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OPTIMAL GROUND STATE ENERGY OF TWO-PHASE
CONDUCTORS

ABBASALI MOHAMMADI, MOHSEN YOUSEFNEZHAD

Abstract. We consider the problem of distributing two conducting materials
in a ball with fixed proportion in order to minimize the first eigenvalue of a

Dirichlet operator. It was conjectured that the optimal distribution consists of

putting the material with the highest conductivity in a ball around the center.
In this paper, we show that the conjecture is false for all dimensions greater

than or equal to two.

1. Introduction

Let Ω be a bounded domain in Rn with a smooth boundary which is to be
called the design region and consider two conducting materials with conductivities
0 < α < β. These materials are distributed in Ω such that the volume of the
region D occupied by the material with conductivity β is a fixed number A with
0 < A < |Ω|. Consider the two-phase eigenvalue problem

−div
(
(βχD + αχDc)∇u

)
= λu in Ω,

u = 0 on ∂Ω,
(1.1)

where βχD +αχDc is the conductivity, λ is the ground state energy or the smallest
positive eigenvalue and u is the corresponding eigenfunction.

We use the notation λ(D) to show the dependence of the eigenvalue on D, the
region with the highest conductivity. To determine the profile of this system, which
gives the minimum principal eigenvalue, we should verify the following optimization
problem

inf
D⊂Ω, |D|=A

λ(D), (1.2)

where λ has the variational formulation

λ(D) = min
u∈H1

0 (Ω), ‖u‖L2(Ω)=1

∫
Ω

(βχD + αχDc)|∇u|2dx. (1.3)

In general, this problem has no solution in any class of usual domains. Cox and
Lipton [9] gave conditions for an optimal microstructural design. However, when Ω
is a ball, the symmetry of the domain implies that there exists a radially symmetric
minimizer. Alvino et al [1] obtained this result thanks to a comparison result for
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Hamilton-Jacobi equations. Conca et al [8] revived the interest in this problem
by giving a new simpler proof of the existence result only using rearrangement
techniques.

In eigenvalue optimization for elliptic partial differential equations, one of chal-
lenging mathematical problems after the problem of existence is an exact formula
of the optimizer or optimal shape design. Most papers in this field answered this
question just in case Ω is a ball [5, 10, 12, 17, 18]. This class of problems is dif-
ficult to solve due to the lack of the topological information of the optimal shape.
For one-dimensional case, Krein [14] showed that the unique minimizer of (1.2) is
obtained by putting the material with the highest conductivity in an interval in
the middle of the domain. Surprisingly, the exact distribution of the two materials
which solves optimization problem (1.2) is still not known for higher dimensions.

Let Ω = B(0,R) be a ball centered at the origin with radius R , the solution
of the one-dimensional problem suggests for higher dimensions that B(0,R∗) is a
natural candidate to be the optimal domain. This conjecture has been supported by
numerical evidence in [7] using the shape derivative analysis of the first eigenvalue
for the two-phase conduction problem. In addition, it has been shown in [11]
employing the second order shape derivative calculus that D = B(0,R∗) is a local
strict minimum for the optimization problem (1.2) when A is small enough. In
spite of the above evidence, it has been established in [6] that the conjecture is not
true in two- or three- dimensional spaces when α and β are close to each other (low
contrast regime) and A is sufficiently large. The theoretical base for the result is an
asymptotic expansion of the eigenvalue with respect to β−α as β → α, which allows
one to approximate the optimization problem by a simple minimization problem.

In this article, we investigate the conjecture for all dimensions n ≥ 2. We prove
that the conjecture is false not only for two- or three- dimensional spaces, but also
for all dimensions n ≥ 2. We provide a different proof of the main result in [6] and
we establish it in a vastly simpler way.

2. Preliminaries

To establish the main theorem, we need some preparation. Our proof is based
upon the properties of Bessel functions. In this section, we state some results from
the theory of Bessel functions. The reader can refer to [3, 21] for further information
about Bessel functions.

Consider the standard form of Bessel equation,

x2y′′ + xy′ + (x2 − ν2)y = 0, (2.1)

where ν is a nonnegative real number. The regular solution of (2.1), called the
Bessel function of the first kind of order ν, is given by

Jν(x) =
∞∑
k=0

(−1)kx2k+ν

22k+νΓ(ν + k + 1)
, (2.2)

where Γ is the gamma function. We shall use following recurrence relations between
Bessel functions

Jν−1(x) + Jν+1(x) =
2ν
x
Jν(x), (2.3)

(x−νJν(x))′ = −x−νJν+1(x). (2.4)
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Let jν,m be the mth positive zeros of the function Jν(x), then it is well known
that the zeros of Jν(x) are simple with possible exception of x = 0. In addition, we
have the following lemma related to the roots of Jν(x), [3, 21].

Lemma 2.1. When ν ≥ 0, the positive roots of Jν(x) and Jν+1(x) interlace ac-
cording to the inequalities

jν,m < jν+1,m < jν,m+1.

We will need the following technical assertion later.

Lemma 2.2. If ν1, ν2 ≥ 0, then

(ν2
2 − ν2

1)
∫ τ

0

Jν2(s)Jν1(s)
s

ds = τ(J ′ν2
(τ)Jν1(τ)− Jν2(τ)J ′ν1

(τ)).

Proof. Functions Jν2 and Jν1 are solutions of Bessel equations

x2J ′′ν2
+ xJ ′ν2

+ (x2 − ν2
2)Jν2 = 0,

x2J ′′ν1
+ xJ ′ν1

+ (x2 − ν2
1)Jν1 = 0.

Multiplying the first equation by Jν1 and the second one by Jν2 , we have

ν2
2

x
Jν2Jν1 = xJ ′′ν2

Jν1 + J ′ν2
Jν1 + xJν2Jν1 ,

ν2
1

x
Jν2Jν1 = xJ ′′ν1

Jν2 + J ′ν1
Jν2 + xJν2Jν1 .

Subtracting the second equality from the first one,

[x(J ′ν2
Jν1 − J ′ν1

Jν2)]′ =
(ν2

2 − ν2
1)

x
Jν2Jν1 .

Integrating this equation from 0 to τ , leads to the desired assertion. �

This section closes with some results from the rearrangement theory related to
our optimization problems. The reader can refer to [1, 4] for further information
about the theory of rearrangements.

Definition 2.3. Two Lebesgue measurable functions ρ : Ω → R, ρ0 : Ω → R, are
said to be rearrangements of each other if

|{x ∈ Ω : ρ(x) ≥ τ}| = |{x ∈ Ω : ρ0(x) ≥ τ}| ∀τ ∈ R. (2.5)

The notation ρ ∼ ρ0 means that ρ and ρ0 are rearrangements of each other.
Consider ρ0 : Ω → R, the class of rearrangements generated by ρ0, denoted P, is
defined as follows

P = {ρ : ρ ∼ ρ0}.
Let ρ0 = βχD0+αχDc

0
whereD0 ⊂ Ω and |D0| = A. For the sake of completeness,

we include following technical assertion.

Lemma 2.4. A function ρ belongs to the rearrangement class P if and only if
ρ = βχD + αχDc such that D ⊂ Ω and |D| = A.

Proof. Assume ρ ∈ P. In view of definition 2.3,

|{x ∈ Ω : ρ0(x) = r}| = | ∩∞1 {x ∈ Ω : r ≤ ρ0(x) < r +
1
n
}|

= lim
n→∞

|{x ∈ Ω : ρ0(x) ≥ r}| − |{x ∈ Ω : ρ0(x) ≥ r +
1
n
}|
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= lim
n→∞

|{x ∈ Ω : ρ(x) ≥ r}| − |{x ∈ Ω : ρ(x) ≥ r +
1
n
}|

= | ∩∞1 {x ∈ Ω : r ≤ ρ(x) < r +
1
n
}|

= |{x ∈ Ω : ρ(x) = r}|.

This implies that the level sets of ρ and ρ0 have the same measures and this yields
the assertion. The other part of the theorem is concluded from definition 2.3. �

Let us state here one of the essential tools in studying rearrangement optimiza-
tion problems.

Lemma 2.5. Let P be the set of rearrangements of a fixed function ρ0 ∈ Lr(Ω),
r > 1, ρ0 6≡ 0, and let q ∈ Ls(Ω), s = r/(r − 1), q 6≡ 0. If there is a decreasing
function η : R→ R such that η(q) ∈ P, then∫

Ω

ρqdx ≥
∫

Ω

η(q)qdx ∀ρ ∈ P,

and the function η(q) is the unique minimizer relative to P.

For a proof of the above lemma see [4].

3. Disproving the conjecture

In this section, we study the conjecture proposed in [7] when Ω is a ball in
Rn with n ≥ 2. We show that the conjecture is false for n = 2, 3 and for every
n ≥ 4. Indeed, we will establish that a ball could not be a global minimizer for
the optimization problem (1.2) when α and β are close to each other (low contrast
regime) and A is large enough. It should be noted that our method is not as
complicated as the approach has been stated in [6] and we deny the conjecture in
a simpler way.

We hereafter regard Ω ⊂ Rn as the unit ball centered at the origin. Assume that
ψ is the eigenfunction corresponding to the principal eigenvalue of the Laplacian
with Dirichlet’s boundary condition on Ω. Then, one can consider ψ = ψ(r) as a
radial function which satisfies

r2ψ′′(r) + (n− 1)rψ′(r) + λr2ψ(r) = 0 0 < r < 1,

ψ′(0) = 0 ψ(1) = 0,
(3.1)

where the boundary conditions correspond to the continuity of the gradient at the
origin and Dirichlet’s condition on the boundary. In the next lemma, we examine
the function |ψ′(r)|.

Lemma 3.1. Let ψ be the eigenfunction of (3.1) associated with the principal
eigenvalue λ. Then, function |ψ′(r)| has a unique maximum point ρn in (0, 1).

Proof. The solution of (3.1) is

ψ(r) = r1−n
2 Jn

2−1(µr) 0 ≤ r ≤ 1,

where µ = jn
2−1,1. For the reader’s convenience, we use the change of variable

t = µr and then

ψ(t) = µ
n
2−1

(Jn
2−1(t)
t

n
2−1

)
0 ≤ t ≤ µ.
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According to lemma 2.1, jn
2−1,1 < jn

2 ,1
and then we see Jn

2
(t) ≥ 0 for 0 ≤ t ≤ µ.

Therefore,

|ψ′(t)| = µ
n
2−1

(Jn
2

(t)
t

n
2−1

)
0 ≤ t ≤ µ,

invoking formula (2.4). To determine the maximum point of this function, one
should calculate d

dt (|ψ
′(t)|). Employing relations (2.3) and (2.4),

d

dt
(|ψ′(t)|) =

µ
n
2−1(tJn

2−1(t)− (n− 1)Jn
2

(t))
t

n
2

.

Then d
dt (|ψ

′(t)|) = 0 yields

tJn
2−1(t)− (n− 1)Jn

2
(t) = 0.

The zeros of the last equation are the fixed points of the function

g(t) = (n− 1)
Jn

2
(t)

Jn
2−1(t)

0 < t < µ.

We find that

J ′n
2

(t)Jn
2−1(t)− Jn

2
(t)J ′n

2−1(t) =
(n− 1)

t

∫ t

0

Jn
2

(τ)Jn
2−1(τ)
τ

dτ,

applying lemma 2.2. Consequently, g′(t) > 0 for 0 < t < µ and g is an increasing
function. On the other hand, g(t) tends to infinity when t → µ and, in view
of formula (2.2), it tends to zero when t → 0. Thus, g(t) has a unique fixed
point ρn in (0, µ) which it is the unique extremum point of |ψ′(t)|. Recall that
tJn

2−1(t) − (n − 1)Jn
2

(t) is negative when t → µ. Hence, d
dt (|ψ

′(t)|) is negative in
a neighborhood of µ and thus, ρn is the unique maximum point of d

dt (|ψ
′(t)|) in

(0, µ). �

We need the following theorem to deduce the main result.

Theorem 3.2. Assume D0 is a subset of Ω where |D0| = A and u0 is the eigen-
function of (1.1) corresponding to λ(D0). Let D1 be a subset of Ω where

|D1| = A and D1 = {x : |∇u0| ≤ t} (3.2)

with
t = inf{s ∈ R : |{x : |∇u0| ≤ s}| ≥ A}. (3.3)

Then, λ(D1) ≤ λ(D0).

Proof. It is well known, from the Krein-Rutman theorem [15], that u0 is positive
everywhere on Ω. Therefore, we infer that all sets {x : |∇u0| = s} have measure
zero because of [13, lemma 7.7]. Then, one can determine set D1 uniquely using
the above formula. Let us define the decreasing function

η(s) =

{
β 0 ≤ s ≤ t2,
α s > t2.

This yields
η(|∇u0|2) = βχD1 + αχDc

1
.

From lemma 2.4 and 2.5, we deduce∫
(βχD1 + αχDc

1
)|∇u0|2dx ≤

∫
(βχD0 + αχDc

0
)|∇u0|2dx,
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and then we have λ(D1) ≤ λ(D0) invoking (1.3). �

Remark 3.3. In theorem 3.2, if D1 6= D0, then∫
(βχD1 + αχDc

1
)|∇u0|2dx <

∫
(βχD0 + αχDc

0
)|∇u0|2dx,

applying the uniqueness of the minimizer in lemma 2.5. Thus, we observe that
λ(D1) < λ(D0) when D1 6= D0.

Remark 3.4. In [6], it has been proved that if ρ∗ = βχD∗ +αχDc
∗

is the minimizer
of

min
ρ∈P

∫
Ω

ρ|∇ψ|2dx, (3.4)

then the set D∗ is an approximate solution for (1.2), under the assumption of low
contrast regime. By arguments similar to those in the proof of theorem 3.2, one
can determine the unique minimizer of problem (3.4), ρ∗ = βχD∗ + αχDc

∗
, using

formulas (3.2) and (3.3). Recall from lemma 3.1 that |ψ′(r)| has a unique maximum
point ρn in (0, 1) and it is a continuous function on [0, 1] with |ψ′(0)| = 0. Then the
unique symmetrical domain D∗ which ρ∗ = βχD∗ +αχDc

∗
is the solution of (3.4) is

of two possible types. The set D∗ is a ball centered at the origin if A ≤ |B(0, ρn)|
and it is the union of a ball and an annulus touching the outer boundary of Ω if
A > |B(0, ρn)|. This result has been established in [6] for n = 2, 3.

Now we are ready to state our main result. We establish that locating the
material with the highest conductivity in a ball centered at the origin is not the
minimal distribution since we can find another radially symmetric distribution of
the materials which has a smaller basic frequency.

Theorem 3.5. Let D0 = B(0, ρ) ⊂ Ω be a ball centered at the origin with |D0| = A.
If β is sufficiently close to α and ρ > ρn, then there is a set D1 ⊂ Ω with |D1| = A
containing a radially symmetric subset of Dc

0 where λ(D1) < λ(D0).

Proof. Suppose u0 is the eigenfunction of (1.1) associated with λ = λ(D0) such that
‖u0‖L2(Ω) = 1. Utilizing theorem 3.2 and remark 3.3, we conclude λ(D1) < λ(D0)
provided

D1 = {x : |∇u0| ≤ t}, t = inf{s ∈ R : |{x : |∇u0| ≤ s}| ≥ A},

and D0 6= D1. One can observe that u0 satisfies the transmission problem

−β∆v1 = λv1 in D0,

−α∆v2 = λv2 in Dc
0,

v1(x) = v2(x) on ∂D0,

β
∂

∂n
v1 = α

∂

∂n
v2 on ∂D0m

v2(x) = 0 on ∂Ω,

(3.5)

where n is the unit outward normal. According to the above representation, u0

is an analytic function in the closure of sets D0 and Dc
0 employing the analyticity

theorem [2].
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We should assert that D0 6= D1. To this end, let us note that u0 is a radial
function and so u0(x) = y(r), r = ‖x‖, where the function y solves

y′′(r) +
n− 1
r

y′(r) +
λ

β
y(r) = 0 in (0, ρ)

y′′(r) +
n− 1
r

y′(r) +
λ

α
y(r) = 0 in (ρ, 1)

y(ρ−) = y(ρ+)

βy′(ρ−) = αy′(ρ+)

y′(0) = 0, y(1) = 0.

(3.6)

We introduce y1(r) and y2(r) as the solutions of (3.6) in [0, ρ] and [ρ, 1] respec-
tively. We claim that if

|y′2(1)| < z = max
r∈[0,ρ]

|y′1(r)|, (3.7)

then D1 contains a radially symmetric subset of Dc
0 and so D1 is not equal to D0.

Recall that level sets of |∇u0| have measure zero. Hence, if |y′2(r)| > z for all r in
[ρ, 1] then D1 = {x : |∇u0| ≤ t} = D0 with t = z. On the other hand, if |y′2(1)| < z
then we have t < z to satisfy the condition |D1| = A, in view of the continuity of
the function |y′2(r)|. In other words, D1 should include a radially symmetric subset
of Dc

0. This discussion proves our claim.
It remains to verify inequality (3.7). This is a standard result of the perturbation

theory of eigenvalues that u0 tends to ψ with ‖ψ‖L2(Ω) = 1 and λ converges to αµ
when β decreases to α [20]. The convergence of the eigenfunctions holds in the
space H1

0 (Ω). Hence it yields that y(r) and y′(r) converge to ψ(r) and ψ′(r) almost
everywhere in Ω, respectively. Since y′(r) and ψ′(r) are continuous functions on the
sets [0, ρ] and [ρ, 1], the convergence is pointwise[16]. In summary, |y′1(r)| converges
to |ψ′(r)| pointwise for all r in [0, ρ] and |y′2(r)| converges to |ψ′(r)| pointwise
in [ρ, 1]. Additionally, ‖y′2(ρ)| − |y′1(ρ)‖ converges to zero when β approaches α.
Invoking lemma 3.1, we see that |ψ′(ρ)| − |ψ′(1)| = dn > 0 when ρ > ρn. Thus, if
β is close to α enough, we have

‖y′2(ρ)| − |y′2(1)‖ > dn/2, (3.8)

and
|y′2(ρ)| → |ψ′(ρ)|, |y′2(1)| → |ψ′(1)|, |y′2(ρ)| → |y′1(ρ)|, (3.9)

as β converges to α. Applying (3.8) and (3.9), leads us to inequalities

|y′2(1)| < |y′1(ρ)| ≤ z.
�
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