Thus, system (1.4) becomes

dψ/dω = nψn−1y,

dy/dω = n(n+ 1)ψn−2y2 + ρ(ψn − µψ + ν).
(2.1)

Except for the straight line ψ = 0, systems (1.4) and (2.1) have the same first
integral as (1.5). Note that for a fixed h, equation (1.5) determines a set of invari-
ant curves of system (2.1), which contains more different branches of curves. As h
changes, (1.5) defines different families of orbits of system (2.1) with different dy-
namical behavior. We assume that (ψi, yi) is an equilibrium point of system (1.4).
At this point, the determinant of the linearized system of system (2.1) has the form

J(ψi, yi) = n3(n+ 1)ψ2n−4
i y2

i − nρψn−1
i (nψn−1

i − µ). (2.2)

By the bifurcation theory of dynamical system [2, 5], we know that if J(ψi, yi) >
0 (or < 0) , then equilibrium point (ψi, yi) is a center (or saddle point); if J(ψi, yi) =
0) and the Poincare index of (ψi, yi) is zero, then the equilibrium point (ψi, yi) is
a cusp point. Denote hi = H(ψi, yi), h = H(ψ, y) defined by (1.5), Mi(ψi, 0) and
M(ψ, 0) are equilibrium points of system (1.4) and ψi < ψi+1. N±(0,±1/6

√
−6ρν)

are the equilibrium points on the straight line ψ = 0. From the above qualitative
analysis, we can obtain the bifurcation curves and phase portraits with the aid of
mathematical software Maple.

2.1. Bifurcation set and phase portraits of system (2.1) when n = 2. In
this case, there are two bifurcation curves on the (µ, ν)-plane

Π1 : ν = 0, Π2 : ν =
1
4
µ2, (2.3)

which divide the (µ, ν)-parameter plane into four different subregions (see Figure
1).

By using the above facts to do qualitative analysis, we obtain the following
results.

Proposition 2.1. (see Figure 2) Suppose that ρ > 0.
(1) For (µ, ν) ∈ Π±1 , system (2.1) has two heteroclinic orbits connecting to the

saddle points M1(ψ1, 0) and O(0, 0). In addition, there is a family of homoclinic
orbits to O for h ∈ (−∞, h1).
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Figure 1. Bifurcation set and curves of system (2.1) for n = 2.
Where Π±1 = {(µ, ν)|µ > 0(µ < 0), ν = 0}, Π±2 = {(µ, ν)|µ >
0(µ < 0), ν = 1

4µ
2}, D1 : 0 < Π+

1 < ν < Π+
2 , D2 : ν > Π2 > 0,

D3 : Π−1 < ν < Π−2 , D4 : ν < Π1.

(2)For (µ, ν) ∈ (D1 ∪D3), system (2.1) has a homoclinic orbit connecting to the
saddle point M2(ψ2, 0) (or M1(ψ1, 0)). In addition, there is a family of periodic
orbits surrounding the center M1(orM2) for h ∈ (h1, h2) (orh ∈ (h2, h1)).

(3) For (µ, ν) ∈ Π±2 , system (2.1) has a cusp point.
(4) For (µ, ν) ∈ D4, system (2.1) has four heteroclinic orbits connecting to

the saddle points M1(ψ1, 0), M2(ψ2, 0) and N±(0,±1/6
√
−6ρν) respectively. In

addition, there are two families of heteroclinic orbits to N±(0,±1/6
√
−6ρν) for

h ∈ (−∞, h1).

Proposition 2.2. (see Figure 3). Suppose that ρ < 0.
(1) For (µ, ν) ∈ Π±1 , system (2.1) has a homoclinic orbit connecting to the saddle

point O(0, 0). In addition, there are a family of homoclinic orbits to O and a family
of periodic orbits surrounding the center M1 (orM2) respectively for h ∈ (h1, 0).

(2) For (µ, ν) ∈ (D1 ∪D3), system (2.1) has two heteroclinic orbits connecting
to the saddle points h ∈ (−∞, h1) and M1 (or M2) respectively. In addition,
there are a family of periodic orbits surrounding the center M1 (or M2), a family
of heteroclinic orbits connecting to the saddle points N±(0,±1/6

√
−6ρν) for h ∈

(h2, 0) (or h ∈ (h1, 0)) and a family of heteroclinic orbits connecting to the saddle
points N±(0,±1/6

√
−6ρν) for h ∈ (−∞, h1) (or h ∈ (−∞, h2)) respectively. If

H(ψ, 0) = h (here M(ψ, 0) is the saddle point) defined by (1.5) has a zero ψ∗

satisfying 0 < ψ < ψ∗ (or 0 > ψ > ψ∗), there exist a homoclinic orbit connecting to
the saddle point M and three heteroclinic orbits connecting to the saddle points M
and N±(0,±1/6

√
−6ρν) respectively. Furthermore, there are a family of periodic

orbits surrounding the center M2 (orM1) and a family of heteroclinic orbits to
N±(0,±1/6

√
−6ρν) for h ∈ (h2, h1) (or h ∈ (h1, h2)) respectively.

(3) For (µ, ν) ∈ Π±2 , system (2.1) has four heteroclinic orbits connecting to
the saddle points N±(0,±1/6

√
−6ρν) and a cusp point M(ψ, 0) respectively. In

addition, there are two families of heteroclinic orbits to N±(0,±1/6
√
−6ρν) for

h ∈ (−∞, h1) and h ∈ (h1, 0) respectively.
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(4) For (µ, ν) ∈ D4, system (2.1) has two centers M1 and M2. When h ∈ (h2, 0)
(or h ∈ (h1, 0), there are two families of periodic orbits surrounding the centers M2

and M1 respectively.

By the above analysis, we have the following phase portraits of system (1.4)
under different parametric conditions shown in figures 2 and 3. they are mae with
the help of mathematical software Maple.

(1) (2) (3)

(4) (5) (6)

(7)

Figure 2. Phase portraits of (2.1) when n = 2 for ρ > 0. (1)
(µ, ν) ∈ Π+

1 ; (2) (µ, ν) ∈ D1; (3) (µ, ν) ∈ Π+
2 ; (4) (µ, ν) ∈ Π−2 ; (5)

(µ, ν) ∈ D3; (6) (µ, ν) ∈ Π−1 ; (7) (µ, ν) ∈ D4.
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 3. Phase portraits of (2.1) when n = 2 for ρ < 0. (1)
(µ, ν) ∈ Π+

1 ; (2) (µ, ν) ∈ D1; (3) (µ, ν) ∈ D1; (4) (µ, ν) ∈ Π+
2 ; (5)

(µ, ν) ∈ Π−2 ; (6) (µ, ν) ∈ D3; (7) (µ, ν) ∈ D3; (8) (µ, ν) ∈ Π−1 ; (9)
(µ, ν) ∈ D4.

2.2. Bifurcation set and phase portraits of system (2.1) when n = 2k (k >
1). In this case, there are two bifurcation curves on the (µ, ν)-parameter plane:

Γ1 : ν = 0, Γ2 : ν = [(
1
2k

)
1

2k−1 − (
1
2k

)
2k

2k−1 ]µ
2k

2k−1 , (2.4)

which divide the (µ, ν)-parameter plane into four different subregions (see Figure
4).

By applying the above facts to do qualitative analysis, we obtain the following
results.
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Figure 4. Bifurcation set and curves of system (2.1) for n =
2k, k > 1. Where Γ±1 = {(µ, ν)|µ > 0(µ < 0), ν = 0}, Γ±2 =
{(µ, ν)|µ > 0(µ < 0), ν = [ 1

(2k)
1

2k−1
− 1

(2k)
2k

2k−1
]µ

2k
2k−1 }, G1 : 0 <

Γ+
1 < ν < Γ+2, G2 : ν > Γ2 > 0, G3 : Γ−1 < ν < Γ−2 , G4 : ν < Γ1.

Proposition 2.3. Suppose that ρ > 0 (see Figure 5).
(1) For (µ, ν) ∈ Γ±1 , system (2.1) has one saddle point. system (2.1) has two het-

eroclinic orbits connecting to the saddle points M1(ψ1, 0) and O(0, 0). In addition,
there is a family of homoclinic orbits to O for h ∈ (−∞, h1) .

(2) For (µ, ν) ∈ (G1 ∪ G3), system (2.1) has a homoclinic orbit connecting to
the saddle point M2(ψ2, 0) (or M1(ψ1, 0)). In addition, there is a family of periodic
orbits surrounding the center M1 (or M2) for h ∈ (h1, h2) (or h ∈ (h2, h1)).

(3) For (µ, ν) ∈ Γ±2 , system (2.1) has a cusp point.
(4) For (µ, ν) ∈ G4, system (2.1) has two saddle points.

Proposition 2.4. Suppose that ρ < 0 (see Figure 6).
(1) For (µ, ν) ∈ Γ±1 , system (2.1) has a center M1. In addition, there are a

family of periodic orbits surrounding the center M1 for h ∈ (h1, 0).
(2) For (µ, ν) ∈ (G1∪G3), system (2.1) has one saddle point and one center. In

addition, there are a family of periodic orbits surrounding the center for h ∈ (h2, 0)
(or h ∈ (h1, 0)). If H(ψ, 0) = h (here M(ψ, 0) is the saddle point) defined by (1.5)
has a zero ψ∗ satisfying 0 < ψ < ψ∗ (or 0 > ψ > ψ∗), there exists a homoclinic
orbit connecting to the saddle point M , and there are a family of periodic orbits
surrounding the center for h ∈ (h2, h1) (or h ∈ (h1, h2)).

(3) For (µ, ν) ∈ Γ±2 , system (2.1) has a cusp point M(ψ, 0).
(4) For (µ, ν) ∈ G4, system (2.1) has two centers M1 and M2. When h ∈ (h1, 0)

(or h ∈ (h2, 0)), there are two families of periodic orbits surrounding the centers
M1 and M2 respectively.

By means of the above analysis, we have the following phase portraits of system
(2.1) under different parametric conditions shown in figures 5 and 6. they were
made with the aid of Mathematical software Maple.

2.3. Bifurcation set and phase portraits of system (2.1) when n = 2k + 1
(k ≥ 1). In this case, there are two bifurcation curves on the (µ, ν)-parameter
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(1) (2) (3)

(4) (5) (6)

(7)

Figure 5. Phase portraits of (2.1) when n = 2k, k > 1 for ρ > 0.
(1) (µ, ν) ∈ Γ+

1 ; (2) (µ, ν) ∈ G1; (3) (µ, ν) ∈ Γ+
2 ; (4) (µ, ν) ∈ Γ−2 ;

(5) (µ, ν) ∈ G3; (6) (µ, ν) ∈ Γ−1 ; (7) (µ, ν) ∈ G4.

plane:

Υ1 : ν = 0, Υ2 : ν = [(
1

2k + 1
)

1
2k − (

1
2k + 1

)
2k+1
2k ]µ

2k+1
2k , (2.5)

which divide the (µ, ν)-parameter plane into four different subregions (see Figure
7).

By using the above facts to do qualitative analysis, we obtain the following
results.

Proposition 2.5. Suppose that ρ > 0 (see Figure 8).
(1) For (µ, ν) ∈ Υ−1 , system (2.1) has two saddle points on the axis of abscissa

and two saddle points on the axis of ordinates. And there exist four heteroclinic
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 6. Phase portraits of (2.1) when n = 2k, k > 1 for ρ < 0.
(1) (µ, ν) ∈ Γ+

1 ; (2) (µ, ν) ∈ G1; (3) (µ, ν) ∈ G1; (4) (µ, ν) ∈ Γ+
2 ;

(5) (µ, ν) ∈ Γ−2 ; (6) (µ, ν) ∈ G3; (7) (µ, ν) ∈ G3; (8) (µ, ν) ∈ Γ−1;
(9) (µ, ν) ∈ G4.

orbits connecting to the saddle points M1(ψ1, 0), M2(ψ2, 0) and N±(0,±1/6
√
−6ρν)

respectively, for h = h1 (or h2).
(2) For (µ, ν) ∈ (Z1∪Z4), system (2.1) has two saddle points M1(ψ1, 0), M3(ψ3, 0),

and one center M2(ψ2, 0). And there exist a homoclinic orbit connecting to the sad-
dle point M1 or M3 for h = h1 (or h3) and a family of periodic orbits surrounding
the center M2 for h ∈ (h2, h1) (orh ∈ (h2, h3)).

(3) For (µ, ν) ∈ Υ±2 , system (2.1) has a saddle point and a cusp point.
(4) For (µ, ν) ∈ (Z2 ∪ Z3), system (2.1) has a saddle point.

Proposition 2.6. (see Figure 9). Suppose that ρ < 0
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Figure 7. Bifurcation set and curves of (2.1) for n = 2k + 1(k ≥
1). Υ±1 = {(µ, ν)|µ > 0(µ < 0), ν = 0}, Υ±2 = {(µ, ν)|µ > 0(µ <
0), ν = [ 1

(2k+1)
1
2k
− 1

(2k+1)
2k+1
2k

]µ
2k+1
2k }, Z1 : 0 < Υ+

1 < ν < Υ+
2 ,

Z2 : ν > Υ+
2 > 0, Z3 : ν < Υ−2 < 0, Z4 : Υ−2 < ν < Υ+

1 .

(1) For (µ, ν) ∈ Υ+
1 , system (2.1) has two centers. In addition, there are two

families of periodic orbits surrounding the centers M1 (orM2) for h ∈ (h1, 0), re-
spectively.

(2) For (µ, ν) ∈ (Z1∪Z4), system (2.1) has one saddle point and two centers. In
addition, there are two families of periodic orbits surrounding the two centers for
h ∈ (h1, 0) and h ∈ (h3, 0) respectively. If H(ψ, 0) = h (here M(ψ, 0) is the saddle
point) defined by (1.5) has a zero ψ∗ satisfying 0 < ψ∗ < ψ (or 0 > ψ∗ > ψ), there
exists a homoclinic orbit connecting to the saddle point M .

(3) For (µ, ν) ∈ Υ±2 , system (2.1) has a cusp point and a center. When h ∈
(h1, 0) (or h ∈ (h2, 0)), there exist a family of periodic orbits surrounding the
center.

(4) For (µ, ν) ∈ (Z2 ∪Z3), system (2.1) has one center. When h ∈ (h1, 0), there
is a family of periodic orbits surrounding the center.

From the above analysis, we have the following phase portraits of system (1.4)
under different parametric conditions shown in figures 8 and 9.

3. Existence of traveling wave solutions of equation (1.2))

In this section, we consider the existence of smooth and non-smooth solitary
traveling wave and periodic traveling wave solutions of equation (1.2). Obviously,
the system (1.4) has the same orbits as the system (2.1), except for ψ = 0 . The
transformation of variables dξ = nψn−1dω only derives the difference of the para-
metric representations of orbits of the systems (1.4) and (2.1) when ψ = 0. If an
orbit of (2.1) has no intersection point with the straight line ψ = 0, then, it is well
defined in (1.4). It follows that the profile defined by this orbit on the (ψ, y)-plane
is smooth. If an orbit of (2.1) has intersection point with the straight line ψ = 0,
then it is not defined in (1.4). It follows that the profile defined by this orbit on
the (ψ, y)-plane may be non-smooth.

According to the previous discussions, we deduce the following conclusions from
figures 2, 3, 5, 6, 8 and 9.
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(1) (2) (3)

(4) (5) (6)

(7)

Figure 8. Phase portraits of (2.1) when n = 2k + 1, k ≥ 1 for
ρ > 0. (1) (µ, ν) ∈ Υ+

1 ; (2) (µ, ν) ∈ Z1; (3) (µ, ν) ∈ Υ+
2 ; (4)

(µ, ν) ∈ Z−2 ; (5) (µ, ν) ∈ Z3; (6) (µ, ν) ∈ Υ−2 ; (7) (µ, ν) ∈ Z4.

Theorem 3.1. (see figures 2 and 3) Suppose that n = 2.
(1) For (µ, ν) ∈ Π±1 . When ρ > 0, equation (1.2) has a couple of kink and

anti-kink wave solutions for h = h1(h2), and has a family of uncountably infinite
many compactons solutions for h ∈ (−∞, h1) (or h ∈ (−∞, h2)). And when ρ < 0 ,
equation (1.2) has a compacton solution for h = h1, and has a family of uncountably
infinite many compactons solutions and a family of smooth periodic wave solutions
whose amplitudes tend to ∞ for h ∈ (h1, 0).

(2) For (µ, ν) ∈ (D1 ∪ D3). When ρ > 0, equation (1.2) has a smooth solitary
wave solutions with valley (peak) form for h = h2(h1), and has a family of uncount-
ably infinite many smooth periodic wave solutions for h ∈ (h1, h2) (or h ∈ (h2, h1)).
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 9. Phase portraits of (2.1) when n = 2k + 1, k ≥ 1 for
ρ < 0. (1) (µ, ν) ∈ Υ+

1 ; (2) (µ, ν) ∈ Z1; (3) (µ, ν) ∈ Z1; (4)
(µ, ν) ∈ Υ+

2 ; (5) (µ, ν) ∈ Z2; (6) (µ, ν) ∈ Z3; (7) (µ, ν) ∈ Υ−2 ; (8)
(µ, ν) ∈ Z4; (9) (µ, ν) ∈ Z4.

And when ρ < 0, equation (1.2) has a smooth solitary wave solutions with valley
(peak) form for h = h1 (or h2), and has a family of uncountably infinite many
smooth periodic wave solutions and a family of uncountably infinite many solitary
wave solutions with valley (peak) wave solutions for h ∈ (h1, 0) (or h ∈ (h2, 0))
respectively and has a family of uncountably infinite many periodic wave solutions
for h ∈ (−∞, h1) (or h ∈ (−∞, h2)); if H(ψ, 0) = h (here M(ψ, 0) is the saddle
point) defined by (1.5) has a zero ψ∗ satisfying 0 < ψ < ψ∗ (or 0 > ψ > ψ∗, then
equation (1.2) has a couple of solitary wave solutions with peak and valley form for
h = h2(h1), and has a family of uncountably infinite many smooth periodic wave
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solutions and a family of uncountably infinite many solitary wave solutions with
peak (valley) form for h ∈ (h2, 0) (or h ∈ (h1, 0)) respectively, and has a family
of uncountably infinite many periodic wave solutions form for h ∈ (−∞, h1) or
h ∈ (−∞, h2).

(3) For (µ, ν) ∈ Π±2 . When ρ < 0, equation (1.2) has a solitary wave solution
with valley (or peak) form for h = h1, and has a family of uncountably infinite
many periodic wave solutions for h ∈ (h1, 0), and has a family of uncountably
infinite many periodic wave solutions form for h ∈ (−∞, h1).

(4) For (µ, ν) ∈ D4, When ρ > 0, equation (1.2) has a couple of kink and anti-
kink wave solutions for h = h2(h1), and has a family of uncountably infinite many
periodic wave solutions for h ∈ (−∞, h1). And when ρ < 0, equation (1.2) has two
families of uncountably infinite many smooth periodic wave solutions for h ∈ (h2, 0),
and their amplitudes tend to ∞ for h→ 0.

Theorem 3.2. (see figures 5 and 6). Suppose that n = 2k.
(1) For (µ, ν) ∈ Γ±1 . When ρ < 0, equation (1.2) has a family of uncountably

infinite many periodic solutions for h ∈ (h1, 0), and their amplitudes tend to ∞ for
h→ 0.

(2) For (µ, ν) ∈ G1. When ρ > 0, equation (1.2) has a smooth solitary wave
solutions with valley form for h = h2 , and has a family of uncountably infinite
many smooth periodic solutions for h ∈ (h1, h2). And when ρ < 0, equation (1.2)
has a family of uncountably infinite many smooth periodic solutions for h ∈ (h2, 0),
and their amplitudes tend to ∞ for h → 0; if H(ψ1, 0) = h (here M(ψ1, 0) is the
saddle point) defined by (1.5) has a zero ψ∗ satisfying 0 < ψ1 < ψ∗, equation (1.2)
has a smooth solitary wave solutions with peak form for h = h1 and a family of
uncountably infinite many smooth periodic solutions for h ∈ (h2, h1).

(3) For (µ, ν) ∈ G3. When ρ > 0, equation (1.2) has a smooth solitary wave
solutions with peak form for h = h1, and has a family of uncountably infinite many
smooth periodic solutions for h ∈ (h2, h1). And when ρ < 0, equation (1.2) has a
family of uncountably infinite many smooth periodic solutions for h ∈ (h1, 0), and
their amplitudes tend to ∞ for h→ 0; if H(ψ2, 0) = h (here M(ψ2, 0) is the saddle
point) defined by (1.5) has a zero ψ∗ satisfying 0 > ψ2 > ψ∗, equation (1.2) has
a solitary wave solutions with valley form for h = h2 and a family of uncountably
infinite many smooth periodic solutions for h ∈ (h1, h2).

(4) For (µ, ν) ∈ G4. When ρ < 0, equation (1.2) has two families of uncountably
infinite many smooth periodic solutions for h ∈ (h1, 0), and their amplitudes tend
to ∞ for h→ 0.

Theorem 3.3. (see figures 8 and 9). Suppose that n = 2k + 1, k ≥ 1.
(1) For (µ, ν) ∈ Υ+

1 . When ρ > 0, equation (1.2) has a couple of kink and anti-
kink wave solutions for h = h2 (or h1), and has a family of uncountably infinite
many periodic wave solutions for h ∈ (h1,+∞). And when ρ < 0, equation (1.2)
has two families of uncountably infinite many smooth periodic wave solutions for
h ∈ (h1, 0), and their amplitudes tend to ∞ for h→ 0.

(2) For (µ, ν) ∈ (Z1∪Z4). When ρ > 0, equation (1.2) has a smooth solitary wave
solutions with valley (peak) form for h = h3 (or h1), and has a family of uncountably
infinite many smooth periodic solutions for h ∈ (h2, h3)(orh ∈ (h2, h1)). And when
ρ < 0, equation (1.2) has two families of uncountably infinite many smooth periodic
solutions for h ∈ (h2, 0) and h ∈ (h3, 0) respectively, and their amplitudes tend to
∞ for h → 0; if H(ψ2, 0) = h (here M(ψ2, 0) is the saddle point) defined by (1.5)
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has a zero ψ∗ satisfying 0 < ψ2 < ψ∗ (or 0 > ψ2 > ψ∗), equation (1.2) has a smooth
solitary wave solutions with peak (or valley) form for h = h2 and two families of
uncountably infinite many smooth periodic solutions for h ∈ (h3, h2) and h ∈ (h1, 0)
respectively.

(3) For (µ, ν) ∈ Υ±2 . When ρ < 0, equation (1.2) has a family of uncountably
infinite many smooth periodic solutions for h ∈ (h2, 0) (or h ∈ (h1, 0)), and their
amplitudes tend to ∞ for h→ 0.

(4) For (µ, ν) ∈ (Z2 ∪ Z3). When ρ < 0, equation (1.2) has two families of
uncountably infinite many smooth periodic solutions for h ∈ (h1, 0), and their am-
plitudes tend to ∞ for h→ 0.

4. Exact traveling wave solutions of equation (1.2)

In this section, to further reveal above results, we provide some exact solutions
of equation (1.2) for n = 2 by the bifurcation theory. We denote that h = H(ψ, 0)
and M(ψ, 0) are equilibrium points of (1.4).

1. The case of ρ > 0 and h = 0:
(1) When ν = 0, corresponding to figures 2(1) and 2(6) respectively, equation

(1.2) has the following compacton solutions

u(x, t) =

{
4
5µ cos[ 14

√
ρ(x− ct)], |x− ct| < 2π√

ρ ,

0, otherwise.

(2) When µ = 0 and ν < 0, corresponding to Figure 2(7), equation (1.2) has the
following periodic solutions

u(x, t) = ±
√
−2ν

3
sin[
√
ρ

2
(x− ct)].

2. The case of ρ < 0 and h = 0:
(1) When ν = 0, corresponding to figures 3(7) and 3(8), equation (1.2) has the

following explicit formula of solitary patterns solutions

u(x, t)) =
2
5
µ{1 + cosh[

√
−ρ
2

(x− ct)]}.

(2) When µ = 0 and ν < 0, corresponding to Figure 3(9), equation (1.2) has the
following solitary patterns solutions

u(x, t)) =

√
−2ν

3
cosh[

√
−ρ
2

(x− ct)].

conclusion. Employing the bifurcation theory of nonlinear dynamic system, we
have studied the bifurcations and dynamic behaviors of traveling wave solutions
of equation 1.2. The obtained results show that equation (1.2) has infinite many
periodic wave, solitary wave, kink wave and compacton solutions under some pa-
rameters’ conditions. Therefore, the results in this work clearly demonstrate the
effect of the purely nonlinear dispersion and the qualitative change made in the
genuinely nonlinear phenomenon.



14 X. ZHAO, G. ZHAO, L. PENG EJDE-2014/145

Acknowledgements. The authors would like to thank the anonymous referees for
their carefully reading of the original manuscript, and for their valuable comments
and suggestions for improving the results as well as the exposition of this article.

This work is supported by the National Natural Science Foundation of China
(Grants nos. 11302148, 11302158 and 11102132) and the National Natural Science
Foundation of Tianjin (Grant no. 12JCYBJC10600) and Natural Science Founda-
tion of Tianjin University of Technology and Education (no. KYQD09006), and
NSFC Scholarship project foundation of China.

References

[1] M. J. Ablowitz, P. A. Clarkson; Solitons, Nonlinear Evolution Equations and Inverse Scat-

tering, Cambridge University Press, Cambridge, 1991.
[2] A. A. Andronov, E. A. Leontovich, J. I. Gordon; Theory of bifurcations of dynamical systems

on a plane, Wiley, New York, 1973.

[3] R. T. Benjamin, J. L. Bona, J. J. Mahony; Model equations for long waves in nonlinear
dispersive systems, Philos. Trans. R Soc. London, 272 (1972), 47-78.

[4] Z. Feng; Computations of soliton solutions and periodic solutions for the focusing branch
of the nonlinear dispersive K(n, n) equations in higher-dimensional spaces, Appl. Math.

Comput. 182 (2006), 781-790.

[5] J. Guckenheimer and P. J. Holmes; Nonlinear Oscillations, Dynamical Systems and Bifur-
cations of Vector Fields, Springer-Verlag, NewYork, 1983.

[6] W. Hereman, M. Takaoka; Solitary wave solutions of nonlinear evolution and wave equations

using a direct method and MACSYMA, J. Phys. A 23 (1990), 4805-4822.
[7] J. B. Li, Z. R. Liu; Smooth and non-smooth travelling waves in a nonlinearly dispersive

equation, Appl. Math. Model., 25 (2000), 41-56.

[8] J. B. Li, J. W. Shen; Travelling wave solutions in a model of the helix polypeptide chains,
Chaos, Solitons and Fractals, 20 (2004), 827-41.

[9] Y. A. Li, P. J. Olver; Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian

dynamoical system II: complex analytic behavior and convergence to non-analytic solu-
tions,Discrete Contin. Dyn. Syst. 4 (1998), 159-91.

[10] P. Rosenau, J. M. Hyman; Compactons: solitons with finite wavelengths, Phys. Rev. Lett.,

70(5) (1993), 564-567.
[11] M. Wadati; The modified Kortweg-de Vries equation, J. Phys. Soc. Japan., 34 (1973), 1289-

1296.
[12] A. M. Wazwaz; Compactons dispersive structures for variants of the K(n, n) and the KP

equations, Chaos Soliton and Fractals, 13(5) (2002), 1053-1062.

[13] A. M. Wazwaz; Explicit traveling wave solutions of variants of the K(n, n) and the ZK(n, n)
equations with compact and noncompact structures, Appl. Math. Comput., 173 (2006), 213-

230.

[14] Z. Y. Yan; New compacton-like and solitary patterns to nonlinear wave equations with linear
dispersion terms, Nonlinear Anal., 64 (2006), 901-909.

[15] N. J. Zabusky, M. D. Kruskal; Interaction of solitons in a collisionless plasma and the

recurrence of initial states, Phys. Rev. Lett., 15 (1965), 240-243.

Xiaoshan Zhao

School of Science, Tianjin University of Technology and Education, Tianjin 300222,

China.
School of Electrical, Computer and Energy Engineering, Arizona State University,

Tempe, Arizona 85287, USA
E-mail address: xszhao678@126.com

Guanhua Zhao

Department of Mathematics, Handan College, Handan, Hebei 056005, China
E-mail address: zghlds@126.com



EJDE-2014/145 BIFURCATION OF TRAVELING WAVE SOLUTIONS 15

Linping Peng

School of Mathematics and System Sciences, Beihang University, LIMB of the Ministry

of Education, Beijing 100191, China
E-mail address: penglp@buaa.edu.cn


	1. Introduction
	2. Bifurcation set and phase portraits of system (1.4)
	2.1. Bifurcation set and phase portraits of system (2.1) when n=2
	2.2. Bifurcation set and phase portraits of system (2.1) when n=2k (k>1)
	2.3. Bifurcation set and phase portraits of system (2.1) when n=2k+1 (k1)

	3. Existence of traveling wave solutions of equation (1.2))
	4. Exact traveling wave solutions of equation (1.2)
	conclusion
	Acknowledgements

	References

