Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 224, pp. 1–4. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

A REMARK ON THE RADIAL MINIMIZER OF THE GINZBURG-LANDAU FUNCTIONAL

BARBARA BRANDOLINI, FRANCESCO CHIACCHIO

ABSTRACT. Let $\Omega \subset \mathbb{R}^2$ be a bounded domain with the same area as the unit disk B_1 and let

$$E_{\varepsilon}(u,\Omega) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx + \frac{1}{4\varepsilon^2} \int_{\Omega} (|u|^2 - 1)^2 \, dx$$

be the Ginzburg-Landau functional. Denote by \tilde{u}_{ε} the radial solution to the Euler equation associated to the problem $\min\{E_{\varepsilon}(u, B_1) : u |_{\partial B_1} = x\}$ and by

$$\begin{aligned} \mathcal{K} &= \Big\{ v = (v_1, v_2) \in H^1(\Omega; \mathbb{R}^2) : \int_{\Omega} v_1 \, dx = \int_{\Omega} v_2 \, dx = 0, \\ &\int_{\Omega} |v|^2 \, dx \geq \int_{B_1} |\tilde{u}_{\varepsilon}|^2 \, dx \Big\}. \end{aligned}$$

In this note we prove that

$$\min_{v \in \mathcal{K}} E_{\varepsilon}(v, \Omega) \le E_{\varepsilon}(\tilde{u}_{\varepsilon}, B_1).$$

1. INTRODUCTION

The Ginzburg-Landau energy has as order parameter a vectorial field $u \in H^1(\Omega; \mathbb{R}^2)$ and it is defined as

$$E_{\varepsilon}(u,\Omega) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx + \frac{1}{4\varepsilon^2} \int_{\Omega} \left(|u|^2 - 1 \right)^2 \, dx,$$

where $\Omega \subset \mathbb{R}^2$ is a bounded domain and $\varepsilon > 0$. This kind of functionals has been originally introduced as a phenomenological phase-field type free-energy of a superconductor, near the superconducting transition, in absence of an external magnetic field. Moreover these functionals have been used in superfluids such as Helium II. In this context u represents the wave function of the superfluid part of liquid and the parameter ε , which has the dimension of a length, depends on the material and its temperature (see [10, 9, 7]). The Ginzburg-Landau functionals have deserved a great attention by the mathematical community too. Starting from the classical monograph [5] (see also [4]) by Bethuel, Brezis and Hélein, many mathematicians have been interested in studying minimization problems for the Ginzburg-Landau energy with several constraints, also because, besides the physical

²⁰⁰⁰ Mathematics Subject Classification. 35Q56, 35J15.

 $Key\ words\ and\ phrases.$ Ginzburg-Landau functional, Szegö-Weinberger inequality.

^{©2014} Texas State University - San Marcos.

Submitted September 15, 2014. Published October 21, 2014.

motivation, these problems appear as the simplest nontrivial examples of vector field minimization problems.

In [5] the authors consider Dirichlet boundary conditions $g \in C^1(\partial\Omega; \mathbb{S}^1)$ (with Ω smooth) and study the asymptotic behavior, as $\varepsilon \to 0$, of minimizers u_{ε} , which satisfy the problem

$$-\Delta u_{\varepsilon} = \frac{1}{\varepsilon^2} u_{\varepsilon} (1 - |u_{\varepsilon}|^2) \quad \text{in } \Omega$$

$$u_{\varepsilon} = g \quad \text{on } \partial \Omega.$$
 (1.1)

It turns out that the value $d = \deg(g, \partial \Omega)$ (i.e., the Brouwer degree or winding number of g considered as a map from $\partial \Omega$ into \mathbb{S}^1) plays a crucial role in the asymptotic analysis of u_{ε} .

In the case $\Omega = B_1$ (the unit ball in \mathbb{R}^2 centered at the origin), g(x) = x, it is natural to look for radial solutions to (1.1). Indeed, in [12, 5, 15] the authors prove, among other things, that (1.1) has a unique radial solution, that is a solution of the form

$$\tilde{u}_{\varepsilon}(x) = \tilde{f}_{\varepsilon}(|x|) \frac{x}{|x|}$$
(1.2)

with $\tilde{f}_{\varepsilon} \geq 0$. Moreover $\tilde{f}'_{\varepsilon} > 0$; thus, summarizing, \tilde{f}_{ε} satisfies

$$-\tilde{f}_{\varepsilon}^{\prime\prime} - \frac{f_{\varepsilon}}{r} + \frac{f_{\varepsilon}}{r^2} = \frac{1}{\varepsilon^2} \tilde{f}_{\varepsilon} (1 - \tilde{f}_{\varepsilon}^2) \quad \text{in } [0, 1]$$

$$\tilde{f}_{\varepsilon}(0) = 0, \quad \tilde{f}_{\varepsilon}(1) = 1, \quad \tilde{f}_{\varepsilon} \ge 0, \quad \tilde{f}_{\varepsilon}^{\prime} > 0.$$
(1.3)

It is conjectured that the radial solution (1.2) is the unique minimizer of E_{ε} on B_1 . In [17] (see also [16]) the author gives a partial answer to such a conjecture, proving that \tilde{u}_{ε} is stable, in the sense that the quadratic form associated to $E_{\varepsilon}(\tilde{u}_{\varepsilon}, B_1)$ is positive definite.

Other types of boundary conditions, for instance prescribed degree boundary conditions, have been considered in [3, 8].

In this article we let Ω vary among domains with fixed area and prove that the map \tilde{u}_{ε} in (1.2) provides an upper bound for the energy E_{ε} on the class \mathcal{K} we are going to introduce.

Theorem 1.1. Let $\varepsilon > 0$ and $\Omega \subset \mathbb{R}^2$ be a bounded domain such that $|\Omega| = |B_1|$. Denoted by

$$\mathcal{K} = \Big\{ v = (v_1, v_2) \in H^1(\Omega; \mathbb{R}^2) : \int_{\Omega} v_1 \, dx = \int_{\Omega} v_2 \, dx = 0,$$
$$\int_{\Omega} |v|^2 \, dx \ge \int_{B_1} |\tilde{u}_{\varepsilon}|^2 \, dx \Big\},$$

it holds

$$\min_{v \in \mathcal{K}} E_{\varepsilon}(v, \Omega) \le E_{\varepsilon}(\tilde{u}_{\varepsilon}, B_1).$$
(1.4)

2. Proof of Theorem 1.1

Define the following continuous extension of \tilde{f}_{ε} ,

$$f_{\varepsilon}(r) = \begin{cases} \tilde{f}_{\varepsilon}(r) & \text{if } 0 \leq r \leq 1\\ 1 & \text{if } r > 1 \end{cases}$$

EJDE-2014/224

and the correspondent vector field extending \tilde{u}_{ε} to the whole \mathbb{R}^2

$$\phi_{\varepsilon}(x) = \left(\phi_{\varepsilon,1}(x), \phi_{\varepsilon,2}(x)\right) = f_{\varepsilon}(|x|)\frac{x}{|x|}.$$

It is possible (see [19], see also [1]) to choose the origin in such a way that

$$\int_{\Omega} \phi_{\varepsilon,1} \, dx = \int_{\Omega} \phi_{\varepsilon,2} \, dx = 0. \tag{2.1}$$

Note that $\phi_{\varepsilon} \in \mathcal{K}$. Indeed, besides (2.1), it holds

$$\int_{\Omega} |\phi_{\varepsilon}|^2 \, dx = \int_{\Omega \cap B_1} |\tilde{u}_{\varepsilon}|^2 \, dx + |\Omega \setminus B_1| \ge \int_{B_1} |\tilde{u}_{\varepsilon}|^2 \, dx,$$

since $|\tilde{u}_{\varepsilon}| \leq 1$ in B_1 . A direct computation yields

$$E_{\varepsilon}(\phi_{\varepsilon},\Omega) = \frac{1}{2} \int_{\Omega} \left(f_{\varepsilon}'(|x|)^2 + \frac{f_{\varepsilon}(|x|)^2}{|x|^2} \right) dx + \frac{1}{4\varepsilon^2} \int_{\Omega} \left(f_{\varepsilon}(|x|)^2 - 1 \right)^2 dx$$
$$= \int_{\Omega} B_{\varepsilon}(|x|) dx,$$

where

$$B_{\varepsilon}(r) = \frac{1}{2} \left(f_{\varepsilon}'(r)^2 + \frac{f_{\varepsilon}(r)^2}{r^2} \right) + \frac{1}{4\varepsilon^2} \left(f_{\varepsilon}(r)^2 - 1 \right)^2.$$

Using (1.3) it is straightforward to verify that

$$B_{\varepsilon}'(r) = -\frac{2}{\varepsilon^2} f_{\varepsilon}(r) f_{\varepsilon}'(r) \left(1 - f_{\varepsilon}(r)^2\right) - \frac{1}{r} \left(f_{\varepsilon}'(r) - \frac{f_{\varepsilon}(r)}{r}\right)^2, \quad 0 < r < 1,$$

while, when r > 1, it holds $B_{\varepsilon}(r) = \frac{1}{2r^2}$. Thus $B_{\varepsilon}(r)$ is a decreasing function in $(0, +\infty)$. By Hardy-Littlewood inequality (see for instance [13]) we finally obtain

$$E_{\varepsilon}(\phi_{\varepsilon}, \Omega) = \int_{\Omega} B_{\varepsilon}(|x|) \, dx \le \int_{B_1} B_{\varepsilon}(|x|) \, dx = E_{\varepsilon}(\tilde{u}_{\varepsilon}, B_1)$$

and hence (1.4).

Remark 2.1. The appearance of the function \tilde{u}_{ε} (i.e., the candidate to be the unique minimizer of E_{ε} in B_1 under the Dirichlet boundary condition g(x) = x) in (1.4) as an upper bound of the energy in the class \mathcal{K} is somehow unexpected. On the other hand such a phenomenon becomes more transparent if one realizes the analogy between the problem under consideration and the maximization problem of the first nontrivial eigenvalue $\mu_1(\Omega)$ of the Neumann Laplacian among sets with prescribed area. As well-known, if Ω is a smooth, bounded domain of \mathbb{R}^2 , $\mu_1(\Omega)$ can be variationally characterized as

$$\mu_1(\Omega) = \left\{ \int_{\Omega} |\nabla z|^2 : z \in H^1(\Omega; \mathbb{R}), \ \int_{\Omega} |z|^2 \, dx = 1, \ \int_{\Omega} z \, dx = 0 \right\}$$

If $|\Omega| = |B_1|$ the celebrated Szegö-Weinberger inequality in the plane (see [19], see also [18, 2, 1, 14, 11, 6]) states

$$\mu_1(\Omega) \le \mu_1(B_1). \tag{2.2}$$

Moreover, $\mu_1(B_1)$ is achieved by the functions $J_1(j'_{1,1}|x|)\frac{x_1}{|x|}$ or $J_1(j'_{1,1}|x|)\frac{x_2}{|x|}$, where J_1 is the Bessel function of the first kind and $j'_{1,1}$ is the first zero of its derivative. The role played by J_1 in (2.2) is now played by the function \tilde{f}_{ε} .

References

- M. S. Ashbaugh, R. Benguria; Sharp upper bound to the first nonzero Neumann eigenvalue for bounded domains in spaces of constant curvature, J. Lond. Math. Soc. 52 (1995), 402–416.
- [2] C. Bandle; Isoperimetric inequalities and applications, Monographs and Studies in Mathematics, 7. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1980.
- [3] L. Berlyand, V. Rybalko; Solutions with vortices of a semi-stiff boundary value problem for the Ginzburg-Landau equation, J. Eur. Math. Soc. 12 (2010), 1497–1531.
- [4] F. Bethuel, H. Brezis, F. Hélein; Asymptotics for the minimization of a Ginzburg-Landau functional, Calc. Var. Partial Differential Equations 1 (1993), 123–148.
- [5] F. Bethuel, H. Brezis, F. Hélein; Ginzburg-Landau vortices, Birkhäuser, Basel, 1994.
- [6] F. Chiacchio, G. di Blasio; Isoperimetric inequalities for the first Neumann eigenvalue in Gauss space, Ann. Inst. H.Poincaré Anal. Non Linéaire 29 (2012), 199–216.
- [7] P. G. DeGennes; Superconductivity of Metals and Alloys, Benjamin, New York and Amsterdam, 1966.
- [8] M. Dos Santos; Local minimizers of the Ginzburg-Landau functional with prescribed degrees, J. Funct. Anal. 257 (2009), 1053–1091.
- [9] V. Ginzburg, L. Landau; On the theory of superconductivity, Zh. Eksper. Teoret. Fiz. 20 (1950), 1064–1082; [English translation in Men of Physics: L. D. Landau, I (D. ter Haar, ed.) pp. 138-167, Pergamon, New York and Oxford, 1965].
- [10] V. Ginzburg, L. Pitaevskii; On the theory of superfluidity, Soviet. Phys. JETP 7 (1958), 858–861.
- [11] A. Girouard, I. Polterovich; Shape optimization for low Neumann and Steklov eigenvalues, Math. Methods Appl. Sci. 33 (2010), no. 4, 501–516.
- [12] J. M. Greenberg; Spiral waves for $\lambda \omega$ systems, SIAM J. Appl. Math. 39 (1980), 301–309.
- [13] G. H. Hardy, J. E. Littlewood, G. Pólya; Inequalities, Cambridge Univ. Press, 1964.
- [14] A. Henrot; Extremum problems for eigenvalues of elliptic operators, Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2006.
- [15] R. M. Hervé, M. Hervé; Etude qualitative des solutions réelles d'une équation différentielle liée à l'équation de Ginzburg-Landau, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), 427–440.
- [16] E. H. Lieb, M. Loss; Symmetry of the Ginzburg Landau minimizer in a disc, Math. Res. Lett. 1 (1994), 701–715.
- [17] P. Mironescu; On the stability of radial solutions of the Ginzburg-Landau equation, J. Funct. Anal. 130 (1995), 334–344.
- [18] G. Szegö; Inequalities for certain eigenvalues of a membrane of given area, J. Rational Mech. Anal. 3 (1954), 343–356.
- [19] H. F. Weinberger; An isoperimetric inequality for the N-dimensional free membrane problem, J. Rational Mech. Anal. 5 (1956), 633–636.

BARBARA BRANDOLINI

DIPARTIMENTO DI MATEMATICA E APPLICAZIONI "R. CACCIOPPOLI", UNIVERSITÀ DEGLI STUDI DI NAPOLI "FEDERICO II", COMPLESSO MONTE S. ANGELO, VIA CINTIA - 80126 NAPOLI, ITALY *E-mail address*: brandolini@unina.it

Francesco Chiacchio

DIPARTIMENTO DI MATEMATICA E APPLICAZIONI "R. CACCIOPPOLI", UNIVERSITÀ DEGLI STUDI DI NAPOLI "FEDERICO II", COMPLESSO MONTE S. ANGELO, VIA CINTIA - 80126 NAPOLI, ITALY

E-mail address: francesco.chiacchio@unina.it