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FUZZY DIFFERENTIAL EQUATIONS UNDER DISSIPATIVE
AND COMPACTNESS TYPE CONDITIONS

TZANKO DONCHEV, AMMARA NOSHEEN

Abstract. Fuzzy differential equation with right-hand side defined as a sum

of two almost continuous functions is studied. The first function satisfies
dissipative-type condition with respect to Lyapunov-like function. The sec-

ond maps bounded sets into relatively compact sets. The existence of solution

is proved with aid of Schauder’s fixed point theorem.

1. Introduction

Starting from [6], the theory of fuzzy differential equations is rapidly developed
due to many applications in the real world problems. Notice only the basic work
in this direction [5, 8, 11, 12]. As it is shown in [5], the set of fuzzy numbers is
not locally compact. It means that the classical Peano theorem is (probably) no
longer valid and some extra conditions along with continuity of right-hand side are
needed.

In [14] the existence of solutions of fuzzy differential equation with uniformly con-
tinuous right-hand side is proved under compactness-type condition. The existence
and uniqueness of solution under dissipative-type conditions when the right-hand
side is continuous is studied in [4, 10, 13]. In this paper we study fuzzy differen-
tial equation whose right-hand side is a sum of two almost continuous functions,
one satisfies dissipative-type condition, and another maps bounded sets into rela-
tively compact sets. To the authors knowledge there are not related results in the
literature.

We study the fuzzy differential equation

ẋ(t) = f(t, x) + g(t, x); x(0) = x0, t ∈ I, (1.1)

where f : I × E → E satisfies dissipative-type condition and g : I × E → E
satisfies compactness-type assumption. Here and further in the paper I = [0, 1].
E = {x : Rn → [0, 1];x satisfies (1)–(4)} is the space of fuzzy numbers:

(1) x is normal i.e. there exists y0 ∈ Rn such that x(y0) = 1,
(2) x is fuzzy convex i.e. x(λy+(1−λ)z) ≥ min{x(y), x(z)} whenever y, z ∈ Rn

and λ ∈ [0, 1],
(3) x is upper semicontinuous i.e. for any y0 ∈ Rn and ε > 0 there exists

δ(y0, ε) > 0 such that x(y) < x(y0) + ε whenever |y − y0| < δ, y ∈ Rn,
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(4) The closure of the set {y ∈ Rn; x(y) > 0} is compact.
The set [x]α = {y ∈ Rn; x(y) ≥ α} is called α-level set of x.

It follows from (1)–(4) that the α-level sets [x]α are convex compact subsets of
Rn for all α ∈ (0, 1]. The fuzzy zero is defined by

0̂(y) =

{
0 if y 6= 0,
1 if y = 0.

The metric in E is defined by D(x, y) = supα∈(0,1]DH([x]α, [y]α), where

DH(A,B) = max{max
a∈A

min
b∈B
|a− b|,max

b∈B
min
a∈A
|a− b|}

is the Hausdorff distance between the convex compact subsets of Rn.
The map F : I × E → E is said to be continuous at (s, y) when for every ε > 0

there exists δ > 0 such that D(F (s, y), F (t, x)) < ε for every t ∈ I and x ∈ E with
|t − s| + D(x, y) < δ. The map F : I × E → E is said to be almost continuous if
there exists a sequence {Ik}∞k=1 of pairwise disjoint compact sets with meas(Ik) > 0
and meas

(
∪∞k=1 Ik

)
= meas(I) such that F : Ik ×E→ E is continuous for every k.

Since Ik is compact for every k, one has that ∪nk=1Ik is also compact and hence
(0, 1) \ ∪nk=1Ik = ∪∞i=1(ai, bi) is open, because every open set in R is a union of
countable sets of pairwise disjoint open intervals.

Throughout this paper both f : I ×E→ E and g : I ×E→ E are assumed to be
almost continuous.

Remark 1.1. Due to Lusin’s theorem (see e.g. [9] for short proof) Λ : I → E is
strongly measurable if and only if it satisfies Lusin property, i.e. for all ε > 0 there
exists Iε ⊂ I with meas(I\Iε) ≤ ε such that Λ : Iε → E is continuous.

A mapping Υ : I → E is said to be differentiable at t ∈ I if for sufficiently small
h > 0 the differences Υ(t + h) − Υ(t), Υ(t) − Υ(t − h) (in sense of Hukuhara)
exist and there exists Υ̇(t) ∈ E such that the limits limh→0+

Υ(t+h)−Υ(t)
h and

limh→0+
Υ(t)−Υ(t−h)

h exist, and are equal to Υ̇(t). At the end points of I we consider
only the one sided derivative.

The integral of fuzzy function Υ : I → E is defined levelwise, i.e. there exists
Λ : I → E such that [Λ(t)]α =

∫ t
0
[Υ(s)]αds, where the integral is in Auman sense.

Every such function Λ(·) is absolutely continuous (AC).
The sequence of strongly measurable functions {yn(·)}∞n=1 is said to be integrally

bounded if there exists λ(t) ∈ L1(I,R+) (non negative valued integrable function)
such that D(yn(t), 0̂) ≤ λ(t) for every n and a.a. t ∈ I.

The Caratheodory function v : I × R+ → R+ is said to be Kamke function if it
is integrally bounded on the bounded sets, v(t, 0) = 0 and the unique solution of
ṙ(t) = v(t, r(t)) with r(0) = 0 is r(t) ≡ 0.

2. Fuzzy differential equation under dissipative-type condition

In this section we consider the fuzzy differential equation

ẋ(t) = f(t, x), x(0) = x0, (2.1)

where f : I × E → E satisfies dissipative-type condition. We extend the results of
[12] to the case of fuzzy differential equations with almost continuous right-hand
side. We need the following hypothesis:
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(F1) D(f(t, x), 0̂) ≤ λ(t)(1 +D(x, 0̂)) for some λ(t) ∈ L1(I,R+).
(F2) There exists a Lyapunov-like function W : E× E→ R+ for (2.1).

A continuous map W : E × E → R+ is said to be Lyapunov-like function for (2.1)
if the following conditions hold (cf. [7]):

(1) W (x, x) = 0, W (x, y) > 0 for x 6= y and limm→∞W (xm, ym) = 0 implies
limm→∞D(xm, ym) = 0,

(2) There exists a constant L > 0 such that

|W (x1, y1)−W (x2, y2)| ≤ L (D(x1, x2) +D(y1, y2)) ,

(3) There exists a Kamke function v : I × R+ → R+ such that

lim
h→0+

h−1 [W (x+ hf(t, x), y + hf(t, y))−W (x, y)] ≤ v(t,W (x, y))

for any x, y ∈ E.

Lemma 2.1. Let (F1) holds, then for ε > 0 and δ > 0 there exists an AC function
xε(t) such that D(ẋε(t), f(t, xε(t))) ≤ ε for all t ∈ Iε ⊂ I, where Iε is a compact
set with measure greater than 1− δ.

Proof. Since f : I × E → E is almost continuous there exists a sequence {Ik}∞k=1

of pairwise disjoint compact sets such that meas
(
∪∞k=1 Ik

)
= meas(I) and f :

Ik ×E→ E is continuous for every k. For large n we have meas(Iδ) > 1− δ, where
Iδ =

(
∪nk=1 Ik

)
. Let the needed solution xε(·) be defined on [0, τ ] where τ ≤ 1

(τ = 0 is possible). If τ = 1 then we have done, otherwise two cases would be
possible:

(i) τ ∈ (al, bl) where (0, 1) \ Iδ = ∪∞l=1(al, bl). In this case we extend xε(·) on
[τ, bl) by xε(t) = xε(τ) and denote τ1 = bl > τ ,

(ii) τ /∈ ∪∞i=1[ai, bi) then we define

xε(t) = xε(τ) + (t− τ)f(τ, xε(τ)), t ∈ [τ, τ1] ∩ Iδ.

Since f(·, xε(·)) is continuous on Iδ, then D(ẋε(t) = f(t, xε(t)), f(τ, xε(τ))) ≤
ε, ∀t ∈ [τ, τ1] ∩ Iδ.

One can continue by induction. Suppose the largest interval on which xε(·)
satisfies lemma conditions is [0, τ̄). Since D(f(t, xε), 0̂) ≤ λ(t)(1 +D(xε(t), 0̂)), one
has that

D(ẋε(t), 0̂) ≤ λ(t)(1 +D(xε(t), 0̂)) + ε for t ∈ [0, τ̄).

Consequently,

D(xε(t), 0̂) ≤ e
R τ̄
0 λ(s)dsD(x0, 0̂) + ε,

D(ẋε(t), 0̂) ≤ λ(t)(1 +Nε) + ε,

where
Nε = e

R τ̄
0 λ(s)ds

(
D(x0, 0̂) + 2

)
.

Therefore, D(ẋε(t), 0̂) ∈ L1(I,R+). Furthermore, since xε(·) is AC, then one can
conclude that xε(·) is uniformly continuous on [0, τ̄). Thus limt↑τ̄ xε(t) = x(τ̄) ex-
ists, which is a contradiction to the fact that [0, τ ] is maximum interval of existence.
If τ̄ = 1 then the proof is complete.

If τ̄ < 1 then we can continue this process by defining

xε(t) = xε(τ̄) + (t− τ̄)f(τ̄ , xε(τ̄)), t ∈ [τ̄ , τ̃ ]
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for τ̄ /∈ ∪∞l=1[al, bl) or τ̃ = bl if τ̄ ∈ [al, bl) for some l, therefore there exists a τ̃1 > τ̃
such that xε(·) satisfies the conclusion of the lemma on [0, τ̃1]. Continuing in the
same way the so defined xε(·) will satisfy the conclusion of the lemma on [0, 1] �

Theorem 2.2. Let (F1) and (F2) hold, then (2.1) admits unique solution.

Proof. Denote χn(t) = λ(t)(1 +Nε) + ε
2n , where Nε is from Lemma 2.1. Let Iδn =

∪kδnn=1In be such that meas(Iδn) > 1− δ
2n and f : In×E→ E is continuous. Consider

the sequence of approximate solutions {xn(·)}∞n=0 where xn(·) is the AC function
defined in Lemma 2.1 when ε is replaced by ε

2n . Therefore D(ẋn(t), f(t, xn(t))) ≤
ηn(t), where

ηn(t) =

{
ε/2n if t ∈ Iδn ,
χn(t) if t /∈ Iδn .

We have to prove that {xn(·)}∞n=0 is a Cauchy sequence. To this end we take {xn(·)},
{xm(·)}, where n < m. Without loss of generality we can assume that ẋn(·), ẋm(·)
and f(·, x(·)) are continuous on Jn, where Jn ⊂ Iδn with meas(Jn) > 1 − δ

2n . If
t ∈ Jn, then

D+W (xn(t), xm(t))

= lim
h→0+

W (xn(t+ h), xm(t+ h))−W (xn(t), xm(t))
h

≤ lim
h→0+

W (xn(t) + hẋn(t), xm(t) + hẋm(t))−W (xn(t), xm(t)) + o(h)
h

≤ lim
h→0+

W (xn(t) + hẋn(t), xm(t) + hẋm(t))−W (xn(t), xm(t))
h

≤ lim
h→0+

W (xn(t) + hf(t, xn(t)), xm(t) + hf(t, xm(t)))−W (xn(t), xm(t))
h

+ lim
h→0+

Lh [D(ẋn(t), f(t, xn(t))) +D(ẋm(t), f(t, xm(t)))]
h

≤ v(t,D(xn(t), xm(t))) +
2Lε
2n

.

For almost all t /∈ Jn, we have

D+W (xn(t), xm(t))

= lim
h→0+

W (xn(t+ h), xm(t+ h))−W (xn(t), xm(t))
h

≤ lim
h→0+

W (xn(t) + hẋn(t), xm(t) + hẋm(t))−W (xn(t), xm(t)) + o(h)
h

≤ lim
h→0+

W (xn(t) + hẋn(t), xm(t) + hẋm(t))−W (xn(t), xm(t))
h

≤ lim
h→0+

W (xn(t) + hf(t, xn(t)), xm(t) + hf(t, xm(t)))−W (xn(t), xm(t))
h

+ lim
h→0+

Lh [D(ẋn(t), f(t, xn(t))) +D(ẋm(t), f(t, xm(t)))]
h

≤ v(t,D(xn(t), xm(t))) + 2Lχn(t).

Consequently, D+W (xn(t), xm(t)) ≤ v(t,D(xn(t), xm(t))) + 2Lηn(t), because n <
m.



EJDE-2014/47 FUZZY DIFFERENTIAL EQUATIONS 5

Thus W (xn(t), xm(t)) ≤ rn(t), where rn(t) is the maximal solution of ṙ(t) =
v(t, r(t)) + 2Lηn(t).

Clearly ηn(·) is integrally bounded (as a sequence of real valued functions), and
limn→∞ ηn(t) = 0 for almost all t ∈ I. Since v(·, ·) is Kamke function, then
limn→∞ rn(t) = 0 uniformly on I. Therefore there exists a sequence of continuous
real valued functions Sn(t) with limn→∞D(xn(t), xm(t)) ≤ Sn(t) for all m ≥ n and
limn→∞ Sn(t) = 0 uniformly on I. Thus the sequence {xn(·)}∞n=1 is a Cauchy se-
quence and hence limn→∞ xn(t) = x(t) uniformly on I. Consequently f(t, xn(t))→
f(t, x(t)) for a.a. t ∈ I. Furthermore, D(f(t, xn(t)), 0̂) ≤ χn(t) ≤ χ1(t). Due to
dominated convergence theorem we get

x(t) = x0 +
∫ t

0

f(s, x(s))ds. (2.2)

The proof is complete thanks to Lemma 2.3 given below. �

Lemma 2.3. If f : I × E → E is almost continuous and integrally bounded then
every solution of (2.1) is a solution of (2.2) and vice versa.

Proof. The space E can be embedded as a closed convex cone in a Banach space
X. The embedding map j : E → X is an isometry and isomorphism. From (cf[3])
we know that j(ẋ(t)) = d

dtj(x(t)). The fact that every solution of (2.2) is at
the same time a solution of (2.1) is tautology because

∫ t
0
ẋ(s)ds =

∫ t
0
f(s, x(s))ds.

Let x : I → E be a solution of (2.2). Since x : I → E is continuous, therefore
f : I × E→ E satisfies Lusin property and hence

g(t) =
d

dt

(∫ t

0

g(s)ds
)

for a.a. t ∈ I. i.e. ẋ(t) = g(t) = f(t, x(t)).
Evidently, x : I → E is AC, i.e. x(·) is a solution of (2.1). �

Remark 2.4. Let us consider the equation

ẋn = f(t, xn(t)) + ϕn(t), xn(0) = x0. (2.3)

If {ϕn(·)}∞n=1 is integrally bounded and limn→∞ ϕn(t) = 0, then limn→∞ xn(t) =
x(t), where ẋ(t) = f(t, x(t)), x(0) = x0. Therefore the solution of (2.3) depends
continuously on the right-hand side.

3. Compact perturbations of dissipative fuzzy system

In this section we prove the existence of solution of the differential equation (1.1).
We will use the additional hypotheses:

(F3) W (x+ z, y + z) = W (x, y) for any fuzzy number z.
(G1) g(t, ·) maps the bounded subsets of E into relatively compact subsets of E

for a.a. t ∈ I.
(G2) D(g(t, x), 0̂) ≤ ν(t)(1 +D(x, 0̂)), where ν(·) ∈ L1(I,R+).

Condition (F3) is essential here. Notice that it holds automatically if W (x, y) =
ζ(D(x, y)), where ζ is some continuous function such that W (x, y) is Lyapunov-like
function for (2.1).
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If x(·) is a solution of (1.1) then D(ẋ(t), 0̂) ≤
(
λ(t) + ν(t)

)
(1 + D(x(t), 0̂)).

Therefore,

D(x(t), 0̂) ≤ D(x0, 0̂) + e
R t
0 (λ(s)+ν(s))ds

(
D(x0, 0̂) +

∫ t

0

[λ(s) + ν(s)]ds
)
.

We can assume without loss of generality that D(x(t), 0̂) ≤ N and D(ẋ(t), 0̂) ≤ γ(t),
where γ(t) = (λ(t) + ν(t))(1 + N) is Lebesgue integrable. Let A = {y ∈ E :
D(y, x0) ≤ N}. It follows from (G1) that g(t, A) ⊂ K(t), where K(t) ⊂ E is a
convex compact set for a.a. t ∈ I.

Theorem 3.1. Let (F1), (F2), (F3), (G1), (G2) hold, then the differential equation
(1.1) admits a solution.

We need the following lemma for proving Theorem 3.1.

Lemma 3.2. Let {ϕn(·)}∞n=1 be an integrally bounded (by an integrable function
c(·)) sequence of strongly measurable functions from I to E such that

co
{
∪∞i=1 {ϕi(t)}

}
= K(t)

is compact for a.a. t ∈ I and

ẋn(t) = f(t, xn(t)) + ϕn(t), xn(0) = x0. (3.1)

Passing to subsequence, if necessarily, xn(·) converges uniformly to x(·), such that

ẋ(t) ∈ f(t, x(t)) +K(t).

Proof. Clearly D(ϕn(t), 0̂) ≤ c(t) implies that zn(t) =
∫ t

0
ϕn(s)ds is equicontinuous

sequence. Furthermore,∫ t

0

[
∪∞n=1 ϕn(s)

]
ds ⊂

∫ t

0

K(s)ds = R(t),

where ∪t∈[0,1]{R(t)} is a compact subset of E. Then the sequence zn(t) =
∫ t

0
ϕn(s)ds

is C(I,E) precompact. By Arzela Ascoli theorem, passing to subsequence we have
zn(t)→ z(t) uniformly on I.

As we pointed out, E can be embedded as a closed convex cone in a Banach
space X with a continuous embedding map j : E→ X. Thus j(K) ⊂ X is compact.
Then due to Diestel criterion (see proposition 9.4 of [2]) the set {j(ϕn(·))}∞n=1 is
weakly precompact in L1(I,X). Thus passing to subsequence in L1(I,X) we have
j(ϕn(t)) ⇀ s(t). Since s(t) ∈ j(K), then there exists ϕ(t) such that j(ϕ(t)) = s(t)
and z(t) =

∫ t
0
ϕ(s)ds.

We denote for convenience y(t) = j(x(t)), yn(t) = j(xn(t)), p(t) = j(z(t)),
ψ(t) = j(ϕ(t)), y(t)− p(t) = u(t), yn(t)− pn(t) = un(t) and q(t, y) = j(f(t, x)).

Consider the functions yn(t)− pn(t) = un(t). We have

W (u(t) + hu̇(t), un(t) + hu̇n(t))

= W (u(t) + hq(t, y(t)), un(t) + hq(t, yn(t))) + o(h)

= W (u(t) + pn(t) + hq(t, y(t)), yn(t) + hq(t, yn(t))) + o(h)

= W (u(t) + pn(t) + hq(t, y(t)− p(t) + pn(t)), yn(t) + hq(t, yn(t)))

+ h|q(t, y(t))− q(t, y(t)− p(t) + pn(t))|+ o(h).
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Consequently,

lim
h→0+

W (u(t) + h(u̇(t), un(t) + hu̇n(t))−W (u(t), un(t))
h

= lim
h→0+

W (u(t+ h), un(t+ h))−W (u(t), un(t))
h

= lim
h→0+

W (u(t) + hu̇(t), un(t) + hu̇n(t))−W (u(t), un(t))
h

≤ v(t, |u(t)− un(t)|) + |q(t, y(t)− p(t) + pn(t))− q(t, y(t))|.
Thus

D+W (y(t)− p(t), yn(t)− pn(t)) ≤ v(t, |y(t)− p(t)− (yn(t)− pn(t))|)
+|q(t, y(t))− q(t, y(t)− p(t) + pn(t))|.

The latter implies that

W (y(t)− p(t), yn(t)− pn(t)) ≤ rn(t),

where

ṙn(t) = v(t, rn(t)) + |q(t, y(t)− p(t) + pn(t))− q(t, y(t))|, rn(0) = 0.

Since v(·, ·) is Kamke function and since

lim
n→∞

|q(t, y(t)− p(t) + pn(t))− q(t, y(t))| = 0 for a.a t ∈ I,

one has that limn→∞ rn(t) = 0, which implies that limn→∞W (y(t)− p(t), yn(t)−
pn(t)) = 0. Thus yn(t) → y(t) uniformly on I, where ẏ(t) = q(t, y(t)) + ψ(t), i.e
ẋ(t) = f(t, x(t)) + ϕ(t). �

Proof of Theorem 3.1. Consider the set

Q = {z(·) ∈ C(I,K) : D(ż(t), 0̂) ≤ γ(t), z(0) = x0}.
It is easy to see that Q ⊂ C(I,E) is closed, bounded and convex. Consider the map
ξ : z(·)→ xz(·), where xz(·) is the unique solution of

ẋz(t) = f(t, xz(t)) + g(t, z(t)); xz(0) = x0, t ∈ I.

Due to Remark 2.4 the map ξ : Q → Q is continuous. Furthermore, ξ(Q) ⊂ Q is
compact by Lemma 3.2. It follows from Schauder’s theorem that there exist a fixed
point z(·) ∈ Q such that ξ(z) = z. This function z(·) is a solution of (1.1). �

Notice that the linear growth conditions (F1), (G2) can be relaxed in order
to prove only local existence, i.e. we can assume that f : I × E → E is integrally
bounded on the bounded sets. In that case, Theorem 2.2 is formulated as follows.

Theorem 3.3. Let f : I ×E→ E be integrally bounded on the bounded sets. Then
under (F2) there exists a > 0 such that the system (2.1) admits unique solution on
[0, a].

Proof. Let M > 0. There exists an integrable function ζ : I → R+ with

sup
|x−x0|≤M

|f(t, x)| ≤ ζ(t).

Let a > 0 be such that
∫ a

0
(ζ(t) + ε)dt ≤M . On the interval [0, a] every δ solution

xδ(t) satisfies |xδ(t)| ≤M and |ẋδ(t)| ≤ ζ(t) + ε. Therefore, one can continue as in
the proof of Theorem 2.2. �
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Theorem 3.1 can be obviously formulated as:

Theorem 3.4. Let f : I × E→ E and g : I × E→ E be integrally bounded on the
bounded set. Then under (F2), (F3), (G1) there exists a > 0 such that the system
(1.1) admits a solution on [0, a].

Proof. As in the proof of Theorem 3.3 we can see that there exists a > 0 and ε > 0
such that every ε-solution of (1.1) is extendable on [0, a] and |xε(t)−x0| ≤M . Let
g(t, x0 + MB) ⊂ A(t), where A(t) ⊂ E is a convex compact set. It follows from
Theorem 3.3 that for every strongly measurable ϕ(t) ∈ A(t), the fuzzy differential
equation

ẋ(t) = f(t, x(t)) + ϕ(t), x(0) = x0

admits unique solution on [0, a]. One can then continue as in the proof of Theorem
3.1, proving of course the corresponding variant of Lemma 2.1. �

4. Conclusion

As it is pointed out in the introduction the space E is not locally compact. This
implies that it would be very difficult (if it is possible at all) to prove analogue
of the classical Peano theorem, when the right-hand side of (2.1) is only jointly
continuous. On the other hand up to author’s knowledge there is no example of
such a system without solutions.

In authors opinion it is very interesting open question to give an example of
fuzzy differential equation without local solution, when the right-hand side is jointly
continuous.

In optimal control problems the controls are measurable functions and it is one
of the main motivation to study differential equations with almost continuous right-
hand sides.

In this paper we proved existence (and uniqueness) of the solution of (2.1) under
as weak as it is possible dissipative-type condition w.r.t. Lyapunov-like function.
We also show the existence of solution when the right-hand side is the sum of a
function satisfying such condition along with almost continuous function mapping
bounded sets into relatively compact ones. For example such function is g(t, ·)
which takes values in a locally compact set EK ⊂ E. It seems that it is impossible
to relax compactness-type assumptions on g without using stronger dissipative-
type conditions on f . We refer the reader to the paper [1], where it is shown by
example that if v(·, ·) is a Kamke function, then it is possible that the function
w(t, r) = v(t, r) + L(t)r is not a Kamke function.

Of course in our proof we essentially used (F3), which is in general not valid for
arbitrary Lyapunov-like function. It is an open question does the solution exists,
when the last condition is dispensed with?

Now we give a simple example of fuzzy system which satisfies our conditions.

Example 4.1. Consider the system of crisp first equation and fuzzy second:

ẋ = − 3
√
x+ f(t, x, y), x(0) = 0

ẏ(t) = g(t, x, y), y(0) = y0.

Here x is crisp variable, f : I ×R×E→ R is continuous and Lipschitzian on x and
on y. Furthermore g : I × R × E → E is continuous, Lipschitzian on x and takes
values in a locally compact subset of E. If some growth condition holds, than the
system satisfies all the conditions of Theorem 3.1.
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