
Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 208, pp. 1–10.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

FEYNMAN-KAC THEOREM IN HILBERT SPACES

IRINA V. MELNIKOVA, VALENTINA S. PARFENENKOVA

Abstract. In this article we study the relationship between solutions to
Cauchy problems for the abstract stochastic differential equation dX(t) =

AX(t)dt+BdW (t) and solutions to Cauchy problems (backward and forward)

for the infinite dimensional deterministic partial differential equation

±
∂g

∂t
(t, x) +

∂g

∂x
(t, x)Ax +

1

2
Tr[(BQ1/2)∗

∂2g

∂x2
(t, x)(BQ1/2)] = 0,

where g is the probability characteristic g = Et,x[h(X(T ))] in the backward

case and g = E0,x[h(X(t))] in the forward case. This relationship, that is

the inifinite dimensional Feynman-Kac theorem, is proved in both directions:
from stochastic to deterministic and from deterministic to stochastic. Spe-

cial attention is given to the definition and interpretation of objects in the

equations.

1. Introduction

Many practical problems lead to stochastic equations and it is not always possible
or necessary to find their solutions, sometimes is sufficient to have only probability
characteristics of the solutions.

The famous Feynman-Kac theorem allows to pass from solving stochastic differ-
ential equations to deterministic partial differential equations for probability char-
acteristics in the finite dimensional case. It relates solutions of the Cauchy problem
for stochastic differential equations with Brownian motion β(t), t ≥ 0:

dX(t) = a(t,X(t))dt+ b(t,X(t))dβ(t), t ∈ [0, T ], X(0) = ξ, (1.1)

and solutions of the Cauchy problem for deterministic partial differential equations

gt(t, x) + a(t, x)gx(t, x) +
1
2
b2(t, x)gxx(t, x) = 0, g(T, x) = h(x), (1.2)

for the probability characteristic g(t, x) = Et,x[h(X(T ))] with an arbitrary Borel
function h. Here Et,x means the mathematical expectation of a solution to the
equation (1.1) under the condition X(t) = x, 0 ≤ t ≤ T .

The study of the relationship between problems (1.1)–(1.2) was initially caused
by needs from physics. For example, the process {X(t), t ∈ [0, T ]} describes the
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random motion of particles in a liquid or gas and g(t, x) is a probability character-
istic such as temperature, determined by the Kolmogorov equation. Recent years
the importance of the relationship between stochastic and deterministic problems
became more acute with the development of numerical methods (see, e.g. [13]) and
applications in financial mathematics. For example, X(t) is a stock price at time t,
then g(t, x) is the value of stock options, determined by the famous Black-Scholes
equation [3, 8, 16].

Along with applications to mathematical physics and financial mathematics in
finite dimensional case (see, e.g. [1, 3, 8, 14, 16]) there exist recent infinite di-
mensional applications, for instance, stochastic equations in financial mathematics
[10, 11]. As an example, let P (t, T ) be a price at time t ≤ T of a coupon bond with
maturity date T parametrized as P (t, t) = 1 for all t and let f(t, T ), t ≤ T be the for-
ward curve, i.e. P (t, T ) = exp

(
−
∫ T
t
f(t, s)ds

)
. Then the Musiela reparametriza-

tion r(t, ·) := f(t, ·+ t) in the special case of zero HJM-shift satisfies the following
equation in Hilbert space H = L2(R+)

dr(t) = Ar(t)dt+ b(t, r(t))dW (t), t ≥ 0, r(0) = ξ, (1.3)

where A is the generator of the right-shifts semigroup in H, W is an H-valued
Q-Wiener process, and b is a random mapping from a Hilbert space H to H. The
value of bond options may be calculated, at least numerically, via g(t, x) defined
for X(t) = r(t). So the relationship between infinite dimensional stochastic and
deterministic problems is important both in theory and applications. An extension
of the Feynman-Kac theorem to the infinite dimensional case raises many questions
related with the very formulation of the problems in infinite dimensional spaces,
the definition of relevant objects and a rigorous rationale for the relationship.

The present article concerns the stochastic Cauchy problem in Hilbert spaces

dX(t) = AX(t)dt+BdW (t), t ∈ [0, T ], X(0) = ξ. (1.4)

We prove the infinite dimensional case of the Feynman-Kac theorem under the
basic condition on A to be the generator of a C0-semigroup in a Hilbert space H.
We suppose B ∈ L(H, H) in the case of an H-valued Q-Wiener process W and
B ∈ LHS(H, H) in the case of a cylindrical Wiener process W . For the problem
(1.4) we associate a problem for a deterministic partial differential equation which
is an extension of the problem (1.2) in the case of Hilbert spaces:

∂g

∂t
(t, x) +

∂g

∂x
(t, x)Ax+

1
2

Tr
[
(BQ1/2)∗

∂2g

∂x2
(t, x)(BQ1/2)

]
= 0, g(T, x) = h(x),

(1.5)
and show that g satisfies the infinite dimensional deterministic problem (1.5) with
the trace class operator Q in the case of Q-Wiener process and with Q = I in
the case of cylindrical Wiener process. We give the rigorous interpretation of ob-
jects included in stochastic and deterministic equations and prove the connection
between their solutions in both directions: “from stochastic to deterministic” and
“from deterministic to stochastic”.

The implication “from stochastic to deterministic” consists of several steps. The
first step is the proof of the Markov property for the Cauchy problem solution X,
then the martingal property for the function g(t, x)|x=X(t) and the last step is the
formal usage of infinite dimensional Ito’s formula for g(t,X(t)). Particular attention
is paid to the subtle issue of transition from zero expectation for a function of g to



EJDE-2014/208 FEYNMAN-KAC THEOREM IN HILBERT SPACES 3

equality for g itself. The implication “from deterministic to stochastic” also uses
the infinite dimensional Ito’s formula for g(t,X(t)) too.

Comparing with our previous article [12] in the current paper we proved the
implication “from deterministic to stochastic” and improved the proof of the im-
plication “from stochastic to deterministic”, we proved the relationship for the
stochastic problem (1.4) with Q-Wiener and cylindrical Wiener processes, and at
last along with g(t, x) = Et,x[h(X(T ))] we introduce a different probability charac-
teristic g̃(t, x) = E0,x[h(X(t))] and show that g leads to the backward deterministic
Cauchy problem and g̃ leads to the forward deterministic Cauchy problem.

2. Definitions and auxiliary statements

We start with interpretation for objects of the stochastic problem (1.4). Let the
operator A be the generator of a C0-semigroup in Hilbert space H. This ensures
uniform well-posedness of the Cauchy problem for the corresponding homogeneous
equation X ′(t) = AX(t) and existence of strongly continuous solution operators
U(t), t ≥ 0 to the homogeneous problem, as well as existence and uniqueness of a
weak solution to the stochastic problem (1.4) with an H-valued Wiener process W
(see, e.g. [2, 5]):

X(t) = U(t)ξ +WA(t) = U(t)ξ +
∫ t

0

U(t− s)BdW (s), t ∈ [0, T ].

The stochastic convolution WA(t) with respect to Wiener process (as Q-Wiener
as cylindrical Wiener) formally is defined under the following condition

E
[ ∫ t

0

‖U(s)B‖2HSds
]
<∞, (2.1)

where ‖U(s)B‖2HS := Tr[U(s)BQ(U(s)B)∗]. In the case of a Q-Wiener process the
operator Q is a trace class operator and for the validity of (2.1) it is sufficient the
operators U(s)B, s ∈ [0, T ], hence B, to be bounded. In the case of cylindrical
Wiener process the operator Q is only bounded operator with TrQ = ∞ (for
simplicity we will suppose Q = I) and for the validity of (2.1) it is sufficient the
operators U(s)B, s ∈ [0, T ], hence B, to be Hilbert-Schmidt operator.

Now we give the interpretation for the objects of the deterministic partial differ-
ential equation (1.5). Define the function g(t, x) := Et,x[h(X(T ))] that transforms
[0, T ]×H into R, supposing h a measurable function from H to R. We show that g
satisfies the infinite dimensional deterministic Cauchy problem (1.5) corresponding
to the stochastic one (1.4).

As we mentioned above, in the case of cylindrical Wiener process W the operator
Q is equal to I and the problem (1.5) becomes as follows

∂g

∂t
(t, x) +

∂g

∂x
(t, x)Ax+

1
2

Tr
[
B∗

∂2g

∂x2
(t, x)B

]
= 0, g(T, x) = h(x). (2.2)

In this case condition (2.1) on operator B guarantees that operator under the trace
sign, B∗ ∂

2g
∂x2 (t, x)B, is really of trace class.

First we make sense to terms in (1.5). The derivatives ∂g
∂x and ∂2g

∂x2 are understood
in the sense of Frechet; that means ∂g

∂x : [0, T ] ×H → H∗ and ∂2g
∂x2 : [0, T ] ×H →
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L(H,H∗). More precisely

∂g

∂x
(t, x)(·) : H → R,

∂2g

∂x2
(t, x)(·) : H → H∗, for any fixed t ∈ [0, T ], x ∈ H,

BQ1/2 : H→ H, (BQ1/2)∗ : H∗ → H∗.

The term Tr[(BQ1/2)∗ ∂
2g
∂x2 (BQ1/2)] requires special attention. Expression Tr is

usually defined as the trace of an operator acting in the same Hilbert space. The
operator under the trace sign in equation (1.5) maps Hilbert space H to its adjoint
H∗.

Using the traditional definition of the trace and the Riesz theorem on the iso-
morphism H and H∗; that is identifying H∗ with H, we can make sense to the trace
sign. Note that the isomorphism allows us to consider operators BQ1/2, (BQ1/2)∗,
and ∂2g

∂x2 as mappings from H to H, from H to H, and H to H, respectively. Then
operator (BQ1/2)∗ ∂

2g
∂x2 (BQ1/2) transfers the Hilbert space H to H and trace of this

operator can be understood in the usual sense: in the case of a Q-Wiener process
with a trace class operator Q, bounded operators ∂2g

∂2x and B we have∣∣Tr
[
(BQ1/2)∗

∂2g

∂x2
(BQ1/2)

]∣∣ ≤ ∞∑
j=1

∣∣〈∂2g

∂x2
(BQ1/2)ej , (BQ1/2)ej

〉∣∣
≤
∞∑
j=1

σ2
j ‖B‖2‖

∂2g

∂x2
‖2 <∞.

In the case of a cylindrical Wiener process the estimate for Tr[B∗ ∂
2g
∂x2B] takes place

for the bounded operator ∂2g
∂2x and a Hilbert-Schmidt operator B.

3. From stochastic to deterministic

At first we prove necessary properties of the process X that is a solution of
(1.4), and the function g(t, x) that determines the relationship between solutions
of problems (1.4) and (1.5). We obtain required properties for the case of more
general processes, diffusion processes, to which the solution of the equation (1.4) is
a special case.

An H-valued Ito process {X(t), t ≥ 0} is called diffusion if it can be written in
the form

dX(t) = a(X(t))dt+ b(X(t))dW (t), (3.1)
where a and b are some measurable mappings. Consider the Cauchy problem for
the equation (3.1),

dX(t) = a(X(t))dt+ b(X(t))dW (t), t ∈ [0, T ], X(0) = ξ. (3.2)

In this article we consider only diffusion processes such that existence and unique-
ness of a solution to the stochastic Cauchy problem (3.2) take place. It may be
reached by different ways. For example, it is guaranteed by the estimate to coeffi-
cients a and b: ‖a(z1) − a(z2)‖ + ‖b(z1) − b(z2)‖ ≤ c‖z1 − z2‖, z1, z2 ∈ H, c ∈ R
(see [6, Theorem 2.1, ch. VII]. In this article we are not interested in a concrete
form of conditions, we only suppose that existence and uniqueness of the Cauchy
problem solution hold.

As pointed out in previous section this unique solution can be written as a sum
of the term depending on the initial data and the stochastic convolution term. To
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prove the infinite dimensional Feynman-Kac theorem it is important to establish
the Markov property for the solution of the Cauchy problem (3.2). The following
statement is an extension of the finite dimensional case result (see [14, Theorem
7.1.2]) to the case of Hilbert spaces.

Proposition 3.1. Let h = h(z), z ∈ H be Borel-measurable and X = X(t), t ∈
[0, T ], be a unique solution of (3.2). Then X satisfies the Markov property with
respect to the filter Ft, t ≥ 0 defined by Wiener process W :

E [h(X(t+ s))|Ft] = E0,X(t)[h(X(s))]. (3.3)

Proof. Let Xt,x, t ∈ [0, T ], x ∈ H be the solution of the Cauchy problem for the
equation (3.1) with the initial data X(t) = x. In this notation X, which is the
solution of the Cauchy problem (3.2), may be written as X0,ξ. It is easy to see that
a constriction of X(τ) to the segment τ ∈ [t, T ] is also a solution of the Cauchy
problem for the equation (3.1) with the initial data x = X(t). By the uniqueness of
a solution to the Cauchy problem (3.2) we have X(τ) = Xt,X(t)(τ), τ ≥ t, almost
surely. So we have

E[h(X(τ))|Ft] = E[h(Xt,X(t)(τ))|Ft] = E[h(Xt,X(t)(τ))] = E[h(X(τ))]. (3.4)

The first and the last equalities are consequences of the uniqueness of a solution
(3.2). The validity of the second equality follows from the independence Xt,x(τ)
from Ft because t is a starting point for the solution Xt,x.

Suppose s is defined as τ = t+ s. Then

E[h(X(t+s))|Ft] = E[h(X(t+s))] = E[h(Xt,X(t)(t+s))] = E[h(Xt,z(t+s))]z=X(t).
(3.5)

Here the first equality follows from (3.4). The second equality is a consequence of
solution’s uniqueness.

Using the diffusion property of process X, we obtain

h(Xt,z(t+ s)) = h(X0,z(s))

and hence the equality for mathematical expectations

E[h(Xt,z(t+ s))]z=X(t) = E[h(X0,z(s))]z=X(t) (3.6)

is also valid. Equalities (3.5) and (3.6) imply the desired relation (3.3). �

Corollary 3.2. Suppose a process X is a solution of (1.4). Then it is unique,
diffusive, and by Proposition 3.1 has the Markov property.

By the homogeneity in time of diffusion processes, equation (3.6) can be written
in the ensuing form:

E0,X(t)[h(X(s))] = Et,X(t)[h(X(t+ s))]. (3.7)

As a consequence of Proposition 3.1 and (3.7) we obtain the following result.

Corollary 3.3. Let h(z), z ∈ H be Borel-measurable and X(t), t ≥ 0, be a unique
solution of (3.2). Then the Markov property for X may be rewritten as follows:

E[h(X(t+ s))|Ft] = Et,X(t)[h(X(t+ s))].

On the basis of Markov property for X we prove the martingale property for g,
useful for the proof of Feynman-Kac theorem. The following statement generalizes
[15, Theorem 5.50].



6 I. V. MELNIKOVA, V. S. PARFENENKOVA EJDE-2014/208

Proposition 3.4. Suppose a process X satisfies conditions of Proposition 3.1.
Then the process g(t,X(t)) := Et,x[h(X(T ))]|x=X(t) is martingale; i.e.,

E [g(τ,X(τ))|Ft] = g(t,X(t)), 0 ≤ t ≤ τ ≤ T.

Proof. According to Proposition 3.1, X has the Markov property. Therefore

E
[
h(X(T ))|Fτ

]
= Eτ,X(τ)[h(X(T ))] = g(τ,X(τ)),

and we obtain

E[g(τ,X(τ))|Ft] = E[E[h(X(T ))|Fτ ]|Ft] = E[h(X(T ))|Ft]

= Et,X(t)[h(X(T ))] = g(t,X(t)).

The first equality implies the obtained representation for the process g(τ,X(τ))
via the conditional expectation. The second equality follows from properties of
conditional expectation. The third one is the direct consequence of the Markov
property forX. The last equality follows from the definition of the process g(t,X(t))
and completes the proof. �

Now we can prove the connection between problems (1.4) and (1.5).

Theorem 3.5. Consider the stochastic Cauchy problem (1.4) where A is the gen-
erator of a C0-semigroup in a Hilbert space H, B ∈ L(H, H) in the case of a
Q-Wiener process W and B ∈ LHS(H, H) in the case of a cylindrical Wiener pro-
cess W . Define g = g(t, x) := Et,x[h(X(T ))] : [0, T ] × H → R, h is a measurable
function from H to R. Suppose Et,x|h(X(T ))| < ∞ and derivatives ∂g

∂t , ∂g
∂x , ∂2g

∂x2

exist for all pairs (t, x). Then g is a solution of the infinite dimensional backward
Cauchy problem (1.5) in the case of Q-Wiener process and the problem (2.2) in the
case of cylindrical Wiener process.

Proof. Let X be a solution of (1.4). Fix some τ ∈ [0, T ] and consider the stochastic
Cauchy problem with the initial data x = X(τ):

dXτ,x(t) = AXτ,x(t)dt+BdW (t), t ∈ [τ, T ], Xτ,x(τ) = x. (3.8)

Then Xτ,x is a constriction of X on the segment [τ, T ]; i.e., they coincide on [τ, T ].
It means that g also coincide for Cauchy problems (1.4) and (3.8). So further we
will simply write X instead of Xτ,x.

Applying the Ito formula in Hilbert spaces [5] to g as a function from the solution
of the problem (3.8) we obtain

dg(t,X(t)) =
∂g

∂x
(t,X(t))BdW (t) +

(∂g
∂t

(t,X(t)) +
∂g

∂x
(t,X(t))AX(t)

+
1
2

Tr
[
(BQ1/2)∗

∂2g

∂x2
(t,X(t))(BQ1/2)

])
dt.

This equality is written in the form of differentials (increments). In the integral
form it can be written as

g(t,X(t)) = g(τ, x) +
∫ t

τ

∂g

∂x
(s,X(s))BdW (s) +

∫ t

τ

(∂g
∂s

(s,X(s))

+
∂g

∂x
(s,X(s))AX(s) +

1
2

Tr
[
(BQ1/2)∗

∂2g

∂x2
(s,X(s))(BQ1/2)

])
ds.

Apply the expectation to both sides of the equation. From the definition of an
Ito integral (via the approximation in the mean square by step processes) and
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the properties of the Q-Wiener process, we obtain E[
∫ t
τ
∂g
∂x (s,X(s))BdW (s)] = 0.

Further, since the process g is martingale, we have

E[g(t,X(t))] = E[g(t,X(t))|Fτ ] = g(τ, x). (3.9)

Hence using the theorem of Tonelli-Fubbini in Hilbert spaces and equalities (3.9)
we conclude that

0 = E
[ ∫ t

τ

(∂g
∂s

(s,X(s)) +
∂g

∂x
(s,X(s))AX(s)

+
1
2

Tr
[
(BQ1/2)∗

∂2g

∂x2
(s,X(s))(BQ1/2)

])
ds
]

=
∫ t

τ

E
[∂g
∂s

(s,X(s)) +
∂g

∂x
(s,X(s))AX(s)

+
1
2

Tr
[
(BQ1/2)∗

∂2g

∂x2
(s,X(s))(BQ1/2)

]]
ds.

The above equality is valid for all t ∈ [τ, T ]. Therefore

E
[∂g
∂t

(t,X(t)) +
∂g

∂x
(t,X(t))AX(t) +

1
2

Tr
[
(BQ1/2)∗

∂2g

∂x2
(t,X(t))(BQ1/2)

]]
= 0.

Rewrite this equality at the origin point (τ, x), as

E
[∂g
∂t

(τ, x) +
∂g

∂x
(τ, x)Ax+

1
2

Tr
[
(BQ1/2)∗

∂2g

∂x2
(τ, x)(BQ1/2)

]]
= 0;

that is,

E[
∂g

∂t
(τ, x)] + E[

∂g

∂x
(τ, x)Ax] +

1
2

E
[

Tr[(BQ1/2)∗
∂2g

∂x2
(τ, x)(BQ1/2)]

]
= 0.

Note that Ax does not depend on ω, thus

E
[∂g
∂x

(τ, x)Ax
]

= E
[∂g
∂x

(τ, x)
]
Ax.

Using fact that mappings ∂
∂t ,

∂
∂x and ∂2

∂x2 are independent of the variable ω, and
that the expectation E is an integral of the variable ω, we conclude that all these
operators commute with the operator E. Furthermore, according to the interpreta-
tion of trace given in section 2, it also commutes with the operator E by following
arguments:

E
[

Tr
[
(BQ1/2)∗

∂2g

∂x2
(τ, x)(BQ1/2)

]]
= E

[ ∞∑
k=1

〈(BQ1/2)∗
∂2g

∂x2
(τ, x)(BQ1/2)ej , ej〉

]
=
〈
E
[
(BQ1/2)∗

∂2g

∂x2
(τ, x)(BQ1/2)ej

]
, ej
〉

= Tr E
[
(BQ1/2)∗

∂2g

∂x2
(τ, x)(BQ1/2)

]
.

Note

E[g(τ, x)] = E[Eτ,x[h(X(T ))]] = E
[
E[h(X(T ))]

]
= E[h(X(T ))] = g(τ, x).

Hence we obtain
∂g

∂τ
(τ, x) +

∂g

∂x
(τ, x)Ax+

1
2

Tr
[
(BQ1/2)∗

∂2g

∂x2
(τ, x)(BQ1/2)

]
= 0. (3.10)
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Varying τ ∈ [0, T ] we obtain (3.10) for all pairs {(τ, x) : x = X(τ)}. It remains to
see that

g(T, x) := ET,x[h(X(T ))] = h(X(T ))|x=X(T ) = h(x),

which completes the proof. �

Remark 3.6. Conditions on the function g(t, x) = Et,x[h(X(T ))] for having all
derivatives in the differential equation (1.5) are not usually supplied by applications.
In the case of function h being not enough smooth to ensure the conditions, some
type of generalized problem (1.5) have to be considered.

In [9] in finite dimensional case and [4] in infinite dimensional case it was shown
that {Rt, t ≥ 0} (Rth(x) := E0,x[h(X(t))]) forms a semigroup. According to this the
Feynman-Kac theorem may be proved using the semigroup techniques. Probably
it will allow to weaken the conditions and it would be the subject of our future
research.

Remark 3.7. As we pointed out in the previous section Q = I in the case of cylin-
drical Wiener process. Further we will not focus on this fact and write equations
with operator Q for both types of Wiener processes.

In the previous theorem we deduced backward Kolmogorov problem. It is not
some special feature of the relationship, we show that the probability characteristic
g̃ leads to the forward Kolmogorov problem.

Theorem 3.8. Consider the stochastic Cauchy problem (1.4) where A is the gener-
ator of a C0-semigroup in a Hilbert space H, B ∈ L(H, H) in the case of Q-Wiener
process W and B ∈ LHS(H, H) in the case of cylindrical Wiener process W . Define
g̃(t, x) := E0,x[h(X(t))] : [0, T ]×H → R, h is a measurable function from H to R.
Suppose Et,x|h(X(T ))| < ∞, derivatives ∂g̃

∂t , ∂g̃
∂x and ∂2g̃

∂x2 exist for all pairs (t, x).
Then g̃(t, x) is a solution of the infinite dimensional forward Cauchy problem

∂g̃

∂t
(t, x) =

∂g̃

∂x
(t, x)Ax+

1
2

Tr[(BQ1/2)∗
∂2g̃

∂x2
(t, x)(BQ1/2)] = 0, g̃(0, x) = h(x).

(3.11)

Proof. Let s ∈ [0, T ] be defined as T = t + s. Using (3.7), homogeneity in time of
diffusion process X, and definitions of g and g̃ we have

g̃(t, x) = E0,x[h(X(t))] = E0,x[h(X(T − s))] = Es,x[h(X(T ))] = g(s, x).

So we have ∂g̃
∂t = −∂g∂s and

∂g̃

∂s
(s, x) =

∂g̃

∂x
(s, x)Ax+

1
2

Tr
[
(BQ1/2)∗

∂2g̃

∂x2
(s, x)(BQ1/2)

]
= 0.

Boundary condition g(T, x) = h(x) can be written in the form g̃(0, x) = h(x) that
completes the proof. �

4. From deterministic to stochastic

The statement in the opposite direction is also valid.

Theorem 4.1. Let g be the solution of the deterministic Cauchy problem (1.5)

∂g

∂t
(t, x) +

∂g

∂x
(t, x)Ax+

1
2

Tr
[
(BQ1/2)∗

∂2g

∂x2
(t, x)(BQ1/2)

]
= 0, g(T, x) = h(x),
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where A is the generator of a C0-semigroup in a Hilbert space H, B ∈ L(H, H)
or B ∈ LHS(H, H). Suppose process X be a weak solution of the stochastic Cauchy
problem (1.4)

dX(t) = AX(t)dt+BdW (t), t ∈ [0, T ], X(0) = ξ.

where W is an H-valued Q-Wiener process in the case of B ∈ L(H, H) and W
is a cylindrical Wiener process in the case of B ∈ LHS(H, H). Then the equality
g(t, x) = Et,x[h(X(T ))] between solutions of Cauchy problems (1.5) and (1.4) takes
place.

Proof. Let X be a solution of (1.4). Fix some τ ∈ [0, T ] and consider the stochastic
Cauchy problem with the initial data x = X(τ):

dX(t) = AX(t)dt+BdW (t), t ∈ [τ, T ], X(τ) = x.

As we pointed out earlier the solution of this problem is the constriction of the
solution (1.4) on the segment [τ, T ]. Applying the Ito formula in a Hilbert space to
g(t,X(t)), t ∈ [τ, T ], where g is the solution for the Cauchy problem (1.5), we have

g(T,X(T )) = g(τ,X(τ)) +
∫ T

τ

∂g

∂x
(s,X(s))BdW (s) +

∫ T

τ

(∂g
∂s

(s,X(s))

+
∂g

∂x
(s,X(s))AX(s) +

1
2

Tr
[
(BQ1/2)∗

∂2g

∂x2
(s,X(s))(BQ1/2)

])
ds.

Since g is the solution for the Cauchy problem (1.5), we have

g(T,X(T )) = g(τ,X(τ)) +
∫ T

τ

∂g

∂x
(s,X(s))BdW (s).

Take the mathematical expectation both sides of this equation. From the defini-
tion of Ito integral (via the approximation in the mean square by step processes)
and properties of the Q-Wiener process, we obtain E[

∫ T
τ

∂g
∂x (s,X(s))BdW (s)] = 0.

Therefore,

Eτ,x[g(T,X(T ))] = Eτ,x[g(τ,X(τ))].

Rewrite both sides of this equation. According the fact T is the end point of time
for the Cauchy problem (1.5) we obtain the reformulation of the left side for this
equation

Eτ,x[g(T,X(T ))] = Eτ,x[h(X(T ))].

On the other hand we may rewrite the right side of this equation

Eτ,x[g(τ,X(τ))] = Eτ,x[g(τ, x)] = g(τ, x).

As a result we have

Eτ,x[h(X(T ))] = g(τ, x).

Varying τ we have this equality on the segment [0, T ]; this completes the proof. �
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