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EXACT NUMBER OF SOLUTIONS FOR A NEUMANN
PROBLEM INVOLVING THE p-LAPLACIAN

JUSTINO SÁNCHEZ, VICENTE VERGARA

Abstract. We study the exact number of solutions of the quasilinear Neu-
mann boundary-value problem

(ϕp(u′(t)))′ + g(u(t)) = h(t) in (a, b),

u′(a) = u′(b) = 0,

where ϕp(s) = |s|p−2s denotes the one-dimensional p-Laplacian. Under appro-
priate hypotheses on g and h, we obtain existence, multiplicity, exactness and

non existence results. The existence of solutions is proved using the method

of upper and lower solutions.

1. Introduction

The p-Laplacian operator appears in the study of non-Newtonian fluids in which
the quantity p is a characteristic of the medium. In particular, media with 1 < p < 2
are called pseudo-plastics. If p = 2, they are Newtonian fluids. They also appear
in the study of flows through porous media (p = 3/2), as well as in glaciology
(1 < p ≤ 4/3). For a general description of diffusion processes, see, e.g., [7]. See
also [8] for a study of flows through porous media in one dimension.

Let us consider the nonlinear problem

−∆p v(x) = ρ(x)g(v(x))− h(x),

in the annulus Ω = {x ∈ RN : r1 < |x| < r2}, N ≥ 3, with radially symmetric func-
tions ρ and h, subject to zero Neumann boundary conditions. Thus this problem
can be reduced to an ODE’s problem. Indeed, applying the following two changes
of variables

s = −
∫ r2

r

τ−
n−1
p−1 dτ, z(s) = v(r(s))

and s = ω b−t
b−a , u(t) = z(s) where

ω = −
∫ r2

r1

τ−
n−1
p−1 dτ
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we obtain, for a suitable function ρ, the following Neumann boundary value problem
(ϕp(u′(t)))′ + g(u(t)) = h(t) in (a, b),

u′(a) = u′(b) = 0.
(1.1)

Here ϕp(s) = |s|p−2s, for s 6= 0, with ϕp(0) = 0 for p > 1, denotes the one-
dimensional p-Laplacian and the functions g and h satisfy suitable conditions.

Our goal is to obtain the exact number of solutions to problem (1.1) which
belongs to a certain set, depending only on the nonlinearity g. For this, we mainly
apply the method of lower and upper solutions. This method allows us to establish
the existence of at least one solution of the problem considered. We consider two
cases, the first one when the lower and the upper solutions are well ordered; i.e.,
the lower solution is less than the upper one, and the second (less common) case
when the lower and the upper solution are reversely ordered. In the last case, even
when p = 2, the existence of solutions to problem (1.1) is not certain, in general.
A typical example is given by the problem

u′′ + u = cos t, u′(0) = u′(π) = 0,

which has no solution even though α(t) ≡ 1 and β(t) ≡ −1 are lower and upper
solutions, respectively. In this direction, when p = 2, a = 0 and b = 1, by using
Sobolev and Wirtinger inequalities, lower and upper solutions method and fixed-
point techniques for completely continuous and increasing operators in ordered
Banach spaces, results of exact number of solutions and positive solutions for this
problem are established in [9]. One of the main results reads as follows (see [9,
Theorem 4.1]): let g ∈ C1(R). If g′(x) < π2/4, x ∈ R, g′ is a strictly increasing
function and limx→±∞ g(x) = +∞, then there exists an M ∈ R such that

(a) if h(t) ≤M , with strict inequality on a set of positive measure, then prob-
lem (1.1) has no solution.

(b) if h(t) ≡M , problem (1.1) has exactly one solution.
(c) if h(t) ≥M , with strict inequality on a set of positive measure, then prob-

lem (1.1) has exactly two solutions.
We point out that to obtain the exact number of solutions in part (c) it is

necessary to show that the solutions of problem (1.1) may be ordered. For this, the
author of [9] studies a homogeneous problem associated with (1.1), where g(u(t))
is replaced by q(t)u(t) with q ∈ Lr(0, 1) for some r ∈ [1,+∞); i.e., the problem

u′′(t) + q(t)u(t) = 0 in (0, 1),

u′(0) = u′(1) = 0.
(1.2)

In that case the linear nature of the underlying equation is used in an essential way.
In this article, since we deal with the nonlinear case, to get accurate results

with respect to the number of solutions (multiple solutions) we need to impose
a restriction on the range of values of p to the interval (1, 2] (such restriction is
necessary in view of the counterexample given in Section 5 of [3]) and apply [3,
Theorem 4.1]. For this, the following property of the p-Laplacian (1 < p ≤ 2) is
crucial: for all compact interval [k1, k2] there exists K > 0 (depending on p if p 6= 2)
such that for all u, v ∈ [k1, k2]

(ϕp(u)− ϕp(v))(u− v) ≥ K(u− v)2. (1.3)

Note that this property is not verified by the p-Laplacian, with p > 2. Although
the condition (1.3) restricts the range of values of p, this condition is optimal for
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generating the approximation of solutions between lower and upper solutions in
the reversed order by means of monotone iterative techniques and anti-maximum
principles. We point out that this kind of nonlinear elliptic problems has been the
object of intensive research in recent years, mostly in the linear case p = 2, see for
example [10, 11, 12, 13, 14, 15, 16]. Methods used in the cited literature include
fixed point theorems in cones and degree arguments. However, there have not been
many results in the nonlinear case p 6= 2. Further, all these results deal with a
single solution, or the least number of solutions. The reason for this is that exact
multiplicity results are usually difficult to establish. As mentioned here we use
mainly the very important technique of lower and upper solutions. For a survey
of this technique, see [5, 6]. We refer the reader to [4] for a recent review on the
formidable literature about this method. Our results are inspired by those of [9],
for the corresponding second-order Neumann boundary value problem.

To state our main result we impose the following two hypotheses:
(H1) g belongs to C1(R) with g′(x) strictly increasing and limx→±∞ g(x) = +∞.
(H2) The function h belongs to C([a, b]).
By hypothesis (H1) there exists θ ∈ R such that

g(θ) = min
x∈R

g(x), g′(θ) = 0.

Let m = g(θ). Then g(x) ≥ m for all x ∈ R. Since limx→±∞ g(x) = +∞, there
exist constants c1 and c2 such that c1 < θ < c2 and

m̃ := g(c1) = g(c2) > h(t), for all t ∈ [a, b]. (1.4)

We obtain multiple solutions of problem (1.1) belonging to the following set

S := {u ∈ C1([a, b]) : m < g(u(t)) < m̃, for all t ∈ [a, b]}.

Let l > 0, we denote by Kl the constant given in (1.3) for the symmetric interval
[−l, l]. When 1 < p < 2 the largest of such constants is (p − 1)lp−2 (this is the
inverse of the maximum of d

dy ϕ
−1
p (y) on the interval [−ϕp(l), ϕp(l)]).

The main result in this article reads as follows.

Theorem 1.1. Assume that the hypotheses (H1) and (H2) hold. Let c and k be
given by (2.1) and (2.2), respectively. If

g′(x) <
π2

4(b− a)2
min{Kc,Kk}, x ∈ R,

then the following holds:
(1) if h(t) ≤ m, with strict inequality on a subinterval of [a, b], then problem

(1.1) has no solution.
(2) if h(t) ≡ m, then problem (1.1) has exactly one solution.
(3) if 1 < p ≤ 2 and h(t) ≥ m, with strict inequality on a subinterval of [a, b],

then problem (1.1) has exactly two solutions in the set S.

Remark 1.2. (i) The conclusions (1) and (2) of the theorem hold for all p > 1.
On the other hand, in (3) we seek solutions of problem (1.1) in the set {u : c1 ≤
u(t) ≤ c2, for all t ∈ [a, b]}. When u ∈ [θ, c2], we have the a priori bound k over the
derivatives of these solutions. So, if the lower and the upper solution are reversely
ordered, then the behavior of ϕp outside of a compact interval plays no role. This
is precisely the meaning of (1.3).
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(ii) Note that when p = 2 we can take Kk = 1 (independently of k). Also in this
case Kc = 1 (see Remark 2.6). Thus, we recover [9, Theorem 4.1].

This article is organized as follows. In Section 2, we establish some notation, as
well as some basic facts, and we prove the Lemmas 2.5 and 2.7 that will be used in
Section 3 to prove our main result, Theorem 1.1. Finally, in Section 4, we give an
example to illustrate our results.

2. Preliminaries

We say that u is a solution of (1.1) if u ∈ C1([a, b]), |u′|p−2u′ ∈ W 1,1((a, b)),
u′(a) = u′(b) = 0, and (ϕp(u′(t)))′ + g(u(t)) = h(t) for almost all t ∈ (a, b). Here
W 1,1((a, b)) denotes the Banach space of absolutely continuous functions on (a, b).
For later use, it is convenient to define f+(t, u) := g(u) − h(t) and f−(t, u) :=
h(t)− g(u). We use the following symbols. Let I = [a, b] and q ≥ 1. For u ∈ Lq(I),
we write

‖u‖q =
(∫ b

a

|u(s)|qds
)1/q

and for u ∈ C(I),
‖u‖∞ = sup

t∈I
|u(t)|.

Let us first recall the following classical integral inequality.

Lemma 2.1. Let u ∈ C1(I). If u(a) = 0 or u(b) = 0, then
π

2(b− a)
‖u‖2 ≤ ‖u′‖2 .

We need the following version of the Gronwall’s lemma for showing uniqueness
of solutions of an initial value problem for the p-Laplacian.

Lemma 2.2 (Gronwall’s lemma). Suppose that a < b, and let z, v be nonnegative
continuous functions defined on [a, b]. Furthermore, suppose that C is a nonnegative
constant. If

v(t) ≤ C +
∫ t

a

z(s)v(s)ds, t ∈ [a, b],

then
v(t) ≤ C e

R t
a
z(s)ds, t ∈ [a, b].

Remark 2.3. In particular, if C = 0, we have v ≡ 0 on [a, b].

Remark 2.4. (i) Note that, for every R > 0, we have

|f+(t, u)| ≤ hR(t) for all t ∈ [a, b] and all u with |u| ≤ R,

where hR(t) := max|s|≤R |g(s)|+ |h(t)|.
(ii) Note that we have an a priori estimate over the derivatives of the solutions

of problem (1.1). Indeed, let u(t) be a solution of (1.1). Define h(t) := h(t) −m,
then ϕp(|u′(t)|) ≤ ‖h‖1 for all t ∈ [a, b]. Therefore, if u(t) is a solution of (1.1),
then

‖u′‖∞ ≤ ‖h‖
1

p−1
1 =: c (only depending on g, h, p). (2.1)
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We shall say that α ∈ C1([a, b]) is a lower solution of (1.1) if ϕp◦α′ ∈W 1,1((a, b))
and

−(ϕp(α′(t)))′ ≤ f+(t, α(t)), α′(a) ≥ 0 ≥ α′(b).
An upper solution is defined by reversing inequalities in the previous definition. Let
α and β ∈ C1([a, b]) be such that β(t) ≤ α(t) on [a, b]. We write

[β, α] := {v ∈ C1([a, b]) : β(t) ≤ v(t) ≤ α(t) on [a, b]}.

By Remark 2.4, part (i), we can find a continuous function h̃ such that |f+(t, u)| ≤
h̃(t) for all t ∈ [a, b] and all u ∈ [β(t), α(t)]. We define

k(α, β) := ‖h̃‖
1

p−1
1 .

If further α and β are lower and upper solutions, it is easy to check that for all
t ∈ [a, b],

α′(t), β′(t) ∈ [−k(α, β), k(α, β)].
Note that the constant θ is an upper solution while c1 and c2 are lower solutions of
problem (1.1). Moreover, since g is increasing for u ∈ [θ, c2], we have

|f+(t, u)| ≤ |g(u)|+ |h(t)| ≤ |g(c2)|+ |h(t)| = |m̃|+ |h(t)| =: h̃(t).

Using the previous notation we define

k := k(c2, θ) = ‖h̃‖
1

p−1
1 = (|m̃|(b− a) + ‖h‖1)

1
p−1 . (2.2)

The next result is key to study the exact number of solutions of (1.1).

Lemma 2.5. Let 1 < p ≤ 2. Suppose that g ∈ C1(R) with g′(x) < π2Kc

(b−a)2 , x ∈ R,
then the solutions of (1.1) do not cross each other, in other words, if u1, u2 are
different solutions of (1.1), then u1(t) 6= u2(t) for every t ∈ [a, b].

Proof. Let u1, u2 be different solutions of (1.1), then

(ϕp(u′i(t)))
′ + g(ui(t)) = h(t) in (a, b), u′i(a) = u′i(b) = 0

for i = 1, 2; and so

(ϕp(u′1(t)))′ − (ϕp(u′2(t)))′ + g(u1(t))− g(u2(t)) = 0, (2.3)

for almost all t ∈ (a, b). Define

q(t) =

{
g(u1(t))−g(u2(t))
u1(t)−u2(t) , u1(t) 6= u2(t)

g′(u1(t)), u1(t) = u2(t).

Then q is a continuous function satisfying q(t) < π2Kc/(b − a)2 for all t ∈ [a, b].
Now (2.3) can be rewritten as

(ϕp(u′1(t)))′ − (ϕp(u′2(t)))′ + q(t)(u1(t)− u2(t)) = 0. (2.4)

Suppose that there is a ζ ∈ (a, b), such that u1(ζ) = u2(ζ). Multiplying (2.4) by
u1 − u2 and integrating by parts over [a, ζ] and [ζ, b], we obtain∫ ζ

a

[ϕp(u′1(t))− ϕp(u′2(t))](u′1(t)− u′2(t))dt =
∫ ζ

a

q(t)(u1(t)− u2(t))2dt,∫ b

ζ

[ϕp(u′1(t))− ϕp(u′2(t))](u′1(t)− u′2(t))dt =
∫ b

ζ

q(t)(u1(t)− u2(t))2dt.
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Set u(t) = u1(t) − u2(t) for t ∈ [a, b]. From inequality (1.3), Remark 2.4 (ii) and
Lemma 2.1, we have

π2Kc

4(ζ − a)2
‖u‖2L2(a,ζ) ≤

∫ ζ

a

q(t)(u(t))2dt ≤ ‖q‖∞‖u‖2L2(a,ζ),

π2Kc

4(b− ζ)2
‖u‖2L2(ζ,b) ≤

∫ b

ζ

q(t)(u(t))2dt ≤ ‖q‖∞‖u‖2L2(ζ,b).

Thus
π2Kc

4
[ 1
(ζ − a)2

+
1

(b− ζ)2

]
≤ 2‖q‖∞.

The term in brackets reaches its minimum at ζ = a+b
2 , then

‖q‖∞ ≥
π2Kc

(b− a)2
,

which is a contradiction.
If ζ = a or ζ = b, then u1 ≡ u2. This is immediate by uniqueness if p = 2.

The proof that u1 ≡ u2 when 1 < p < 2 is more complicated. Let, u1 and u2 be
solutions of (1.1) with u1(a) = u2(a). Then

ϕp(u′1(t)) =
∫ t

a

f+(s, u1(s))ds, ϕp(u′2(t)) =
∫ t

a

f+(s, u2(s))ds.

Hence

|ϕp(u′1(t))− ϕp(u′2(t))| ≤
∫ t

a

|f+(s, u1(s))− f+(s, u2(s))|ds

≤ π2Kc

(b− a)2

∫ t

a

|u1(s)− u2(s)|ds.
(2.5)

On the other hand, by the mean value theorem,

|u′1(t)− u′2(t)| = 1
p− 1

|ξ(t)|
2−p
p−1 |ϕp(u′1(t))− ϕp(u′2(t))|,

where ξ(t) is some value between ϕp(u′1(t)) and ϕp(u′2(t)). In fact, since u′1(t)
and u′2(t) are in [−c, c] for all t ∈ [a, b], we see that ξ(t) belongs to the interval
[−ϕp(c), ϕp(c)]. Note that

|u1(t)− u2(t)| ≤
∫ t

a

|u′1(s)− u′2(s)|ds, (2.6)

for all t ∈ [a, b]. Combining inequalities (2.5) and (2.6), we conclude that

|u′1(t)− u′2(t)| ≤ π2Kc

(p− 1)(b− a)2
|ξ(t)|

2−p
p−1

∫ t

a

|u′1(s)− u′2(s)|ds,

for all t ∈ [a, b]. Since 1 < p < 2, it follows that |ξ(t)|
2−p
p−1 is bounded by c2−p for

all t ∈ [a, b]. Thus we have

|u′1(t)−u′2(t)| ≤ π2c2−pKc

(p− 1)(b− a)2

∫ t

a

|u′1(s)−u′2(s)|ds ≤ π2

(b− a)2

∫ t

a

|u′1(s)−u′2(s)|ds,

for all t ∈ [a, b]. Thus, using Remark 2.3, we conclude that u′1 − u′2 ≡ 0 on [a, b].
Finally, since the functions u1(t) and u2(t) take the same value at t = a, we have
u1 ≡ u2, which completes the proof. If ζ = b, the proof is similar. �
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Remark 2.6. Note that, when p = 2, we can take Kc = 1 (which is independent
of c), and so we recover [9, Lemma 3.2].

The next result establishes a bound on the number of solutions of (1.1) which
belong to the set S.

Lemma 2.7. Assume that (H1) holds and that h(t) ≥ m, with strict inequality on
a subinterval of [a, b]. If g′(x) < π2Kc

(b−a)2 , x ∈ R, then (1.1) has at most two solutions
in the set S.

Proof. Lemma 2.5 tell us that under the condition that g ∈ C1(R) with g′(x) <
π2Kc

(b−a)2 , x ∈ R, the solutions of (1.1) are ordered. Suppose that (1.1) has solutions
ui(t) for i = 1, 2, 3. Then we may assume that u1(t) < u2(t) < u3(t) for all t ∈ [a, b].
Now we note that if ui ∈ S for i = 1, 2, 3, then at least two of these functions belong
to the same set {c1 < u < θ} or else to {θ < u < c2}. Without loss of generality
we may assume that u1, u2 ∈ {c1 < u < θ}. We have

(ϕp(u′i(t)))
′ + g(ui(t)) = h(t) in (a, b),

u′i(a) = u′i(b) = 0

for i = 1, 2. Therefore,

(ϕp(u′1(t)))′ − (ϕp(u′2(t)))′ = g(u2(t))− g(u1(t)),

for almost all t ∈ (a, b). Integrating over [a, b] this equality and using the boundary
conditions, we obtain

0 =
∫ b

a

[(ϕp(u′1(t)))′ − (ϕp(u′2(t)))′]dt =
∫ b

a

[g(u2(t))− g(u1(t))]dt. (2.7)

By the mean value theorem, there exists η(t) ∈ (u1(t), u2(t)) such that g(u2(t)) −
g(u1(t)) = g′(η(t))(u2(t) − u1(t)). Set v(t) = u2(t) − u1(t), for all t ∈ [a, b]. Then
from (2.7) we have ∫ b

a

g′(η(t))v(t)dt = 0.

This is a contradiction since g′(η(t)) < 0 for all η(t) ∈ (u1(t), u2(t)) ⊂ (c1, θ) and
v(t) > 0, for all t ∈ [a, b]. Therefore, there exist at most two solutions to (1.1) in
the set S. �

Remark 2.8. It follows from the above proof that, if there exist at least two
solutions of (1.1) in S, then there exist exactly two solutions of (1.1) in S, one to
the left of θ and the other to the right of θ.

3. Existence and exact number of solutions

This section is devoted to prove our main result, Theorem 1.1.

Proof of the Theorem 1.1. (1) If h(t) ≤ m, with strict inequality on a subinterval
of [a, b], then ∫ b

a

h(t)dt < m(b− a).

Suppose (1.1) has a solution u(t). Since g(u(t)) ≥ m, for all t ∈ [a, b], we have∫ b

a

g(u(t))dt ≥ m(b− a). (3.1)
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At the same time, integrating the equation in (1.1) over [a, b] and using the bound-
ary conditions, we obtain∫ b

a

g(u(t))dt =
∫ b

a

(ϕp(u′(t)))′dt+
∫ b

a

g(u(t))dt =
∫ b

a

h(t)dt < m(b− a),

which contradicts (3.1).
(2) If h(t) ≡ m, then v(t) ≡ θ is a solution of (1.1). Assume u(t) is also a

solution of problem (1.1) for h(t) ≡ m; i.e.

(ϕp(u′(t)))′ + g(u(t)) = g(θ), a < t < b,

u′(a) = u′(b) = 0.

As g(u(t)) ≥ m for all t ∈ [a, b], we have (ϕp(u′(t)))′ ≤ 0 for all t ∈ [a, b]. By the
boundary conditions, we conclude that u′(t) ≡ 0 for all t ∈ [a, b], so g(u(t)) ≡ g(θ)
on [a, b]. Since g(x) is strictly convex, g(x) has a unique minimum point, which
implies u(t) ≡ θ. Hence v(t) ≡ θ is the unique solution of (1.1).

(3) If h(t) ≥ m, with strict inequality on a subinterval of [a, b], then∫ b

a

h(t)dt > m(b− a) =
∫ b

a

g(θ)dt,

which means v(t) ≡ θ is not a solution of problem (1.1).
Recall that θ is an upper solution while c1 and c2 are lower solutions of problem

(1.1), where c1, c2 are as in (1.4). Moreover, c1 and θ are well ordered but θ and c2
are given in the reversed order, i.e. c2 ≥ θ.

To prove that (1.1) has exactly two solutions in the set S, we proceed in three
steps.
Step 1. Problem (1.1) has at least one solution in [θ, c2] = [β, α]. Since g′(x) <
π2Kk/4(b−a)2, x ∈ R (here k is given by (2.2)), there exists a positive constant M
such that g′(x) < M < π2Kk/4(b − a)2 for every θ ≤ x ≤ c2. Then the function
f+ satisfies for M condition (L) in [3]. In fact, let u, v ∈ [θ, c2] such that u ≤ v.
Then g′(x) is nonnegative for all θ ≤ x ≤ c2 and by the mean value theorem

g(v)− g(u) = g′(c)(v − u), u ≤ c ≤ v.

Thus g(v)−g(u) ≤M(v−u) or, equivalently, g(u)−g(v) ≥M(u−v). Consequently
g(u)−h(t)−Mu ≥ g(v)−h(t)−Mv; i.e., f+(t, u)−Mu ≥ f+(t, v)−Mv. Finally,
recall that the lower and upper solution are given in the reversed order. We are
thus in a position to apply [3, Theorem 4.1], and deduce the existence of at least
one solution u1 of problem (1.1) such that θ ≤ u1(t) ≤ c2 for all t ∈ [a, b]. Note
that our result is optimal in the sense that if p = 2, we obtain the best possible
estimate on M given in [1, Theorem 3.2 part 2].
Step 2. Problem (1.1) has at least one solution in [c1, θ] = [α, β]. In this case the
lower and the upper solutions are well ordered and we may apply [2, Theorem 2.1]
with φ ≡ ϕp, f(t, u, u′) ≡ f−(t, u), A = B = 0 to obtain at least one solution u2 of
problem (1.1) such that c1 ≤ u2(t) ≤ θ for all t ∈ [a, b]. In fact, it can easily be
checked that the hypotheses (H2) and (H3) of that theorem hold.
Step 3. Problem (1.1) has exactly two solutions in S. Since v(t) ≡ θ is not a
solution of problem (1.1), this problem has at least two solutions by Steps 1 and 2.
Finally, problem (1.1) has exactly two solutions in S by Remark 2.8. �
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Remark 3.1. All of the results of this article can be deduced for positive solutions
as well, with only minor modifications. Thus, we can obtain a generalization of [9,
Theorem 6.1].

4. An example

Let α be a (small) positive number. Set g(x) = αx + e−x for x ∈ R. Then
g′(x) = α− e−x is strictly increasing and g is strictly convex. Therefore, according
to Theorem 1.1, the problem

(ϕp(u′(t)))′ + αu(t) + e−u(t) = h(t) in (a, b),

u′(a) = u′(b) = 0,

has
(1) No solution if h(t) ≤ α(1 − lnα) with strict inequality on a subinterval of

[a, b].
(2) Exactly one solution if h(t) ≡ α(1− lnα), which is u(t) ≡ − lnα.
(3) Exactly two solutions u1, u2 in the set S if 1 < p ≤ 2 and h(t) ≥ α(1− lnα),

with strict inequality on a subinterval of [a, b].
Next, we give more information on the solutions in case (3). For example, if h(t) ≡
m+ 1 and m̃ = m+ 2 in (1.4), where m = g(θ) = α(1− lnα) with θ = − lnα, then
we can estimate the values of c1 and c2 such that g(c1) = g(c2) = m̃; i.e., the two
roots of the equation

αx+ e−x − α(1− lnα)− 2 = 0. (4.1)

On the other hand, c = (b − a)
1

p−1 , k = [(2m + 3)(b − a)]
1

p−1 . Since k > c, we
have Kk = (p − 1)p−2kp−2 < Kc = (p − 1)cp−2 (these are the largest values of
such constants). At this time we take the interval [a, b] of length one for simplicity.
Thus, the main condition in Theorem 1.1 reads

0 < α <
π2

4
Kk =

π2

4
(p− 1)(2m+ 3)

p−2
p−1

or, equivalently,

α[2α(1− lnα) + 3]
2−p
p−1 < (p− 1)

π2

4
· (4.2)

Note that when α tends to zero, the left-hand side of (4.2) also tends to zero
(independent of 1 < p ≤ 2), so we can always find an α small enough which
satisfies this inequality. In particular, if p = 3

2 , then α = 0.2 satisfies (4.2) and
θ = − ln(0.2) = ln 5. On the other hand, numerical approximations of the roots of
equation (4.1) give the values c1 ≈ −1.001430 and c2 ≈ 12.609421. Hence, in this
case the problem has exactly two solutions u1, u2 satisfying

ln 5 > u1(t) > c1 ≈ −1.001430, t ∈ [a, b]

ln 5 < u2(t) < c2 ≈ 12.609421, t ∈ [a, b].
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[6] C. De Coster, P. Habets; The lower and upper solutions method for boundary value problems,
Handbook of differential equations, 69-160, Elsevier/North-Holland, Amsterdam, 2004.

[7] J. I. Dı́az; Nonlinear Partial Differential Equations and Free Boundaries, Vol. I: Elliptic equa-

tions, Research Notes in Mathematics, 106, Pitman Advanced Publishing Program, Boston,
1985.

[8] J. R. Esteban, J. L. Vázquez; On the equation of turbulent filtration in one-dimensional

porous media, Nonlinear Anal. 10 (1986), 1303-1325.
[9] Y. Feng; Sobolev Inequality and the Exact Multiplicity of Solutions and Positive Solutions to

a Second-Order Neumann Boundary Value Problem, Acta Appl. Math. 110 (2010), 895-905.
[10] D. Jiang, Y. Yang, J. Chu, D. O’Regan; The monotone method for Neumann functional

differential equations with upper and lower solutions in the reversed order, Nonlinear Anal.

67 (2007), 2815-2828.
[11] Z. Li; Existence of positive solutions of superlinear second-order Neumann boundary value

problem, Nonlinear Anal. 72 (2010), 3216-3221.

[12] T-P. Sun, W-T. Li; Multiple positive solutions to second-order Neumann boundary value
problems, Applied Math. Comput. 146 (2003), 187-194.

[13] Y. Sun, Y. J. Cho, D. O’Regan; Positive solutions for singular second order Neumann bound-

ary value problems via a cone fixed point theorem, Applied Math. Comput. 210 (2009), 80-86.
[14] F. Wang, F. Zhang; Existence of positive solutions of Neumann boundary value problem via a

cone compression-expansion fixed point theorem of functional type, J. Appl. Math. Comput.

35 (2011), 341-349.
[15] F. Wang, Y. Cui, F. Zhang; Existence and nonexistence results for second-order Neumann

boundary value problem, Surv. Math. Appl. 4 (2009), 1-14. 1842-6298.
[16] F. Wang, F. Zhang, Y. Yu; Existence of positive solutions of Neumann boundary value

problem via a convex functional compression-expansion fixed point theorem, Fixed Point

Theory 11 (2010)(2), 395-400.

Justino Sánchez
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