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IMAGE RESTORATION USING A REACTION-DIFFUSION
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Abstract. This study shows how partial differential equations can be em-

ployed to restore a digital image. It is in fact a generalization of the work

presented by Catté [12], which modify the Perona-Malik Model by nonlinear
diffusion. We give a demonstration of the consistency of the reaction-diffusion

model proposed in our work.

1. Introduction

Image processing is always a challenging problem; this topic has become “hot”
in recent years and a very active field of computer applications and research [14].
Various techniques have been developed in Image Processing during the last four to
five decades, the use of these techniques has exploded and they are now used for all
kinds of tasks in all kinds of areas: artistic effects, medical visualization, industrial
inspection, human computer interfaces, etc. One of the most active topics in this
field has been restoration of images, as can be ascertained from recent survey pa-
pers [4, 5]. A number of different techniques have been proposed for digital image
restoration, utilizing a number of different models and assumptions. The restora-
tion of degraded images is an important problem because it allow to recovery lost
information from the observed degraded image data. Two kinds of degradations
are usually encountered: spatial degradations (e.g., the loss of resolution) caused
by blurring and point degradation (e.g., additive random noise), which affect only
the gray levels of the individual picture points. Image is restored to its original
quality by inverting the physical degradation phenomenon such as defocus, linear
motion, atmospheric degradation and additive noise. Partial differential equation
(PDE) methods in image processing have proven to be fundamental tools for im-
age diffusion and restoration [4, 5, 6, 9, 24, 35]. The Perona-Malik equation [25],
proposed in 1987, is one of the first attempts to derive a model that incorporates
local information from an image within a PDE framework. It has stimulated a
great deal of interest in image processing community [5, 34]. A nonlinear diffu-
sion model (which they called ‘anisotropic’) was conducted by Perona and Malik in
order to avoid the blurring of edges and other localization problems presented by
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linear diffusion models, they apply a diffusion process whose diffusivity is steered
by derivatives of the evolving image. The model proposes a nonlinear diffusion
method for avoiding the blurring and localization problems of linear diffusion fil-
tering [24, 25] by applying a process that reduces the diffusivity in places having
higher likelihood of being edges. This likelihood is measured by a function of the
local gradient. Unfortunately, it was shown by Kichenassamy [19] that the basic
Perona-Malik PDE model is ill-posed in the sense of Hadamard. It was shown by
Kawohl and Kutev that the equation may have no global weak solutions in C1

[17]. Zhang [36] established that the one-dimensional Perona-Malik equation ad-
mits infinitely many weak solutions. Höllig [17] constructed a forward-backward
diffusion process which can have infinitely many solutions, his study has become a
pessimistic results about the well-posedness of the Perona-Malik equation. In 1992,
Lions and Alvarez [4, 5] offered an interesting nonlinear form of restoration equation
with solving the Perona-Malik equation with a finite difference method. Although
the basic model is ill-posed, its discretizations are found to be stable, this fact is
sometimes referred to as the Perona-Malik paradox [19]. The explanation for these
observations was given by Weickert and Benhamouda [34], who investigated the
regularizing effect of a standard finite difference discretization. This observation
motivated much research towards the introduction of the regularization directly
into the PDE to avoid the dependence on the numerical schemes [12, 22]. A vari-
ety of spatial, spatio-temporal, and temporal regularization procedures have been
proposed over the years [10, 12, 20, 28, 32, 33]. The one that has attracted much
attention is the mathematically sound formulation in 1992 by Catté, Lions, Morel
and Coll [12]. They suggested introducing the regularization in space and time
directly into the continuous equation in order to obtain a related well-posed model
which becomes more independent of the numerical implementation which causes
critically dependence between the dynamics of the solution and the sort of regu-
larization procedure. They proposed to replace the diffusivity g(|∇u|2)by a slight
variation g(|∇uσ|2) in the Perona-Malik equation, with uσ = Gσ ∗ u, where Gσ
is a smooth kernel (Gaussian of variance σ2). Since differentiation is highly sus-
ceptible to noise. They prove existence, uniqueness and regularity for the related
model and demonstrate experimentally that the related model gives similar results
to the Perona-Malik equation [25]. In 2006, the study of Morfu [21] was focused
on the contrast enhancement and noise filtering, he considers the Fisher equation
which generally allows simulating the transport mechanisms in living cells, but also
enhances the contrast and segmenting images. The model proposed by Morfu is:

∂u

∂t
− div(g(|∇u|)∇u) = f(u) in QT ,

u(0, x) = u0(x) in Ω,
∂u

∂υ
= 0 on ΣT ,

(1.1)

where Ω is the domain of the image, T > 0, u0 is the original image to be processed
and f(s) = s(s − a)(1 − s) with 0 < a < 1. The Major defects of this model are:
(1) Sensitivity to noise; If we increase slightly the noise, the method gives unsat-
isfactory results because the image noise causes severe oscillations of the gradient
and the model keeps the noise that considers edges. (2) No results of existence and
consistency. To overcome this problem, we propose an improved algorithm which
will be able to resist to noise and which can improve the contrast and noisy images.
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The aim of our work is to modify the model of Morfu [21] by applying a Gaussian
filter on the gradient of the noisy image during the calculation of the coefficient of
anisotropic diffusion. The proposed model is as follows:

∂u

∂t
− div(g(|∇uσ|)∇u) = f(t, x, u) in QT ,

u(0, x) = u0 in Ω,
∂u

∂υ
= 0 on ΣT .

(1.2)

Here Ω =]0, 1[×]0, 1[ denotes picture domain with boundary ∂Ω, with Neumann
boundary conditions. Where u(t, x) is the solution of this PDE (restored image) we
are searching for, this solution is depended on two parameters; the scale parameter
denoted by t and the spatial coordinate x. υ is an outward Normal to domain Ω
and u0 is the original image to be processed. QT =]0, T [×Ω and ΣT =]0, T [×∂Ω
where T is a fixed reel number (T > 0). Let σ > 0, Gσ is the Gaussian filter where:

Gσ(x) =
1√
2πσ

e−(
|x|2
4σ ), x ∈ R2. (1.3)

We consider the gradient norm of w as:

|∇w| =
( i=2∑
i=1

(
∂w

∂xi
)2
)1/2

,

∇wσ is the smoothed version of gradient norm where w: ∇wσ := ∇(w ∗ Gσ) =
w∗∇Gσ. The Diffusivity g is a smooth decreasing function defined by g : [0,+∞[→
[0,+∞[ where g(0) = 1, and lims→∞ g(s) = 0, one of the diffusivities Perona and
Malik proposed is

g(s) =
d√

1 + η( sλ )2
, (1.4)

where η ≥ 0, d > 0 and λ is a threshold (contrast) parameter that separates forward
and backward diffusion [33]. The nonlinearity f has no limitation of increasing. We
assume that the initial data satisfy 0 ≤ u0(x), and for f we introduce the following
assumptions:

f : QT → R is measurable and f(t, x, .) : R→ R is continuous. (1.5)

In addition, we give here the following main properties of f :
• the positivity of the solution u of (1.1) is preserved over time, which is

ensured by:

for almost (t, x) ∈ QT , f(t, x, 0) ≥ 0; (1.6)

• the total mass is controlled in function of time:

for all u ∈ R and for almost (t, x) ∈ QT , uf(t, x, u) ≤ 0. (1.7)

The special case f = 0 was treated by Catté [12], where they considered the problem

∂u

∂t
− div(g(|∇uσ|)∇u) = 0 in QT ,

u(0, x) = u0 in Ω,
∂u

∂υ
= 0 on ΣT .

(1.8)
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They established the existence, uniqueness and regularity of a solution for σ > 0
and u0 ∈ L2(Ω). This study is devoted to a generalization of their work in the case
where f is nonzero. Note that if the diffusion coefficient is constant g(s) = d (which
corresponds to the situation where η = 0), the existence of positive global solutions
have been obtained by several authors [13, 16, 29]. When u0 ∈ L1(Ω), only Pierre
[26] proves the existence of global weak positive solutions. In all these works,
the hypothesis (1.7) plays an important role in study of this diffusion-reaction
equation. Indeed, if (1.6) is not satisfied, [23] proved the explosion in finite time of
the solutions.

This work began with an introduction where we describe briefly the nonlinear
diffusion model proposed by Catté [12] applied in image processing for restoration
and which serves as background for our proposed model generalization. This is
followed by a concept definition of solution used here and we present the main
results of this work. The next section describes the global existence of our reaction
diffusion equation; this is done in three steps: the first step is to truncate the
equation and shows that the problem obtained has a solution. In the second step
we establish appropriate estimates on the approximate solutions. In the last step,
we show the convergence of the approximate system. We use a new technique
recently introduced by Pierre [27] for study of semi-linear isotropic systems. Our
results are a generalization of these results in the case of anisotopique reaction
diffusion equation firstly introduced by [12] in the case of the equations without
reaction term.

Now we will recall some functional spaces that will be used throughout this
paper. For all k ∈ N, Hk(Ω) is the set of functions u defined in Ω such as u and its
order Dsu derivatives where |s| =

∑n
j=1 sj ≤ k are in L2(Ω). Hk(Ω) is a Hilbert

space for the norm

‖u‖Hk(Ω) =
( ∑
|s|≤k

∫
Ω

|Dsu|2dx
)1/2

. (1.9)

We denote by (H1(Ω))′ the dual of H1(Ω).
Lp(0, T,Hk(Ω)) is the set of functions u such that, for all every t ∈ (0, T ), u(t)

belongs to Hk(Ω) with the norm

‖u‖Lp(0,T ;Hk(Ω)) =
(∫ T

0

‖u(t)‖p
Hk(Ω)

dt
)1/p

, 1 < p <∞, k ∈ N . (1.10)

L∞(0, T ;L2(Ω)) is the set of functions u such that, for all every t ∈ (0, T )), u(t)
belongs to L2(Ω) with the norm

‖u‖L∞(0,T ;L2(Ω)) =
(

sup
0<t<T

‖u(t)‖2L2(Ω)

)1/2

. (1.11)

L∞(0, T ; C∞(Ω)) is the set of functions u such that, for all every t ∈ (0, T ), u(t)
belongs to C∞(Ω) with the norm

‖u‖L∞(0,T ;C∞(Ω)) = inf
{
c, ‖u(t)‖C∞(Ω) ≤ c sur (0, T )

}
. (1.12)

2. Consistency of the model: Existence and uniqueness results

2.1. Assumptions. Firstly, it must be specified the direction in which we want to
solve the problem (1.1).



EJDE-2014/197 IMAGE RESTORATION 5

Definition 2.1. A function u is a weak solution of (1.1) if

u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), f(t, x, u) ∈ L1(QT ),

for all ϕ ∈ C1(QT ) such that ϕ(T, .) = 0,∫
QT

−u∂ϕ
∂t

+ g(|∇uσ|)∇u∇ϕ =
∫
QT

f(t, x, u(t))ϕ+
∫

Ω

u0ϕ(0, x)

(2.1)

If moreover u ∈ C1(QT ) then we say that u is a classical solution of (1.1).

2.2. Main result. Our main result in this paper is the following existence theorem.

Theorem 2.2. Assume that (1.5)–(1.7) and that for all R ≥ 0,

sup
|u|≤R

(|f(t, x, u)|) ∈ L1(QT ) . (2.2)

Then for all fixed T > 0 and σ > 0 and for any 0 ≤ u0 ∈ L2(Ω) such as u0 ≥ 0,
problem (2.1) admits a weak positive solution.

If moreover for all r ≥ 1 f(t, x, r) ≤ 0 and u0(x) ≤ 1, we have 0 ≤ u(t, x) ≤ 1
in QT .

Remark 2.3. A typical example when the result of this paper can be applied is
the Ficher equation outcome the population dynamics

f(t, x, u) = −βu(u− a)2α(1− u) (2.3)

where α, β > 0 and 0 < a < 1.

The proof of Theorem (2.2) is done in four steps:
Step 1: Positivity of the solutions: Consider the function

sign−(r) =

{
−1 if r < 0
0 if r ≥ 0

(2.4)

We build a sequence of convex functions jε(r) such as j′ε(r) is bounded and for all
r ∈ R, j′ε(r)→ sign−(r) when ε→ 0.

Let u be a solution of (2.1), we multiply both sides of the first equation by j′ε(u)
and by integrating on Qt =]0, t[×Ω for t ∈ [0, T [, we obtain∫

Qt

j′ε(u)
∂u

∂t
dx dt+

∫
Qt

A∇u.∇j′ε(u) dx dt =
∫
Qt

f(s, x, u)j′ε(u) dx ds (2.5)

where A(t, x) = g(|∇uσ|) ∈ L∞(0, T ; C∞(Ω)) because u ∈ L∞(0, T ;L2(Ω)) and
g,Gσ are C∞ and we can show the existence of a C0 depends only on Gσ, ‖u0‖L2(Ω)

such as:
‖∇uσ‖L∞(QT ) ≤ C0 . (2.6)

Moreover as g is decreasing, then there a = g(C0) > 0 which depends only on σ
and on ‖u0‖L2(Ω) such as:

A(t, x) ≥ a ∀(t, x) ∈ QT . (2.7)

Consequently,∫
Ω

[jε(u)(t)−jε(u)(0)]dx+a
∫
Qt

|∇u|2j′′ε (u) ds dx ≤
∫
Qt

f(s, x, u)j′ε(u) dx ds . (2.8)
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Since
∫

Ω
jε(u)(0)dx = 0 and

∫
Qt
|∇u|2j′′ε (u) dx ds ≥ 0 then we have∫

Ω

jε(u)(t)dx ≤
∫
QT

f(s, x, u)j′ε(u) dx ds

≤
∫

[u<0]

f(s, x, u)j′ε(u) dx ds+
∫

[u≥0]

f(s, x, u)j′ε(u) dx ds

On the set where u ≥ 0 we have j′ε(u) = 0 and
∫

[u≥0]
f(s, x, u)j′ε(u) dx ds = 0;

therefore ∫
Ω

jε(u)(t)dx ≤
∫

[u<0]

f(s, x, u)j′ε(u) dx ds . (2.9)

When ε→ 0, we obtain∫
Ω

(u)−(t)dx ≤ −
∫

[u≤0]

f(s, x, u) dx ds . (2.10)

Using (1.7) and the fact that (u)−(t) ≥ 0, we obtain (u)−(t) = 0 on Ω; therefore
u ≥ 0 in QT .

Step 2: An existence result when f is bounded:

Theorem 2.4. Assume (1.6)–(1.5), and that there exists M ≥ 0 such as for almost
(t, x) ∈ QT and all r ∈ R,

|f(t, x, r)| ≤M . (2.11)

Then for all u0 ∈ L2(Ω), problem (2.1) admits a weak solution. Moreover, there
exists C = C(M,a, T, ‖u0‖L2(Ω)) such that

sup
0<t<T

‖u(t)‖L2(Ω) + ‖u‖L2(0,T ;H1(Ω)) ≤ C . (2.12)

Proof. We will show the existence of a weak solution by the classical Schauder fixed
point theorem. Firstly we introduce the space

W(0, T ) =
{
v ∈ L2(0, T ;H1(Ω)) :

dv

dt
∈ L2(0, T ; (H1(Ω))′)

}
(2.13)

which is a Hilbert space for the graph norm. Let v ∈ W(0, T ) ∩ L∞(0, T ;L2(Ω))
and we consider u(v) the solution of the linear problem

u(v) ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)),

for all ϕ ∈ C1(QT ) such that ϕ(T, .) = 0,∫
QT

−u(v)
∂ϕ

∂t
+ g(|∇vσ|)∇u(v)∇ϕ =

∫
QT

f(t, x, v(t))ϕ+
∫

Ω

u0ϕ(0, x)

(2.14)

According to the classical theory [7, 11], equation (2.14) admits a unique solu-
tion u(v) ∈ W(0, T ) moreover by applying a classic bootstrap argument, we have
u(v)(t) ∈ H1(Ω) for all t > 0; since f(t, x, v(t)) ∈ L∞(QT ), then u(v)(t) ∈ H1(Ω)
for all t > 0. Therefore by iteration and by application the general classical
theory another time [36], we deduce that u(v) is a classical solution and u(v) ∈
C∞(]0, T [×Ω). We take ϕ = u(v) in (2.14), and deduce that for all 0 < t < T ,

1
2

∫
Ω

u(v)2(t) +
∫
Qt

g(|∇vσ|)|∇u(v)|2 =
∫
Qt

f(t, x, v(t))u(v) +
1
2

∫
Ω

u2
0dx (2.15)
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Using (2.7) and the assumption (2.11) on f , we obtain

1
2

∫
Ω

u(v)2(t) + a

∫
Qt

|∇u(v)|2 ≤M(1 +
∫
Qt

u(v)2) +
1
2

∫
Ω

u2
0dx . (2.16)

Now by Gronwall’s lemma, we obtain the estimation (2.12). These estimates lead
us to introduce the space

W0(0, T ) =
{
v ∈ W(0, T ) ∩ L∞(0, T ;L2(Ω)) : v(0) = u0and

sup
0<t<T

‖u(t)‖L2(Ω) + ‖u‖L2(0,T ;H1(Ω)) ≤ C ,

where C = C(M,a, T, ‖u0‖L2(Ω)) is the constant obtained in (2.12). �

We can easily verify that W0(0, T ) is a nonempty closed convex in W(0, T ),
moreover it injects with a compact way in L2(0, T ;L2(Ω)). Then we define the
application:

F :W0(0, T )→W0(0, T )

v 7→ F (v) = u(v), where u is a solution of (2.14) .
(2.17)

Estimate (2.11) shows that F is well defined. To apply the Schauder fixed point
theorem, we show that F is weakly continuous from W0(0, T ) in W0(0, T ).

Then consider a sequence (vn) in W0(0, T ), such as vn ⇀ v in W0(0, T ), and let
un = F (vn). According to the classical results of compactness, we can extract from
the sequence (un) a subsequence yet denoted (un) such that

• un ⇀ u weakly in L2(0, T ;H1(Ω))
• un ⇀ u strongly in L2(0, T ;L2(Ω)) and almost everywhere in QT
• ∇un ⇀ ∇u weakly in L2(0, T ;L2(Ω))
• vn ⇀ v strongly in L2(0, T ;L2(Ω)) and almost everywhere in QT
• ∇Gσ ∗ vn ⇀ ∇Gσ ∗ v strongly in L2(0, T ;L2(Ω)) and almost everywhere in
QT

• g(|∇Gσ ∗ vn|) ⇀ g(|∇Gσ ∗ v|) strongly in L2(0, T ;L2(Ω))
• f(t, x, vn)→ f(t, x, v) strongly in L1(QT )

The latter is obtained by applying the dominated convergence theorem. We can
then pass to the limit in (2.14), with vn instead of v, and obtain that u = F (v).
By uniqueness of the solution of (2.14), then the sequence un = F (vn) converges
weakly to u = F (v) in W0(0, T ). We deduce the existence of u ∈ W0(0, T ) such as
u = F (u), and thus the existence of u ∈ W(0, T ) such us u = U .

Step 3: Approximate problem and a priori estimates Consider the trun-
cation function Ψn ∈ C∞0 (R) defined by

Ψn(r) =

{
1 if |r| ≤ n,
0 if |r| ≥ n+ 1 .

(2.18)

We truncate the nonlinearity f by Ψn,

fn(t, x, u) = Ψn(|u|)f(t, x, u). (2.19)

Thus, we can easily check that fn satisfies (1.6), (1.5), (1.7) with M = M(n) and
for almost (t, x) ∈ QT , for all r ∈ R fn(t, x, u)→ f(t, x, r).
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Since u0 ∈ L2(Ω) and |fn(t, x, r)| ≤Mn, theorem (2.11) is applied, then we can
deduce the existence of a weak solution of the problem

∂un
∂t
− div(g(|∇(un)σ|)∇un) = fn(t, x, un) in QT ,

un(0, x) = u0 on Ω,
∂un
∂υ

= 0 on ΣT .

(2.20)

Remark 2.5. Since u0 ≥ 0 on Ω, the (i) assures that un ≥ 0 is in QT . Moreover,
under the assumption (1.7) we have also fn(t, x, un) ≤ 0 in QT .

Now we will show that a subsequence un converges to the weak solution u of
problem (1.1). For this we need to prove the following result:

Lemma 2.6. Let (un) the sequence of weak solutions defined by (2.12), then we
have:

(i)
∫
QT
|fn(t, x, un)| ≤

∫
Ω
|u0|dx,

(ii) (un) is bounded in L2(0, T ;H1(Ω)) and∫
QT

|unfn(t, x, un)| dx dt ≤ 1
2

∫
Ω

u2
0dx,

(iii) (un) is relatively compact in L2(QT ).

Proof. (i) By Remark 2.5, |fn(t, x, un)| = −fn(t, x, un). Thus by integrating the
equation satisfied by un in QT we obtain∫

Ω

un(T )dx−
∫
QT

fn(t, x, un) dx dt =
∫

Ω

u0 dx ; (2.21)

therefore ∫
QT

|fn(t, x, un)| dx dt ≤
∫

Ω

|u0|dx . (2.22)

(ii) Firstly we show that un is bounded in L2(QT ), for this we consider ϕ = un
as a function test in (2.20), we then deduce that

1
2

∫
Ω

u2
n(t) +

∫
Qt

g(|∇(un)σ|)|∇un|2 =
∫
Qt

f(t, x, un)un +
1
2

∫
Ω

u2
0dx . (2.23)

Then we use (2.7) and the hypothesis (2.8) on f to obtain
1
2

∫
Ω

u2
n(t) + a

∫
Qt

|∇un|2 ≤
1
2

∫
Ω

u2
0dx . (2.24)

We have also ∫
QT

un|fn(t, x, un)| dx dt ≤ 1
2

∫
Ω

u2
0 dx , (2.25)

where we have

sup
0<t<T

‖un(t)‖L2(Ω) ≤ ‖u0‖L2(Ω),

‖un‖L2(0,T ;H1(Ω)) ≤ (1 +
1
2a

)‖u0‖L2(Ω)

(iii) Since ∂un
∂t = div(An∇un) + fn(t, x, un) is bounded in L1(0, T ; (H1(Ω))′) +

L1(Ω). Since un is also bounded in L2(0, T ;H1(Ω)) and that the injection of H1(Ω)
in L2(Ω) is compact, it follows that (un) is relatively compact in L2(QT ) [31]. �
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Step 4: Convergence According to (iii), the sequence (un) is relatively compact
in L2(QT ), so we can extract a subsequence still denoted (un) such that

• un ⇀ u strongly in L2(QT ) and almost everywhere in QT ,
• ∇Gσ ∗ un ⇀ ∇Gσ ∗ u strongly in L2(QT ) and almost everywhere in QT .
• g(|∇Gσ ∗ un|) ⇀ g(|∇Gσ ∗ u|) strongly in L2(QT )
• fn(t, x, un)→ f(t, x, u) for almost everywhere in QT

To prove that u is a weak solution of (1.1), it suffices to prove that fn(t, x, un) →
f(t, x, u) in L1(QT ). Since fn(t, x, un) → f(t, x, u) almost everywhere in QT , we
will demonstrate that (fn(t, x, un)) is uniformly integrable in L1(QT ). For this we
show that: for each ε > 0, there exists δ > 0 such that for all E ⊂ QT measurable
with |E| < δ, we have ∫

E

|fn(t, x, un)|dx ≤ ε . (2.26)

Then for all k ≥ 0,∫
E

|fn(t, x, un)|dx ≤
∫
E∩[un≤k]

|fn(t, x, un)|dx+
∫
E∩[un>k]

|fn(t, x, un)|dx . (2.27)

For the first term on the right-hand side, we have∫
E∩[un≤k]

|fn(t, x, un)|dx ≤
∫
E

sup
|r|≤k

(|f(t, x, r)|dx . (2.28)

According to (2.2), we have sup|u|≤k(|f(t, x, u)| ∈ L1(QT ) is uniformly integrable
in L1(QT ), therefore for each ε > 0 there exist δ > 0 such that if |E| < δ then∫

E

sup
|u|≤k

(|f(t, x, u)|dx ≤ ε

2
. (2.29)

For the second term we have∫
E∩[un>k]

|fn(t, x, un)|dx ≤ 1
k

∫
QT

un|fn(t, x, un)|dx . (2.30)

Then, using (2.25) we obtain∫
E∩[un>k]

|unfn(t, x, un)|dx ≤ 1
2k
‖u0‖2L2(Ω) .

Now if we choose k ≥ ‖u0‖2L2(Ω)/ε, then we have∫
E∩[un>k]

|fn(t, x, un)|dx ≤ ε

2
; (2.31)

consequently, (2.26) follows from (2.29) and (2.31).
Using the following lemma, we complete the proof of Theorem 2.2.

Lemma 2.7. Let u be a weak solution of (2.1), and assume that 0 ≤ u0 ≤ 1 in Ω.
Then 0 ≤ u ≤ 1 in QT .

Proof. We have already obtained the positivity of weak solutions if the initial data
is positive. So, we assume that u0 ≤ 1 and proof that u ≤ 1. For this, we take
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ū = 1− u, then we have ∇ū = ∇u, we can verify that ū satisfies

ū ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), f(t, x, 1− ū) ∈ L1(QT ),

for all ϕ ∈ C1(QT ) such that ϕ(T, .) = 0,∫
QT

−ū∂ϕ
∂t

+ g(|∇ūσ|)∇ū∇ϕ =
∫
QT

f(t, x, 1− ū(t))ϕ−
∫

Ω

u0ϕ(0, x) .

(2.32)

Then we consider the sequence of convex functions jε(r) such as j′ε(r) is bounded
and for all r ∈ R, j′ε(r) → sign−(r) when ε → 0. We take ϕ = j′ε(ū) as a test
function in (2.32) and integrating with respect to t ∈]0, T [, we obtain

−
∫

Ω

jε(ū)(t, x)dx ≤
∫ t

0

∫
Ω

f(t, x, 1− ū)j′ε(ū) dx dt . (2.33)

Passing to the limit as ε→ 0, we obtain

−
∫

Ω

(ū)−(t, x)dx ≤
∫ t

0

∫
[u≥1]

f(t, x, u) dx dt . (2.34)

Using that for all r ≥ 1, f(t, x, r) ≤ 0, we deduce∫
Ω

(ū)−(t, x)dx ≥ 0; (2.35)

Therefore ū(t) ≥ 0 which implies u = 1− ū ≤ 1. �

Acknowledgments. We are grateful to the anonymous referee for the corrections
and useful suggestions that improved this article.
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