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EXACT BOUNDARY BEHAVIOR OF SOLUTIONS TO
SINGULAR NONLINEAR DIRICHLET PROBLEMS

BO LI, ZHIJUN ZHANG

Abstract. In this article we analyze the exact boundary behavior of solutions
to the singular nonlinear Dirichlet problem

−∆u = b(x)g(u) + λa(x)f(u), u > 0, x ∈ Ω, u|∂Ω = 0,

where Ω is a bounded domain with smooth boundary in RN , λ > 0, g ∈
C1((0,∞), (0,∞)), lims→0+ g(s) = ∞, b, a ∈ Cαloc(Ω), are positive, but may

vanish or be singular on the boundary, and f ∈ C([0,∞), [0,∞)).

1. Introduction and statement of results

In this article, we consider the boundary behavior of solutions to the singular
boundary-value problem

−∆u = b(x)g(u) + λa(x)f(u), u > 0, x ∈ Ω, u|∂Ω = 0, (1.1)

where Ω is a bounded domain with smooth boundary in RN , λ > 0, a, b, and
following conditions are satisfied:

(S1) b, a ∈ Cαloc(Ω), for some α ∈ (0, 1), are positive in Ω;
(F1) f ∈ C([0,∞), [0,∞));
(G1) g ∈ C1((0,∞), (0,∞)), lims→0+ g(s) =∞;
(G2) there exists s0 > 0 such that g′(s) < 0, for all s ∈ (0, s0);
(G3) there exists Cg ≥ 0 such that

lim
s→0+

g′(s)
∫ s

0

dτ

g(τ)
= −Cg.

For convenience, we denote by ψ the solution to the problem∫ ψ(t)

0

ds

g(s)
= t, ∀t > 0. (1.2)

Problem (1.1) arises in the study of non-Newtonian fluids, boundary layer phe-
nomena for viscous fluids, chemical heterogeneous catalysts, as well as in the theory
of heat conduction in electrical materials; see [9, 13, 15, 26, 32] and the references
therein.
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First, let us review the results for the problem

−∆u = b(x)g(u), u > 0, x ∈ Ω, u|∂Ω = 0. (1.3)

For b ≡ 1 in Ω, g satisfies (G1) and g is decreasing on (0,∞), Fulks and Maybee
[13], Stuart [32], Crandall, Rabinowitz and Tartar [9] showed that problem (1.3)
has a unique solution u0 ∈ C2+α(Ω) ∩ C(Ω̄). Moreover, [9, Theorems 2.2 and 2.5]
established the following result: if φ1 ∈ C[0, δ0] ∩ C2(0, δ0] (δ0 > 0) is the local
solution of the problem

− φ′′1(t) = g(φ1(t)), φ1(t) > 0, 0 < t < δ0, φ1(0) = 0, (1.4)

then there exist positive constants c1 and c2 such that

c1φ1(d(x)) ≤ u0(x) ≤ c2φ1(d(x)) near ∂Ω, (1.5)

where d(x) = dist(x, ∂Ω), x ∈ Ω. In particular, when g(u) = u−γ , γ > 1, u0

satisfies
c1(d(x))2/(1+γ) ≤ u0(x) ≤ c2(d(x))2/(1+γ) near ∂Ω. (1.6)

By constructing a pair of subsolution and supersolution on Ω̄, Lazer and McKenna
[23] showed that (1.6) still holds on Ω̄ and u0 has the properties:

(i) if γ > 1, then u0 is not in C1(Ω̄);
(ii) u0 ∈ H1

0 (Ω) if and only if γ < 3.
The following are some basic results about the exact boundary behaviour of the

solution to (1.3). When b ≡ 1 in Ω and g(u) = u−γ with γ > 1, Berhanu, Gladiali
and Porru [3] showed that there exists c0 > 0 such that∣∣∣ u0(x)

(d(x))2/(1+γ)
−
( (1 + γ)2

2(γ − 1)

)1/(1+γ)∣∣∣ < c0(d(x))(γ−1)/(1+γ), ∀x ∈ Ω.

When b ≡ 1 in Ω and the function g : (0,∞)→ (0,∞) is locally Lipschitz continuous
and decreasing, Giarrusso and Porru [16] showed that if g satisfies the conditions

(G01)
∫ 1

0
g(s)ds =∞,

∫∞
1
g(s)ds <∞;

(G02) there exist positive constants δ and M with M > 1 such that

G1(s) < MG1(2s), ∀s ∈ (0, δ), G1(s) :=
∫ ∞
s

g(τ)dτ, s > 0,

then the unique solution u0 of (1.3) satisfies
(I1) |u0(x)− φ2(d(x))| < C0d(x), ∀x ∈ Ω,

where C0 is a suitable positive constant and φ2 ∈ C[0,∞) ∩ C2(0,∞) is unique
solution of ∫ φ2(t)

0

ds√
2G1(s)

= t, ∀t > 0. (1.7)

When b ∈ Cα(Ω̄) satisfies the following assumptions: there exist δ0 > 0 and a
positive non-decreasing function h ∈ C(0, δ0) such that

(B01) limd(x)→0
b(x)

h(d(x)) = b0 ∈ (0,∞),
(B02) lims→0+ h(s)g(s) =∞;

and, g satisfies (G1) and the conditions that
(G03) g is non-increasing on (0,∞);
(G04) there exist positive constants c0, η0 and γ ∈ (0, 1) such that g(s) ≤ c0s

−γ ,
for all s ∈ (0, η0);
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(G05) there exist q > 0 and s0 ≥ 1 such that g(ξs) ≥ ξ−qg(s) for all ξ ∈ (0, 1)
and 0 < s ≤ s0ξ;

(G06) T (ξ) = lims→0+
g(ξs)
ξg(s) is continuous in (0,∞);

then, Ghergu and Rǎdulescu [14] showed that the unique solution u0 of problem
(1.3) satisfies u0 ∈ C1,1−α(Ω̄) ∩ C2(Ω) and

lim
d(x)→0

u0(x)
φ3(d(x))

= ξ0, (1.8)

where T (ξ0) = b−1
0 and φ3 ∈ C1[0, η] ∩ C2(0, η] (η ∈ (0, δ0)) is the local solution to

the problem

− φ′′3(t) = h(t)g(φ3(t)), φ3(t) > 0, 0 < t < η, φ3(0) = 0. (1.9)

Now let us return to problem (1.1). As a special model of (1.1), Stuart [32]
established the following result for an arbitrary γ > 0:

(i) if p ∈ (0, 1), then the problem

−∆u = u−γ + λup, u > 0, x ∈ Ω, u|∂Ω = 0, (1.10)

has at least one classical solution for all λ > 0.

Subsequently, Coclite and Palmieri [8] proved that

(ii) if p ≥ 1, then there exists λ̄ ∈ (0,∞) such that problem (1.10) has at
least one classical solution for λ ∈ [0, λ̄), and the problem has no classical
solutions for λ > λ̄.

There are a number of works which extended the above results, for instance:
(1) For the asymptotic behavior of the unique solution near the boundary to

problem (1.1) in the case of λ = 0, see, for instance, [1, 2, 5, 7, 10, 15, 16, 17, 19,
20, 28], [37]-[43] and the references therein;

(2) del Pino [12], Gui and Lin [21] studied the regularity of the unique solution
to problem (1.10) in the case of λ = 0; Shi and Yao [31] analyzed the regularity and
uniqueness of solutions to problem (1.10) and showed that problem (1.10) has one
unique solution uλ ∈ E : = {u ∈ C2+α(Ω) ∩ C(Ω̄) : u−γ ∈ L1(Ω)} for fixed λ > 0
provided that p, γ ∈ (0, 1). For further works, see, Ĉırstea, Ghergu, and Rǎdulescu
[7], Rǎdulescu [29] and the references therein;

(3) for the multiplicity of positive weak solutions to problem (1.10), see, for
instance, [27, 33, 35, 36] and the references therein;

(4) for the existence of solutions to problem (1.1), see, for instance, [11, 19, 22,
30, 34, 39] and the references therein.

For convenience, we define the assumption

(B1) there exists θ ∈ Λ such that

0 < b1 := lim
d(x)→0

inf
b(x)

θ2(d(x))
≤ b2 := lim

d(x)→0
sup

b(x)
θ2(d(x))

<∞,

where Λ denotes the set of all positive monotonic functions θ in C1(0, δ0)∩L1(0, δ0)
(δ0 > 0) which satisfy

lim
t→0+

d

dt

(Θ(t)
θ(t)

)
:= Cθ ∈ [0,∞), Θ(t) :=

∫ t

0

θ(s)ds. (1.11)
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The set Λ was first introduced by Ĉırstea and Rǎdulescu [6] for non-decreasing func-
tions and by Mohammed [25] for non-increasing functions to study the boundary
behavior of solutions to boundary blow-up elliptic problems.

Recently, the authors in [43] established a local comparison principle of solutions
near the boundary to problem (1.1). More precisely, by using Karamata regularly
varying theory and constructing comparison functions near the boundary, they
obtained the following results.

Lemma 1.1 ([43, Theorem 1.1]). For fixed λ > 0, let f satisfy (F1), g satisfy
(G1)–(G3), b, a satisfy (S1), and let b satisfy (B1). If

Cθ + 2Cg > 2, (1.12)

and one of the following conditions holds
(1) a ≡ 1 in Ω, limd(x)→0 b(x) := b|∂Ω ∈ (0,∞];
(2) Cg < 1, a ≡ 1 in Ω, b|∂Ω = 0, f(0) = 0, and there exist q > 0 and L̂1 ∈ K

such that

lim sup
s→0+

f(s)
sqL̂1(s)

<∞; (1.13)

(3) Cg < 1, f(0) = 0, (1.13) holds with q = 1, and there exists σ ∈ R which
satisfies

σ(Cθ − 1) < 2Cθ + 2Cg − 2, (1.14)

such that a satisfies the condition that
(A1) lim supd(x)→0

a(x)
θσ(d(x)) <∞;

(4) Cg > 0 and a satisfies (A1) with σ = 2;
(5) Cg = 1, f(0) = 0, (1.14) and (A1) hold, and there exist q ≥ 0 and L̂2 ∈ K

such that

lim sup
s→0+

sqf(s)
L̂2(s)g(s)

∫ s
0

dτ
g(τ)

<∞; (1.15)

(6) Cg < 1, f(0) > 0, (1.14) and (A1) hold;
(7) Cg = 1, f(0) > 0, (1.14) and (A1) hold, and there exist q > 0 and L̂3 ∈ K

such that

lim sup
s→0+

s1+qL̂3(s)
g(s)

∫ s
0

dτ
g(τ)

<∞; (1.16)

then for any classical solution uλ of (1.1), we have

ξ
1−Cg
1 ≤ lim

d(x)→0
inf

uλ(x)
ψ(Θ2(d(x)))

≤ lim
d(x)→0

sup
uλ(x)

ψ(Θ2(d(x)))
≤ ξ1−Cg

2 , (1.17)

where ψ is the solution of (1.2), and

ξ1 =
b1

2
(
Cθ + 2Cg − 2

) , ξ2 =
b2

2
(
Cθ + 2Cg − 2

) . (1.18)

In particular,
(i) when Cg = 1, uλ satisfies

lim
d(x)→0

uλ(x)
ψ(Θ2(d(x)))

= 1;
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(ii) when Cg < 1 and b1 = b2 = b0 in (B1), uλ satisifes

lim
d(x)→0

uλ(x)
ψ(d2(x)θ2(d(x)))

= (ξ01C
2
θ )1−Cg ,

where
ξ01 =

b0
2(Cθ + 2Cg − 2)

.

In this article, by recalculating the following limit for ξ > 0,

lim
d(x)→0

a(x)
θ2(d(x))

f(ψ(ξΘ2(d(x))))
g(ψ(ξΘ2(d(x))))

= 0,

we omit the additional conditions on f and a in Lemma 1.1 and reveal further
that the nonlinear term λa(x)f(u) does not affect the first expansion of classical
solutions near the boundary for problem (1.1). Our main results are summarized
as follows.

Theorem 1.2. For fixed λ > 0, let f satisfy (F1), g satisfy (G1)–(G3), b, a satisfy
(S1), and let b satisfy (B1) and (1.12) hold. If (1.14) holds and a satisfies (A1),
then the results of Lemma 1.1 hold.

Remark 1.3. One can see in the following Lemma 2.13 that Cg ∈ [0, 1]. Then
(1.12) implies Cθ > 0.

Remark 1.4. When σ = 2 in (A1), (1.14) is precisely Cg > 0.

Corollary 1.5. For fixed λ > 0, let b, a satisfy (S1), f(s) = sp with p > 0,
g(s) = s−γ with γ > 0, and let b satisfies (B1) with b1 = b2 = b0. If

Cθ(1 + γ) > 2 and σ(Cθ − 1) < 2Cθ −
2

1 + γ
, (1.19)

and a satisfies (A1), then for any solution uλ of (1.1), there holds

lim
d(x)→0

uλ(x)
(d(x)θ(d(x)))2/(1+γ)

= (ξ01C
2
θ (1 + γ))1/(1+γ). (1.20)

The outline of this paper is as follows. In section 2, we present some basic facts
from Karamata regular variation theory and some preliminaries. In section 3, we
prove Theorem 1.2.

2. Basic facts from Karamata regular variation theory

Our approach relies on Karamata regular variation theory established by Kara-
mata in 1930 which is a basic tool in stochastic processes (see Bingham, Goldie and
Teugels’ book [4], Maric’s book [24] and the references therein).

In this section, we present some basic facts from Karamata regular variation
theory and some preliminaries.

Definition 2.1. A positive continuous function Z defined on (0, η], for some η > 0,
is called regularly varying at zero with index ρ, written as Z ∈ RV Zρ, if for each
ξ > 0 and some ρ ∈ R,

lim
s→0+

Z(ξs)
Z(s)

= ξρ. (2.1)

In particular, when ρ = 0, Z is called slowly varying at zero.

Clearly, if Z ∈ RV Zρ, then L(s) : = Z(s)/sρ is slowly varying at zero.
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Definition 2.2. A positive function Z ∈ C(0, η] for some η > 0, is called rapidly
varying to infinity at zero if for each ξ ∈ (0, 1)

lim
s→0+

Z(ξs)
Z(s)

=∞. (2.2)

Definition 2.3. A positive function Z ∈ C(0, η] with lims→0+ Z(s) = 0, for some
η > 0, is called rapidly varying to zero at zero if for each ξ ∈ (0, 1)

lim
s→0+

Z(ξs)
Z(s)

= 0. (2.3)

Proposition 2.4 (Uniform convergence theorem). If Z ∈ RV Zρ, then (2.1) holds
uniformly for ξ ∈ [c1, c2] with 0 < c1 < c2.

Proposition 2.5 (Representation theorem). A function L is slowly varying at zero
if and only if it may be written in the form

L(s) = l(s) exp
(∫ η

s

y(τ)
τ

dτ
)
, s ∈ (0, η], (2.4)

where the functions l and y are continuous and for s→ 0+, y(s)→ 0 and l(s)→ c0,
with c0 > 0.

We call that

L̂(s) = c0exp
(∫ η

s

y(τ)
τ

dτ
)
, s ∈ (0, η], (2.5)

is normalized slowly varying at zero and

Z(s) = sρL̂(s), s ∈ (0, η], (2.6)

is normalized regularly varying at zero with index ρ (denoted by Z ∈ NRV Zρ),
respectively.

A function Z ∈ RV Zρ belongs to NRV Zρ if and only if

Z ∈ C1(0, η], for some η > 0 and lim
s→0+

sZ ′(s)
Z(s)

= ρ. (2.7)

Proposition 2.6. If functions L,L1 are slowly varying at zero, then

(i) Lρ for every ρ ∈ R, c1L+c2L1 (c1 ≥ 0, c2 ≥ 0 with c1 +c2 > 0), and L ·L1,
L ◦ L1 (if L1(s)→ 0 as s→ 0+) are also slowly varying at zero.

(ii) For every ρ > 0 and s→ 0+,

sρL(s)→ 0, s−ρL(s)→∞.

(iii) For ρ ∈ R and s→ 0+, ln(L(s))/ln s→ 0 and ln(sρL(s))/ln s→ ρ.

Proposition 2.7. If Z1 ∈ RV Zρ1 , Z2 ∈ RV Zρ2 with lims→0 Z2(s) = 0, then
Z1 ◦ Z2 ∈ RV Zρ1ρ2 .

Proposition 2.8 (Asymptotic behavior). If a function L is slowly varying at zero,
then for η > 0 and t→ 0+,

(i)
∫ t

0
sρL(s)ds ∼= (1 + ρ)−1t1+ρL(t), for ρ > −1;

(ii)
∫ η
t
sρL(s)ds ∼= (−ρ− 1)−1t1+ρL(t), for ρ < −1.
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Proposition 2.9. Let Z ∈ C1(0, η] be positive and

lim
s→0+

sZ ′(s)
Z(s)

= +∞.

Then Z is rapidly varying to zero at zero.

Proposition 2.10. Let Z ∈ C1(0, η) be positive and

lim
s→0+

sZ ′(s)
Z(s)

= −∞.

Then Z is rapidly varying to infinity at zero.

Proposition 2.11 ([37, Lemma 2.3]). Let L̂ ∈ NRV Z0 be defined on (0, η]. Then
we have

lim
t→0+

L̂(t)∫ η
t
L̂(τ)
τ dτ

= 0.

If further
∫ η

0
L̂(τ)
τ dτ converges, then we have

lim
t→0+

L̂(t)∫ t
0
L̂(τ)
τ dτ

= 0.

Lemma 2.12 ([44, Lemma 2.1]). Let θ ∈ Λ.

(i) When θ is non-decreasing, Cθ ∈ [0, 1]; and, when θ is non-increasing, Cθ ≥
1;

(ii) limt→0+
Θ(t)
θ(t) = 0 and limt→0+

Θ(t)θ′(t)
θ2(t) = 1− limt→0+

d
dt

(Θ(t)
θ(t)

)
= 1− Cθ;

(iii) when Cθ > 0, θ ∈ NRV Z(1−Cθ)/Cθ . In particular, when Cθ = 1, θ is
normalized slowly varying at zero;

(iv) when Cθ = 0, θ is rapidly varying to zero at zero.

Lemma 2.13 ([43, Lemma 2.2]). Let g satisfy (G1)–(G2).

(i) If g satisfies (G3), then Cg ≤ 1;
(ii) (G3) holds with Cg ∈ (0, 1) if and only if g ∈ NRV Z−Cg/(1−Cg);
(iii) (G3) holds with Cg = 0 if and only if g is normalized slowly varying at zero;
(iv) if (G3) holds with Cg = 1, then g is rapidly varying to infinity at zero.

Lemma 2.14 ([42, Lemma 2.3]). Let g satisfy (G1)–(G3) and let ψ be the unique
solution to ∫ ψ(t)

0

dτ

g(τ)
= t, t ∈ [0,∞),

then

(i) ψ′(t) = g(ψ(t)), ψ(t) > 0, t > 0, ψ(0) = 0, ψ′(0) := limt→0 ψ
′(t) =

limt→0 g(ψ(t)) =∞, and ψ′′(t) = g(ψ(t))g′(ψ(t)), t > 0;
(ii) limt→0+ tg(ψ(t)) = 0 and limt→0+ tg′(ψ(t)) = −Cg;

(iii) ψ ∈ NRV Z1−Cg and ψ′ ∈ NRV Z−Cg .
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3. Boundary behaviors of solutions

In this section we prove Theorem 1.2. First, for any δ > 0, we define

Ωδ = {x ∈ Ω : d(x) < δ}.
Since ∂Ω ∈ C2, there exists a constant δ ∈ (0, δ0) which only depends on Ω such
that (see, [18, Lemmas 14.16 and 14.17])

d ∈ C2(Ωδ), |∇d(x)| = 1, ∆d(x) = −(N − 1)H(x̄) + o(1), ∀x ∈ Ωδ, (3.1)

where δ0 in the definition of the set Λ, x̄ is the nearest point to x on ∂Ω, and H(x̄)
denotes the mean curvature of ∂Ω at x̄.

Secondly, for a satisfying (S1), let V a ∈ C2+α(Ω)∩C(Ω̄) be the unique solution
to the Poisson problem

−∆v = a(x), v > 0, x ∈ Ω, v|∂Ω = 0. (3.2)

Now we have a local comparison principle.

Lemma 3.1 ([43, Lemma 3.1]). For fixed λ > 0, let f satisfy (F1), g satisfy (G1),
(G2), b, a satisfy (S1), and let uλ ∈ C2(Ω)∩C(Ω̄) be an arbitrary solution to problem
(1.1), ūλ ∈ C2(Ωδ) ∩ C(Ω̄δ) satisfy

−∆ūλ ≥ b(x)g(ūλ) + λa(x)f(ūλ), ūλ > 0, x ∈ Ωδ, ūλ|∂Ω = 0, (3.3)

and uλ ∈ C2(Ωδ) ∩ C(Ω̄δ) satisfy

−∆uλ ≤ b(x)g(uλ) + λa(x)f(uλ), uλ > 0, x ∈ Ωδ, uλ|∂Ω = 0, (3.4)

where δ > 0 sufficiently small such that

uλ(x), ūλ(x), uλ(x) ∈ (0, s0), x ∈ Ωδ,

where s0 is given as in (g2). Then there exists a positive constant M0 such that

uλ(x) ≤ uλ(x) + λM0V a(x), x ∈ Ωδ; (3.5)

uλ(x) ≤ ūλ(x) + λM0V a(x), x ∈ Ωδ. (3.6)

Lemma 3.2 ([43, Lemma 3.3]). Let g satisfy (G1)–(G3) and Cθ + 2Cg > 2. If
(1.14) holds and a satisfies (A1), then

lim
d(x)→0

V a(x)
ψ(Θ2(d(x)))

= 0. (3.7)

Lemma 3.3. Let g satisfy (G1)–(G3) and Cθ + 2Cg > 2. If (1.14) holds and a
satisfies (A1), then there holds

lim
d(x)→0

a(x)
θ2(d(x))

f(ψ(ξΘ2(d(x))))
g(ψ(ξΘ2(d(x))))

= 0, (3.8)

uniformly for ξ ∈ [c1, c2] with 0 < c1 < c2, where θ is as determined in (B1).

Proof. First, by Proposition 2.4, (F1), Lemmas 2.13 and 2.14, we can obtain the
above limits of uniform convergence for ξ ∈ [c1, c2].

Secondly, (1.11) and the l’Hospital’s rule imply that

lim
t→0+

Θ(t)
tθ(t)

= lim
t→0+

Θ(t)
θ(t)

t
= lim
t→0+

d

dt

(Θ(t)
θ(t)

)
= Cθ. (3.9)

Since Cθ > 0 (Remark 1.3), we see that Θ ∈ NRV ZC−1
θ

.
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Next, one can see by Lemma 2.14 that ψ′(t) = g(ψ(t)) belongs to NRV Z−Cg .
So we obtain by Proposition 2.7 that g(ψ(Θ2(t))) belongs to NRV Z−2Cg/Cθ . In
succession, by Lemma 2.12 and Proposition 2.7, we see that

θσ−2 ∈ NRV Z(1−Cθ)(σ−2)/Cθ .

Thus
θσ−2(t)

g(ψ(Θ2(t)))
belongs to NRV Zρ,

with

ρ =
2Cg + 2Cθ − 2− σ(Cθ − 1))

Cθ
> 0.

Consequently, by Proposition 2.6 (ii),

lim
d(x)→0

a(x)
θ2(d(x))

f(ψ(ξΘ2(d(x))))
g(ψ(ξΘ2(d(x))))

= lim
d(x)→0

f(ψ(ξΘ2(d(x)))) lim
d(x)→0

a(x)
θσ(d(x))

θσ−2(d(x))
g(ψ(ξΘ2(d(x))))

= 0.

�

Proof of Theorem 1.2. Let ε ∈ (0, b1/4) and let

τ1 = ξ1 − 2εξ1/b1, τ2 = ξ2 + 2εξ2/b2,

where ξ1 and ξ2 are given as in (1.18). It follows that

ξ1/2 < τ1 < τ2 < 2ξ2; lim
ε→0

τ1 = ξ1; lim
ε→0

τ2 = ξ2

and

− 4τ2Cg + 2τ2(2− Cθ) + b2 = −2ε; −4τ1Cg + 2τ1(2− Cθ) + b1 = 2ε. (3.10)

By (B1), (3.1), Lemmas 2.12, 2.14 and 3.3, we see that

lim
d(x)→0

τ2Θ2(d(x))g′(ψ(τ2Θ2(d(x)))) = −Cg;

lim
d(x)→0

(θ′(d(x))Θ(d(x))
θ2(d(x))

+ 1 +
Θ(d(x))
θ(d(x))

∆d(x)
)

= 2− Cθ;

lim sup
d(x)→0

b(x)
θ2(d(x))

≤ b2; lim
d(x)→0

a(x)
θ2(d(x))

f(ψ(τ2Θ2(d(x))))
g(ψ(τ2Θ2(d(x))))

= 0.

Thus, corresponding to ε, s0 and δ, where s0 is given as in (G2) and δ in Lemma
3.1, respectively, there is δε ∈ (0, δ) sufficiently small such that for x ∈ Ωδε

ūε = ψ(τ2Θ2(d(x)))

satisfies
ūε(x) ∈ (0, s0), x ∈ Ωδε , (3.11)

and

∆ūε(x) + b(x)g(ūε(x)) + λa(x)f(ūε(x))

= ψ′′(τ2Θ2(d(x)))(2τ2Θ(d(x))θ(d(x)))2 + 2τ2ψ′(τ2Θ2(d(x)))

×
(
θ2(d(x)) + Θ(d(x))θ′(d(x)) + Θ(d(x))θ(d(x))∆d(x)

)
+ b(x)g(ψ(τ2Θ2(d(x)))) + λa(x)f(ψ(τ2Θ2(d(x))))

= g(ψ(τ2Θ2(d(x))))θ2(d(x))
(

4τ2τ2Θ2(d(x))g′(ψ(τ2Θ2(d(x))))
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+ 2τ2
(θ′(d(x))Θ(d(x))

θ2(d(x))
+ 1 +

Θ(d(x))
θ(d(x))

∆d(x)
)

+
b(x)

θ2(d(x))
+ λ

a(x)
θ2(d(x))

f(ψ(τ2Θ2(d(x))))
g(ψ(τ2Θ2(d(x))))

)
≤ 0;

i.e., ūε is a supersolution of equation (1.1) in Ωδε . In a similar way, we can show
that

uε = ψ(τ1Θ2(d(x))), x ∈ Ωδε ,

is a subsolution of equation (1.1) in Ωδε .
Now let uλ ∈ C(Ω̄)∩C2+α(Ω) be an arbitrary classical solution to problem (1.1).

By Lemma 3.1, we see that there exists M0 > 0 such that for x ∈ Ωδε

uλ(x) ≤ uλ(x) + λM0V a(x) and uλ(x) ≤ ūλ(x) + λM0V a(x);

i.e.,

1− λM0
V a(x)

ψ(τ1Θ2(d(x)))
≤ uλ(x)
ψ(τ1Θ2(d(x)))

, x ∈ Ωδε ,

and
uλ(x)

ψ(τ2Θ2(d(x)))
≤ 1 + λM0

V a(x)
ψ(τ2Θ2(d(x)))

, x ∈ Ωδε .

It follows by Lemma 3.2 that

1 ≤ lim
d(x)→0

inf
uλ(x)

ψ(τ1Θ2(d(x)))
and lim

d(x)→0
sup

uλ(x)
ψ(τ2Θ2(d(x)))

≤ 1.

Using Lemma 2.14, we have

lim
d(x)→0

ψ(ξ1Θ2(d(x)))
ψ(Θ2(d(x)))

= ξ1
1−Cg ; lim

d(x)→0

ψ(ξ2Θ2(d(x)))
ψ(Θ2(d(x)))

= ξ2
1−Cg .

Moreover, since Cθ > 0, by (3.9) and Lemma 2.14, we obtain that

lim
d(x)→0

Θ(d(x))
d(x)θ(d(x))

= Cθ, lim
d(x)→0

ψ(Θ2(d(x)))
ψ(d2(x)θ2(d(x)))

= C
2(1−Cg)
θ .

Thus letting ε→ 0, we have

ξ
1−Cg
1 ≤ lim

d(x)→0
inf

uλ(x)
ψ(Θ2(d(x)))

≤ lim
d(x)→0

sup
uλ(x)

ψ(Θ2(d(x)))
≤ ξ1−Cg

2 .

In particular, when Cg = 1, uλ satisfies

lim
d(x)→0

uλ(x)
ψ(Θ2(d(x)))

= 1;

and, when Cg < 1 and b1 = b2 = b0 in (B1), uλ satisfies

lim
d(x)→0

uλ(x)
ψ(d2(x)θ2(d(x)))

= (ξ01C
2
θ )1−Cg .

This completes the proof. �
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