% First Name: Nuket % Family Name: Aykut Hamal % First Name: Fulya % Family Name: Yoruk Deren \documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 19, pp. 1--13.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/19\hfil Second-order boundary-value problems] {Second-order boundary-value problems with integral boundary conditions on the real line} \author[F. Yoruk Deren, N. Aykut Hamal\hfil EJDE-2014/19\hfilneg] {Fulya Yoruk Deren, Nuket Aykut Hamal} % in alphabetical order \address{Fulya Yoruk Deren \newline Department of Mathematics, Ege University, 35100 Bornova, Izmir, Turkey} \email{fulya.yoruk@ege.edu.tr} \address{Nuket Aykut Hamal \newline Department of Mathematics, Ege University, 35100 Bornova, Izmir, Turkey} \email{nuket.aykut@ege.edu.tr} \thanks{Submitted October 16, 2013. Published January 10, 2014.} \subjclass[2000]{34B10, 39A10, 34B18, 45G10} \keywords{Integral boundary conditions; Fixed-point theorem; infinite interval} \begin{abstract} This article shows the existence and multiplicity of nonnegative solutions for nonlinear boundary-value problems with integral boundary conditions on the whole line. The arguments are based upon the Krasnoselskii' s fixed point theorem of cone expansion-compression type. An example is given to demonstrate our results. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} The theory of boundary-value problems on an infinite interval for differential equations has become an important area of investigation in recent years. There are many results about the existence of positive solutions on an infinite interval for boundary value problems. We refer the reader to \cite{Agarwal, Lian, Liu, Yuji, Yan, Yoruk, Yude, Yu, Zima} and the references therein. At the same time, boundary value problems with integral boundary conditions for ordinary differential equations represent a very interesting and important class of problems. They constitute two, three, multi-point and nonlocal boundary value problems as special cases. The existence results of positive solutions for such problems have received a great deal of attention. To identify a few, we refer the reader to \cite{Boucherif, Wang, Ge} and the references therein. To the author' s knowledge, there are relatively few papers available for the boundary-value problems with integral boundary conditions on the half line and the real line. (See \cite{Yuji, Yoruk, Yu, Zhang b}). Yoruk and Hamal \cite{Yoruk} considered the following boundary-value problem with integral boundary conditions on an infinite interval, \begin{gather} \frac{1}{p(t)}(p(t)x'(t))'+f(t,x(t),x'(t))=0, \quad t\in(0,\infty), \label{e1.1}\\ \begin{gathered} a_1 x(0)- b_1\lim_{t\to 0^{+}} p(t)x'(t) =\int_0^{\infty}g_1(x(s))\psi(s)d s, \\ a_2 \lim_{t\to +\infty}x(t)+b_2\lim_{t\to +\infty} p(t)x'(t)=\int_0^{\infty}g_2(x(s))\psi(s)ds. \end{gathered} \label{e1.2} \end{gather} The authors showed the existence results of solutions by means of the Shauder fixed point theorem and the Leggett-Williams fixed point theorem. In this article, we are interested in the existence and multiplicity of nonnegative solutions for the following integral boundary-value problem on the whole line \begin{gather} (p(t)x'(t))' +\lambda q(t) f(t,x(t),x'(t)) =0, \quad t\in \mathbb{R}, \label{e1.3}\\ \begin{gathered} a_1 \lim_{t\to {-\infty}} { x(t)-b_1\lim_{t\to {-\infty}} p(t)x'(t)}=\int_{-\infty}^{\infty}g_1(s,x(s),x'(s))\psi(s)d s,\\ a_2 \lim_{t\to +\infty}x(t)+b_2\lim_{t\to +\infty} p(t)x'(t)=\int_{-\infty}^{\infty}g_2(s,x(s),x'(s))\psi(s)ds, \end{gathered} \label{e1.4} \end{gather} where $\lambda>0$ is a parameter, $f, g_1, g_2\in\mathcal{C}( \mathbb{R}\times [0,\infty)\times\mathbb{R}, [0,\infty))$, $q, \psi\in\mathcal{C}(\mathbb{R},(0,\infty))$ and $p\in\mathcal{C}(\mathbb{R},(0,\infty))\cap\mathcal{C}^{1}(\mathbb{R})$. Here, the values of $\int_{-\infty}^{+\infty}g_i(s,x(s),x'(s))ds$ $(i=1,2)$, $\int_{-\infty}^{+\infty}\frac{d s}{p(s)}$ and $\sup_{s\in\mathbb{R}}\psi(s)$ are finite and $a_1+ a_2> 0$, $b_i>0$ $(i=1,2)$ satisfying $D =a_2b_1+a_1b_2+a_1a_2\int_{-\infty}^{+\infty}\frac{ds}{p(s)}>0$. The main features of our paper are as follows. Firstly, compared with \cite{Yoruk}, we establish the existence results of solutions on $\mathbb{R}$ which expands the domain of definition of $t$ from a half line to the real line. Secondly, we investigate the existence of solutions for the case $\lambda>0$, not $\lambda=1$ as in \cite{Yoruk}. The rest of this article is organized as follows. In Section 2, we represent some necessary lemmas that will be used to prove our main results. In Section 3, we apply the Krasnoselskii' s fixed point theorem to obtain the existence and multiplicity of nonnegative solutions for \eqref{e1.3}-\eqref{e1.4}. Finally, an example is given to illustrate the main results. To the best of our knowledge, only a few papers deal with the existence results of solutions for the boundary-value problem whose nonlinear term $f$ involves $x$ and the first order derivative $x'$ explicitly, especially by means of the Krasnoselskii's fixed point theorem. (See \cite{Zhang a} and the references therein.) So the main aim of this work is to fill this gap. \section{Preliminaries} \label{sec2} In this section, we present some preliminary results and lemmas that will be used in the proof of our main results. For convenience, we denote $\theta (t)$ and $\varphi (t)$ by \begin{equation} \theta(t)=b_1+a_1 \int_{-\infty}^{t}\frac{d\tau}{p(\tau)},\quad \varphi(t)=b_2+a_2\int_{t}^{\infty}\frac{d\tau}{p(\tau)}\,. \label{e2.1} \end{equation} \begin{lemma} \label{lemm2.1} Under the conditions $D>0$ and $\int_{-\infty}^{\infty}\frac{ds}{p(s)}<+\infty$, the boundary-value problem \begin{gather} (p(t)x'(t))' + h(t) =0, \quad t\in \mathbb{R}, \label{e2.2}\\ \begin{gathered} a_1 \lim_{t\to {-\infty}} { x(t)- b_1\lim_{t\to {-\infty}} p(t)x'(t)}=\int_{-\infty}^{\infty}\sigma_1(s)ds, \\ a_2 \lim_{t\to +\infty}x(t)+b_2\lim_{t\to +\infty} p(t)x'(t)=\int_{-\infty}^{\infty}\sigma_2(s)ds \end{gathered}\label{e2.3} \end{gather} has a unique solution for any $h,\sigma_1,\sigma_2\in L(\mathbb{R})$. Furthermore, this unique solution can be expressed as \begin{equation} x(t)=\int_{-\infty}^{\infty}G(t,s)h(s)d s +\frac{\varphi(t)}{D}\int_{-\infty}^{\infty}\sigma_1(s)ds +\frac{\theta(t)}{D}\int_{-\infty}^{\infty}\sigma_2(s)ds. \label{e2.4} \end{equation} Here, \begin{equation} G(t,s)=\frac{1}{D}\begin{cases} \theta(t)\varphi(s),& -\infty< t\leq s<+\infty; \\ \theta(s)\varphi(t),& -\infty0$ real number, $t\in[-k,k]$ and $s\in\mathbb{R}$, we have \begin{equation} G(t,s)\geq w G(s,s),\quad\text{where } w=\frac{\min\{\varphi(k),\theta(-k)\}} {\max\{\varphi(-\infty),\theta(\infty)\}}.\label{e2.6} \end{equation} It is obvious that $00,\; [-k,k]\subset \mathbb{R} \big\}, %\label{e2.7} \] in which $w $ is given by \eqref{e2.6}. In this article, we need the following assumptions: \begin{itemize} \item[(H1)] $f, g_1, g_2 \in\mathcal{C}(\mathbb{R}\times [0,\infty)\times\mathbb{ R},[0,\infty))$ and for any $t\in \mathbb{R}$ and $i=1,2$, we have \[ u_2(t)h_3(x,y)\leq f(t,x,y)\leq u_1(t)h_3(x,y),\quad g_i(t,x,y)\leq v_i(t)h_i(x,y), \] where $h_i\in\mathcal{C}([0,\infty)\times\mathbb{R},[0,\infty))$ $(i=1,2,3)$, $u_i,v_i\in L(\mathbb{R},(0,\infty))$ $(i=1,2)$; also there exists $0<\gamma_0<1$ such that $u_2(t)\geq\gamma_0 u_1(t)$. \item[(H2)] $\int_{-\infty}^{\infty}G(s,s)q(s)u_i(s)ds<+\infty$, $(i=1,2)$. \item[(H3)] $\psi:\mathbb{R}\to (0,\infty)$ is a continuous function with $\sup_{s\in\mathbb{R}}\psi(s)<+\infty$. \end{itemize} Using the above assumptions, we define the operator $A$ on $P$ by \begin{align*} Ax(t)&=\lambda\int_{-\infty}^{\infty}G(t,s)q(s)f(s,x(s),x'(s))d s+\frac{\varphi(t)}{D}\int_{-\infty}^{\infty}g_1(s,x(s),x'(s))\psi(s)ds\\ &\quad +\frac{\theta(t)}{D}\int_{-\infty}^{\infty}g_2(s,x(s),x'(s))\psi(s)ds, \end{align*} %\label{e2.8} where $G(t,s)$ is given by \eqref{e2.5}. Obviously, $x$ is a solution of \eqref{e1.3}-\eqref{e1.4} if and only if $x$ is a fixed point of the operator $A$. \section{Main Results} In this section, we will apply the following Krasnoselskii's fixed point theorem to establish the existence and multiplicity of nonnegative solutions for \eqref{e1.3}-\eqref{e1.4}. \begin{lemma}[\cite{Guo}] \label{lem3.1} %{lem1.2} Let $\mathcal{B}$ be a real Banach space and $P\subset B$ be a cone in $B$. Assume that $\Omega_1, \Omega_2$ are open subsets of $B$ with $0\in\Omega_1$ and $\overline{\Omega_1}\subset\Omega_2$ and let $A: P\cap (\overline{\Omega_2}\setminus\Omega_1)\to P$ be a completely continuous operator such that, either \begin{itemize} \item[(i)] $\|Ax\|\leq\|x\|$ for $x\in P\cap\partial\Omega_1$ and $\|Ax\|\geq\|x\|$ for $x\in P\cap\partial\Omega_2$; \item[(ii)] $\|Ax\|\geq\|x\|$ for $x\in P\cap\partial\Omega_1$ and $\|Ax\|\leq\|x\|$ for $x\in P\cap\partial\Omega_2$. \end{itemize} Then $A$ has at least one fixed point in $P\cap (\overline{\Omega_2}\setminus\Omega_1)$. \end{lemma} \begin{lemma}\label{lem3.2} %{lem1.2} Assume that {\rm (H1)--(H3)} are satisfied. Then the operator $A:P\to P$ is completely continuous. \end{lemma} \begin{proof} We assert that $A$ is a completely continuous operator. To justify this, we first show that $A: P\to B$ is well defined. Let $x\in P$, then there exists $r>0$ such that $\|x\|\leq r$. From condition (H1), for any $t\in\mathbb{R}$, we have \begin{gather*} N_r:=\sup\{h_1(x,y):|x|+|y|\leq r\}<+\infty,\\ N'_r:=\sup\{h_2(x,y):|x|+|y|\leq r\}<+\infty,\\ M_r:=\sup\{h_3(x,y):|x|+|y|\leq r\}<+\infty. \end{gather*} Let $t_1,t_2\in\mathbb{R}$ with $t_10$, $t\in [-k,k]\subset\mathbb{R}$, we obtain \begin{align*} &|Ax(t)|\\ &\geq w \lambda\int_{-\infty}^{\infty}G(s,s)q(s)f(s,x(s),x'(s))ds\\ &\quad+\frac{\min\{\varphi(k),\theta(-k)\}}{D} \int_{-\infty}^{\infty}[g_1(s,x(s),x'(s))+g_2(s,x(s),x'(s))]\psi(s)ds\\ &= w\Big[ \lambda\int_{-\infty}^{\infty}G(s,s)q(s)f(s,x(s),x'(s))ds\\ &\quad +\frac{\max\{\theta(+\infty),\varphi(-\infty)\}}{D} \int_{-\infty}^{\infty}[g_1(s,x(s),x'(s))+g_2(s,x(s),x'(s))]\psi(s)ds\Big]\\ &\geq w \sup_{t\in\mathbb{R}}|Ax(t)|. \end{align*} Therefore, $A:P\to P$ is well defined. Next we prove that $A:P\to P$ is continuous. Let $x_n,x\in P$ with $\|x_n-x\|\to 0$ as $n\to \infty$. We will show that $\|Ax_n- A x\|\to 0$ as $n\to\infty$ in $P$. From (H1)--(H3) we obtain \begin{align*} &\lambda\int_{-\infty}^{\infty}G(s,s)q(s)| f(s,x_n(s),x'_n(s)) -f(s,x(s),x'(s))|d s\\ &\leq 2\lambda M_{r_0}\int_{-\infty}^{\infty}G(s,s)q(s)u_1(s)ds <+\infty, \\ &\int_{-\infty}^{\infty}|g_1(s,x_n(s), x'_n(s))-g_1(s,x(s),x'(s))|\psi(s)d s\\ &\leq 2N_{r_0}\int_{-\infty}^{\infty}v_1(s)\psi(s)d s <+\infty, \\ &\int_{-\infty}^{\infty}|g_2(s,x_n(s), x'_n(s))-g_2(s,x(s),x'(s))|\psi(s)ds\\ & \leq 2N'_{r_0}\int_{-\infty}^{\infty}v_2(s)\psi(s)ds <+\infty, \end{align*} where $r_0>0$ is a real number such that $r_0\geq\max_{n\in {\mathbb{N}-\{ 0\}}}\{\|x_n\|,\|x\|\}$. Therefore, \begin{align*} &|(Ax_n)(t)-(A x)(t)|\\ &\leq \lambda\int_{-\infty}^{\infty}G(s,s)q(s)| f(s,x_n(s),x'_n(s)) -f(s,x(s),x'(s))|ds \\ &\quad +\frac{\varphi(-\infty)}{D}\int_{-\infty}^{\infty}|g_1(s,x_n(s), x'_n(s))-g_1(s,x(s),x'(s))|\psi(s)ds\\ &\quad +\frac{\theta(+\infty)}{D}\int_{-\infty}^{\infty}|g_2(s,x_n(s), x'_n(s))-g_2(s,x(s),x'(s))|\psi(s)ds \to 0 \quad\text{as } n\to\infty. \end{align*} Similarly, we can see that when $\|x_n-x\|\to 0$ as $n\to +\infty$, \[ \lim_{n\to \infty}\sup_{t\in\mathbb{R}}|(Ax_n)'(t)-(Ax)'(t)| =0. \] This implies that $A:P\to P$ is a continuous operator. Now, we show that $A$ maps bounded subsets into bounded subsets. Let $D\subset P$ be bounded and $x\in D$, then there exists $R>0$ such that $\|x\|\leq R$, for any $x\in D$. Furthermore, for $t\in\mathbb{R}$, we obtain \begin{equation} \begin{aligned} |(A x)(t)| &\leq \lambda\int_{-\infty}^{\infty}G(s,s)q(s)f(s,x(s),x'(s))ds \\ &\quad +\frac{\max\{\theta(+\infty),\varphi(-\infty)\}}{D} \int_{-\infty}^{\infty}\big[g_1(s,x(s),x'(s))\\ &\quad +g_2(s,x(s),x'(s))\big]\psi(s)ds\\ &\leq \lambda M_R \int_{-\infty}^{\infty}G(s,s)q(s)u_1(s)ds\\ &\quad +\frac{\max\{\theta(+\infty),\varphi(-\infty)\}}{D} \int_{-\infty}^{\infty}[N_Rv_1(s)+N'_Rv_2(s)]\psi(s)ds \end{aligned} \label{e3.3} \end{equation} and \begin{equation} \begin{aligned} |(Ax)'(t)| &\leq \frac{\max\{a_1,a_2\}}{\min\{b_1,b_2\}} \sup_{t\in\mathbb{R}}\frac{1}{p(t)} \Big[\lambda\int_{-\infty}^{\infty}G(s,s)q(s)f(s,x(s),x'(s))ds\\ &\quad +\frac{\max\{\theta(+\infty),\varphi(-\infty)\}}{D} \int_{-\infty}^{\infty}\big[g_1(s,x(s),x'(s))\\ &\quad +g_2(s,x(s),x'(s))\big]\psi(s)ds\Big]. \end{aligned} \label{e3.4} \end{equation} Inequalities \eqref{e3.3} and \eqref{e3.4} imply \begin{align*} &|Ax(t)|+|(Ax)'(t)|\\ &\leq(1+\frac{\max\{a_1,a_2\}}{\min\{b_1,b_2\}} \sup_{t\in\mathbb{R}}\frac{1}{p(t)}) \Big[\lambda\int_{-\infty}^{\infty}G(s,s)q(s)f(s,x(s),x'(s))ds\\ &\quad +\frac{\max\{\theta(+\infty),\varphi(-\infty)\}}{D} \int_{-\infty}^{\infty}[g_1(s,x(s),x'(s))+g_2(s,x(s),x'(s))]\psi(s)ds\Big] \\ &\leq (1+\frac{\max\{a_1,a_2\}}{\min\{b_1,b_2\}} \sup_{t\in\mathbb{R}}\frac{1}{p(t)} )\Big[ \lambda M_R\int_{-\infty}^{\infty}G(s,s)q(s)u_1(s)ds\\ &\quad + \frac{\max\{\theta(+\infty),\varphi(-\infty)\}}{D} \int_{-\infty}^{\infty}[N_R v_1(s)+N'_R v_2(s)]\psi(s)d s \Big]. \end{align*} Hence, we obtain $\sup_{t\in \mathbb{R}}[|Ax(t)|+|(Ax)'(t)|]<+\infty$; that is, $A$ is uniformly bounded. Using the similar proof as the one for \eqref{e3.1} and \eqref{e3.2}, for any $N\in (0,\infty)$, $t,t_1\in[-N,N]$ and $x\in D$, we have $\|Ax(t)-Ax(t_1)\| \to 0$ as $t\to t_1$. Thus, $A D$ is equicontinuous on any compact interval of $\mathbb{R}$. By (H2), (H3) and the Lebesgue dominated convergence theorem, we have \begin{align*} &|(A x)(t)-(A x)(+\infty)|\\ &\leq\lambda\int_{-\infty}^{\infty}|G(t,s)-\overline{G}(s)|q(s)f(s,x(s),x'(s))ds \\ &\quad +\frac{|\varphi(t)-\varphi(+\infty)|}{D} \int_{-\infty}^{\infty}g_1(s,x(s),x'(s))\psi(s)ds \\ &\quad +\frac{|\theta(t)-\theta(+\infty)|}{D} \int_{-\infty}^{\infty}g_2(s,x(s),x'(s))\psi(s)d s \\ &\leq \lambda M_R\int_{-\infty}^{\infty}|G(t,s)-\overline{G}(s)|q(s)u_1(s)ds \quad +\frac{1}{D}\int_{-\infty}^{\infty} [N_{R} |\varphi(t)-\varphi(+\infty)|v_1(s)\\ &\quad +N'_{R}|\theta(t)-\theta(+\infty)|v_2(s)]\psi(s)ds \to 0\quad\text{as }t\to \infty \end{align*} and \begin{align*} &|(Ax)'(t)-(Ax)'(\infty)|\\ &\leq\frac{1}{D}[|\frac{1}{p(t)}-\frac{1}{p(\infty)}| \int_{-\infty}^{t}a_2 \theta(s)q(s)f(s,x(s),x'(s))ds \\ &\quad +|\frac{1}{p(t)}-\frac{1}{p(\infty)}|\int_{t}^{\infty} a_1 \varphi(s)q(s)f(s,x(s),x'(s))ds \\ &\quad +\max\{a_1,a_2\}|\frac{1}{p(t)}-\frac{1}{p(\infty)}| \int_{-\infty}^{\infty}[g_1(s,x(s),x'(s))+g_2(s,x(s),x'(s))]\psi(s)ds] \\ &\leq\frac{1}{D}[|\frac{1}{p(t)}-\frac{1}{p(\infty)}| M_R \int_{-\infty}^{t}a_2 \theta(s)q(s)u_1(s)ds \\ &\quad +|\frac{1}{p(t)}-\frac{1}{p(\infty)}| M_R \int_{t}^{\infty}a_1 \varphi(s)q(s)u_1(s)ds \\ &\quad +\max\{a_1,a_2\}|\frac{1}{p(t)}-\frac{1}{p(\infty)}| \int_{-\infty}^{\infty}(N_R v_1(s)+N'_R v_2(s))\psi(s)ds] \to 0\quad\text{as }t\to \infty. \end{align*} Therefore, $\{Ax: x\in D\}$ and $\{(Ax)': x\in D\}$ are equiconvergent at $+\infty$. Similarly, we can show that $A D$ is equiconvergent at $-\infty$. Hence, we conclude that $A:P\to P$ is completely continuous. Therefore, Lemma \ref{lem3.2} is proved. \end{proof} For convenience, we denote \begin{gather*} A = w^2\gamma_0\int_{-k}^{k}G(s,s)q(s)u_1(s)ds, \quad B = 2(1+\sup_{t\in\mathbb{R}}\frac{c}{p(t)}) \int_{-\infty}^{\infty}G(s,s)q(s)u_1(s)ds, \\ C = \frac{2(1+\sup_{t\in\mathbb{R}}\frac{c}{p(t)}) \max\{\theta(+\infty),\varphi(-\infty)\}}{D} \int_{-\infty}^{\infty}(v_1(s)+v_2(s))\psi(s)ds, \end{gather*} where \begin{equation} c = \frac{\max\{a_1,a_2\}}{\min\{b_1,b_2\}}, \label{e3.5} \end{equation} $k>0$ is a real number and $w$ is defined by \eqref{e2.6}. In the next theorem, we also assume the following conditions on $h_i(x,y)$ $(i=1,2,3)$. \begin{itemize} \item[(H4)] There exist numbers $00$ sufficiently small and $R>0$ sufficiently large. \end{remark} \subsection*{Example} Consider the second-order integral boundary-value problem \begin{gather} ((1+t^{2})x'(t))'+\lambda\frac{[x(t)+|x'(t)|]^{2}}{t^2+1} =0, \quad t\in\mathbb{R}, \label{e3.12}\\ \begin{gathered} \lim_{t\to -\infty}x(t)- \lim_{t\to -\infty}(1+t^2) x'(t) =\int_{-\infty}^{\infty}\frac{[x(t)+|x'(t)|]^{2}}{(t^2+1)^2} dt,\\ \lim_{t\to +\infty}(1+t^2) x'(t) =0. \end{gathered} \label{e3.13} \end{gather} Here, $p(t) =1+t^2$, $q(t) =1$, $a_1 =1$, $a_2 =0$, $b_1 =b_2 =1$, $\psi(t) =\frac{1}{1+t^2}$, \[ f(t,x(t),y(t)) =g_1(t,x(t),y(t))=\frac{[x(t)+|y(t)|]^{2}}{t^2+1}, \quad g_2(t,x,y) =0. \] It is obvious that $f, g_1, g_2 \in\mathcal{C}(\mathbb{R}\times [0,\infty)\times \mathbb{ R},[0,\infty))$. Set $h_1(x,y)=h_3(x,y)=(x+|y|)^2$, $h_2(x,y)=0$, $u_1(t)=v_1(t)=\frac{1}{t^2+1}$, and $v_2(t)=0$. It is clear that $h_i\in\mathcal{C}([0,\infty)\times\mathbb{R},[0,\infty))$ $(i=1,2,3)$, $u_1,v_1\in L(\mathbb{R},(0,\infty))$ and \[ \int_{-\infty}^{\infty}G(s,s)q(s)u_1(s)ds =\frac{\pi(\pi+2)}{2} <+\infty\quad (i=1,2). \] In addition to this, it is easy to see that \begin{gather*} \lim_{|x|+|y|\to 0^{+}}\frac{h_i(x,y)}{|x|+|y|} =0, \quad (i =1,2,3),\\ \lim_{|x|+|y|\to \infty} \frac{h_3(x,y)}{|x|+|y|} =\infty \end{gather*} for all $t\in\mathbb{R}$; that is, condition (H9) is satisfied for $r>0$ sufficiently small and $R>0$ sufficiently large. Hence, by Remark \ref{rmk3.1} and Theorem \ref{thm3.4}, the boundary-value problem \eqref{e3.12}-\eqref{e3.13} has at least one nonnegative solution. \begin{thebibliography}{00} \bibitem{Agarwal} R. P. Agarwal, Donal O'Regan; \emph{Infinite interval problems for differential, difference and integral equations}, Kluwer Acad., Dordrecht (2001). \bibitem{Boucherif} A. Boucherif; \emph{Second order boundary value problems with integral boundary conditions}, Nonlinear Analysis 70 (2009) no.1 364-371. \bibitem{Guo} D. J. Guo, V. Lakshmikantham; \emph{Nonlinear problems in abstract cones}, Academic Press, Inc., New York, 1988. \bibitem{Wang} J. Jiang, L. Liu, Y. Wu; \emph{Second-order nonlinear singular Sturm Liouville problems with integral boundary conditions}, Applied Mathematics and Computation 215 (2009) 1573-1582. \bibitem{Lian} H. Lian, W. Ge; \emph{Existence of positive solutions for Sturm Liouville boundary value problems on the half-line}, J. Math. Anal. Appl. 321 (2006) 781-792. \bibitem{Liu} L. Liu, Z. Wang, Y. Wu; \emph{Multiple positive solutions of the singular boundary value problems for second-order differential equations on the half-line}, Nonlinear Analysis 71 (2009) 2564-2575. \bibitem{Yuji} Y. Liu; \emph{Multiple bounded positive solutions to integral type BVPs for singular second order ODEs on the whole line}, Abstract and Applied Analysis Volume 2012 (2012) Article ID 352159. \bibitem{Zhang a} Z. Wang, J. Zhang; \emph{Positive solutions for one-dimensional p-Laplacian boundary value problems with dependence on the first order derivative}, J. Math. Anal. Appl. 314 (2006) 618-630. \bibitem{Yan} B. Yan, D. O' Regan, R. P. Agarwal; \emph{Positive solutions for second order singular boundary value problems with derivative dependence on infinite intervals}, Acta Appl. Math. 103 (2008) 19-57. \bibitem{Yoruk} F. Yoruk, N. Aykut Hamal; \emph{Existence results for nonlinear boundary value problems with integral boundary conditions on an infinite interval}, Boundary Value Problems 2012:127 (2012) 17p. \bibitem{Yude} C. Yu, Y. Guo, Y. Ji; \emph{Existence of solutions for m-point boundary value problems on a half-line}, Advances in Difference Equations Volume 2009, 609143, 11 p. \bibitem{Yu} C. Yu, J. Wang, Y. Guo, H. Wei; \emph{Positive solutions for boundary value problems with integral boundary conditions on infinite intervals}, Electronic Journal of Differential Equations, 2012 (2012), No. 158 1-9. \bibitem{Zhang b} X. Zhang, X. Yang, M. Feng; \emph{Minimal nonnegative solution of nonlinear impulsive differential equations on infinite interval, Boundary Value Problems}, vol. 2011, Article ID 684542, 15 pages, 2011. \bibitem{Ge} X. Zhang, W. Ge; \emph{Positive solutions for a class of boundary-value problems with integral boundary conditions}, Computers and Mathematics with Applications 58 (2009) no. 2 203-215. \bibitem{Zima} M. Zima; \emph{On positive solutions of boundary value problems on the half-line}, Journal of Mathematical Analysis and Applications 259 (2001) 127-136. \end{thebibliography} \end{document}