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STABILITY OF SIMULTANEOUSLY TRIANGULARIZABLE

SWITCHED SYSTEMS ON HYBRID DOMAINS

GEOFFREY EISENBARTH, JOHN M. DAVIS, IAN GRAVAGNE

Abstract. In this paper, we extend the results of [8, 15, 22] which provide
sufficient conditions for the global exponential stability of switched systems

under arbitrary switching via the existence of a common quadratic Lyapunov
function. In particular, we extend the Lie algebraic results in [15] to switched

systems with hybrid non-uniform discrete and continuous domains, a direct

unifying generalization of switched systems on R and Z, and extend the results
in [8, 22] to a larger class of switched systems, namely those whose subsys-

tem matrices are simultaneously triangularizable. In addition, we explore an

easily checkable characterization of our required hypotheses for the theorems.
Finally, conditions are provided under which there exists a stabilizing switch-

ing pattern for a collection of (not necessarily stable) linear systems that are

simultaneously triangularizable and separate criteria are formed which imply
the stability of the system under a given switching pattern given a priori.

1. Introduction

Stability of switched linear systems has been a topic of increasing discussion
over the past decade, as evident in the recently published book [14], survey paper
[16], and the references therein. Both switched systems and dynamic equations on
time scales are of particular interest due to their numerable applications, as shown
in [4, 10, 14, 20, 22]. Stability of switched systems under arbitrary switching on
time scales can be determined by the identification of a single quadratic Lyapunov
function applicable to all component systems [14, 22]. These common quadratic
Lyapunov functions (CQLFs) have been used as a method for determining stability
under arbitrary switching and are discussed in several papers encompassing time
scale, continuous, and (uniform) discrete domains [4, 5, 13, 14, 15, 22, 24]. In this
paper, we generalize the results of [15] to time scale (or hybrid) domains as well as
extend and further illuminate the results of [18, 22] to include subsystem matrices
which are not necessarily pairwise commutative. This work can also be seen as a
natural sequel to [8], which considered the stability of switched systems comprised
of subsystems represented by normal matrices, an extension to hybrid domains of
results in [16, 25].
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After some preliminary definitions regarding time scale calculus and the stability
of switched system in sections two and three, we derive one of our main results: the
existence of a CQLF for a switched system comprised of subsystem matrices which
are simultaneously triangularizable. Some checkable characterizations of simulta-
neous triangularizability are covered, and it is explained afterwards why this is a
generalization to time scale domains of the Lie algebraic conditions in [15]. We then
deduce conditions on the domain and the switching signal which imply stable be-
havior of switched systems which potentially contain unstable subsystems. Finally,
we end the paper with a method for constructing time scales for which switched
systems evolving under specified switching orders yield stable trajectories.

2. Time scale preliminaries

We gather here for convenience a few preliminaries regarding dynamic equations
and time scale calculus. For a more in-depth survey of the topic, the reader is
referred to [2].

Definition 2.1. A time scale T is a closed subset of R. The successor of a point
t ∈ T is given by

σ(t) = inf{s ∈ T : s > t},
and the graininess at a point t ∈ T is defined as

µ(t) = σ(t)− t.
The time scale or delta derivative of a function f(t) : T→ R is given by

f∆(t) =
f(σ(t))− f(t)

µ(t)
,

which is interpreted in the limit sense when µ(t) = 0.

Notice that when T = R, f∆(t) = f ′(t) and when T = Z, f∆(t) = ∆f(t), the
forward difference operator. In this sense, the time scale calculus is a direct unifying
generalization of the theory on R and Z.

Definition 2.2. For each point t ∈ T, the set

H(t) :=
{
z ∈ C : |z +

1

µ(t)
| < 1

µ(t)

}
is called the Hilger circle at time t.

Although the region described above is the interior of a circle in the complex
plane the convention in the literature to refer is to it as the Hilger circle. When the
set of time scale graininesses is bounded above, the smallest Hilger circle (denoted
Hmin) is the Hilger circle associated with µ(t) = µmax. When µ(t) = 0 we define
H0 := C−, the open left-half complex plane.

Definition 2.3. A complex number λ is regressive if λ 6= −1
µ(t) , positively regressive

if λ > −1
µ(t) , and uniformly regressive if there exists a neighborhood Bε(λ) for which

−1
µ(t) 6∈ Bε(λ) for all t ∈ T. A matrix is (uniformly) regressive if all of its eigenvalues

are (uniformly) regressive.

Definition 2.4. The time scale exponential function, which we denote by eλ(t, t0),
is the unique solution to the regressive, dynamic IVP

x∆ = λx, x(t0) = 1. (2.1)
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An explicit formula for eλ(t, t0) is available [2], but not needed here. Similarly,
the unique solution to the regressive matrix IVP

x∆ = A(t)x, x(t0) = I, (2.2)

is the time scale transition matrix, ΦA(t)(t, t0), which coincides with the time scale
matrix exponential, eA(t, t0), when A(t) ≡ A. These concepts are all rigorously
treated in [2].

Definition 2.5. A uniformly regressive matrix A(t) is called Hilger stable (or just
Hilger) if spec(A(t)) ⊂ H(t) for all t ∈ T. If A(t) ≡ A, then this is equivalent to
spec(A) ⊂ Hmin.

Throughout our analysis, the following function plays an important role in de-
termining when matrices are Hilger.

Lemma 2.6. Let g(λ(t), µ(t)) := 2 Re(λ(t)) + µ(t)|λ(t)|2. Given an n × n matrix
A(t), g(λ(t), µ(t)) < 0 for all t ∈ T and all λ(t) ∈ spec(A(t)) if and only if A(t) is
Hilger.

Proof. Let A(t) ∈ Rn×n, λi(t) ∈ spec(A(t)), and T be given. Fix t ∈ T. Notice
that g(λi(t), µ(t)) < 0 if and only if

2 Re(λi(t)) + µ(t)|λi(t)|2 < 0

2 Re(λi(t)) + µ(t)
(

Re(λi(t))
2 + Im(λi(t))

2
)

+
1

µ(t)
<

1

µ(t)

2

µ(t)
Re(λi(t)) + Re(λi(t))

2 + Im(λi(t))
2 +

1

µ(t)2
<

1

µ(t)2(
Re(λi(t)) +

1

µ(t)

)2

+
(

Im(λi(t)
)2 − 0)2 <

1

µ(t)2∣∣λi(t) +
1

µ(t)

∣∣ < 1

µ(t)
.

That is, g(λi(t), µ(t)) < 0 if and only if λi(t) ∈ H(t). Thus g(λi(t), µ(t)) < 0 for all
t ∈ T and all λi(t) ∈ spec(A(t)) if and only if A(t) is Hilger. �

We finish this section by defining the concept of stability for a dynamic system
and stating a useful characterization.

Definition 2.7. We say that a dynamic system x∆ = Ax is exponentially stable
if there exist γ > 0 and λ > 0 (with −λ positively regressive) such that for any t0
and x(t0), the corresponding solution satisfies

‖x(t)‖ ≤ ‖x(t0)‖γe−λ(t, t0).

Definition 2.8 ([19]). Given a time scale T which is unbounded above, define for
arbitrary t0 ∈ T

SC(T) :=
{
λ ∈ C : lim sup

T→∞

1

T − t0

∫ T

t0

lim
s↘µ(t)

log |1 + sλ|
s

∆t < 0
}

and

SR(T) := {λ ∈ R : ∀T ∈ T,∃t ∈ T with t > T such that 1 + µ(t)λ = 0},
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where the integral given above is the time scale integral defined in [2]. Then the
region of exponential stability for the time scale T is defined by

S(T) := SC(T) ∪ SR(T).

Theorem 2.9 ([19]). Let T be a time scale that is unbounded above and let A ∈
Rn×n be regressive. Then the following holds:

(1) If the system x∆ = Ax is exponentially stable, then spec(A) ⊂ SC(T).
(2) If each eigenvalue of A is uniformly regressive, then x∆ = Ax is exponen-

tially stable.

In [9] it is shown that the smallest Hilger circle Hmin is a subset of the region of
exponential stability S(T). The relationship between Hilger circles and the region
of exponential stability is shown in Figure 1. Notice that Hilger circles are not all
required to be subsets of S(T), but Hmin ⊂ S(T).

Figure 1. The region in the complex plane of exponential stability
for a time scale comprised of two graininesses is shaded and the
two associated Hilger circles are dashed

3. Summary of stability for switched systems

Definition 3.1. A dynamic linear switched system under arbitrary switching is a
dynamic inclusion and initial condition of the form

x∆ ∈ {Aix}i∈I , x(t0) = x0, (3.1)

where Ai ∈ Rn×n and I is an index set. When we wish to draw attention to a
specific switching pattern, we will denote the switched system by

x∆ = Ai(t)x, x(t0) = x0, (3.2)

where i(t) : T → I is a piecewise continuous switching signal. We say that i(t) is
complete if for every j ∈ I there exists a t ∈ T such that i(t) = j.

Definition 3.2. The equilibrium x(t) ≡ 0 of (3.1) is globally uniformly exponen-
tially stable, or GUES, if there exist a γ > 0 and a λ > 0 (with −λ positively
regressive) such that for any t0 and x(t0), the corresponding solution of (3.1) x(t)
satisfies

‖x(t)‖ ≤ ‖x(t0)‖γe−λ(t, t0).
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Stability for switched systems under arbitrary switching requires stronger con-
ditions than the component systems being stable; this is evident in [14], where the
author provides an example of a switched system over R with stable subsystems
which produces unstable trajectories under a particular switching signal.

As noted in the introduction, one method for determining the stability of switched
systems is through the identification of common quadratic Lyapunov functions
(CQLFs). These functions have been studied extensively [4, 5, 11, 13, 14, 16, 24]
and are defined now.

Definition 3.3. A common quadratic Lyapunov function (CQLF) associated with
(3.1) is a function V : Rn×n → R of the form

VP (t)(x) := xTP (t)x P (t) = PT (t) � 0,

such that V ∆
P (t)(x) < 0 for all nonzero x ∈ Rn, where the derivative is taken along

solutions to x∆(t) = Aix(t) for each i ∈ I.

Using the product rule for the time scale derivative [2] and substituting in the
system dynamics given by

xσ(t) = (I + µ(t)Ai)x(t),

one can easily derive the following useful form for V ∆:

V ∆
P (t)(x) = xT (ATi P (t) + P (t)Ai + µ(t)ATi P (t)Ai +GTi (t)P∆(t)Gi(t))x, (3.3)

where Gi(t) := (In +µ(t)Ai). Thus, if (3.3) is negative for all i ∈ I and all nonzero
x ∈ Rn, then VP (t)(x) is a CQLF.

Ramos [22] extended the results of Narendra and Balakrishnan [18] to time scale
domains, showing that a sufficient condition on the matrices Ai to guarantee the
existence of a CQLF is for the subsystem matrices to commute pairwise and have
eigenvalues in the smallest Hilger circle. A main contribution of this paper is that
we relax the pairwise commuting and stability hypotheses used in [4, 22], generalize
the CQLF results in [15] to time scale domains, and expand the results in [8] to
prove the existence of CQLFs for systems whose subsystem matrices are not normal.

In the case of continuous (R, µ(t) ≡ 0) or uniformly discrete (Z, µ(t) ≡ 1)
domains, determining the existence of a CQLF has typically been achieved by
solving the linear matrix equality

ATi P + PAi + µ(t)ATi PAi = −Mi, (3.4)

for the unknown P , given positive definite Mi. This equation is called the time
scale algebraic Lyapunov equation (TSALE), and solutions to it are steady state
solutions to the time scale differential Lyapunov inequality (TSDLI)

ATi P (t) + P (t)Ai + µ(t)ATi P (t)Ai +GT (t)P∆(t)GT (t) ≺ 0, (3.5)

as investigated in [5]. Solutions P (t) to the TSDLI result in quadratic Lyapunov
functions VP (t)(x) = xTP (t)x.

It was shown in [22] that the unique solution to the TSALE is time-varying when
µ(t) varies with t ∈ T, and therefore is not necessarily a solution to the TSDLI, as
they are on R and Z. As a result, the theory for quadratic Lyapunov functions on
time scales has to be adapted to study the time scale Lyapunov algebraic inequality
(TSALI), for which there do exist constant solutions. These constant solutions to
the TSALI are also solutions to the TSDLI, and thus produce bona fide quadratic
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Lyapunov functions. Constant solutions to the TSALI are investigated by examin-
ing when the associated time scale algebraic Lyapunov operator is negative definite.
We denote this operator by

LT
a(A,P, µ(t)) := ATP + PA+ µ(t)ATPA. (3.6)

Notice that the output of the operator LT
a is a symmetric, time-varying matrix

which is dependent on the graininess µ(t) at each t ∈ T. However, it suffices in
many situations to study the time-invariant output of LT

a(A,P, µmax) due to the
following lemma.

Lemma 3.4. Let T be given and fix A ∈ Rn×n. If there exists a positive definite
P0 such that LT

a(A,P0, µmax) is negative definite, then LT
a(A,P0, µ(t)) is negative

definite for all µ(t) ≤ µmax.

Proof. Let P0 � 0 and suppose LT
a(A,P0, µmax) is negative definite. Then

µmaxA
TP0A � µmaxλmax{ATP0A}I

is a tight inequality, where λmax{ATP0A} is the largest eigenvalue of the Hermitian
matrix ATP0A. So

ATP0 + P0A+ µmaxλmax{ATP0A}I ≺ 0.

Therefore,

LT
a(A,P0, µ(t)) � ATP0 + P0A+ µ(t)λmax{ATP0A}I

� ATP0 + P0A+ µmaxλmax{ATP0A}I
≺ 0,

for all µ(t) ≤ µmax, which proves the claim. �

4. Constructing CQLFs for dynamic linear switched systems under
arbitrary switching

Before constructing CQLFs for arbitrary switched systems, we first detail how
this construction takes place on a single, or “one switch,” system. In doing so, we
appeal to two theorems in matrix theory [12].

Theorem 4.1 (Schur). Given A ∈ Cn×n with eigenvalues {λi}ni=1 ordered in any
manner, there exists a unitary matrix U ∈ Cn×n such that UAU∗ = T is upper
triangular, with the eigenvalues ordered as specified down the diagonal.

Theorem 4.2 (Sylvester’s Criterion). A matrix is positive definite if and only if
its leading principal minors are all positive.

Throughout the rest of this paper, U ∈ Cn×n and T ∈ Cn×n will denote unitary
and upper triangular matrices respectively. Although quadratic Lyapunov func-
tions have been constructed for systems comprised of a single Hilger matrix [22],
this next result is important since the methods used here will be extended to the
case of arbitrary switching between multiple subsystems, and the particular QLF
constructed here has a special form.

Theorem 4.3 ([7]). Let T be given. If A = U∗TU ∈ Rn×n is Hilger, then there
exists a quadratic Lyapunov function for the linear dynamic system x∆ = Ax of
the form VU∗DU (x) = xTU∗DUx, where D is a diagonal matrix.
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Proof. Let T be given and A be a real Hilger matrix. We will prove the result
by constructing a positive definite diagonal matrix D with eigenvalues {pk}nk=1

such that LT
a(T,D, µmax) is negative definite which, by Lemma 3.4, implies that

LT
a(T,D, µ(t)) is negative definite as well for all t ∈ T. Since similarity transfor-

mations preserve the spectrum of a matrix, we conclude that LT
a(A,U∗DU,µmax)

is negative definite and P = U∗DU is a QLF for the linear dynamic equation
x∆ = Ax.

To accomplish the outline above, note that the i, jth entry of −LT
a(T,D, µmax)

is given by[
−LT

a(T,D, µmax)
]
i,j

= −pm (H(i− j)t̄j,i +H(j − i)ti,j)− µmax

m∑
k=1

pktk,it̄k,j ,

where m := min{i, j}, ti,j is the i, j entry of T , and H(·) represents the Heaviside
function

H(n) =

{
0, n < 0

1, n ≥ 0
.

Recall that ti,i are the eigenvalues of A, since they are the diagonal entries of T .
Appealing to Sylvester’s Criterion, the eigenvalues {pk}nk=1 of D can be chosen

such that the leading principal minors of −LT
a(T,D, µmax) are all positive. The 1, 1

entry of −LT
a(T,D, µmax) (or the first leading principal minor) is −p1g(t1,1, µmax),

where g(·, ·) was defined in Lemma 2.6. We may arbitrarily select p1 > 0, and since
A is Hilger (or equivalently, g(ti,i, µmax) < 0 for all i = 1, . . . , n, by Lemma 2.6), it
follows that the first leading principal minor of −LT

a(T,D, µmax) is positive.
We suppose now that the (d−1)×(d−1) leading principal minor of−LT

a(T,D, µmax)
is positive, and show that the d × d leading principal minor can be made positive
with a judicious choice of pd. Laplace’s determinant expansion is used on the lead-
ing d× d submatrix of −LT

a(T,D, µmax), which will be denoted Ldsub in this proof.
We adopt the notation Li,j for the i, jth entry of −LT

a(T,D, µmax), and represent

the {d, j} minor of Ldsub by Md,j ; notice that Md,d = detLd−1
sub . Then

detLdsub =

d∑
j=1

(−1)d+jLd,jMd,j

= Ld,dMd,d +
d−1∑
j=1

(−1)d+jLd,jMd,j

=
(
− pdg(td,d, µmax)− µmax

d−1∑
k=1

pk|tk,d|2
)
Md,d +

d−1∑
j=1

(−1)d+jLd,jMd,j

= −pdg(td,d, µmax)Md,d − µmax

d−1∑
k=1

pk|tk,d|2Md,d +

d−1∑
j=1

(−1)d+jLd,jMd,j .

By the induction hypothesis, Md,d = detLd−1
sub > 0, and g(td,d, µmax) < 0 since A is

Hilger. As a result, detLdsub > 0 if and only if

pd >
µmax

∑d−1
k=1 pk|tk,d|2Md,d − (−1)d+kLd,kMd,k

−Md,dg(td,d, µmax)
.
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Because the right-hand side will play a role in future proofs, define

Jd(A,µ(t)) :=
µ(t)

∑d−1
k=1 pk|tk,d|2Md,d − (−1)d+kLd,kMd,k

−Md,dg(td,d, µ(t))
, (4.1)

and (in general) choose each eigenvalue pd of D so that pd > Jd(A(t), µ(t)) for
all t ∈ T. Since A(t) ≡ A it is sufficient to choose pd > Jd(A,µmax) for each
pd ∈ spec(D).

By this construction, a P = U∗DU � 0 is obtained which shares a unitary
factor with A and VP (x) = xTPx is a quadratic Lyapunov function for the system
x∆ = Ax. �

The previous theorem can be naturally extended to prove stability of switched
systems under arbitrary switching provided the set of subsystem matrices is com-
pact and the systems can all be put into upper triangular form by the same unitary
matrix U . We gather here for convenience some definitions and lemmas regarding
sets of “simultaneously triangularizable” matrices.

Definition 4.4. A set of matrices {Ai} ⊂ Rn×n is said to be simultaneously tri-
angularizable by M if there exists a matrix M such that MAiM

−1 = Ti is upper
triangular for each i.

Lemma 4.5 ([21]). If a set of matrices is simultaneously triangularizable by M ,
then there exists a unitary matrix U such that the set is simultaneously triangular-
izable by U .

In [6], the authors give one of the primary characterizations for the simultaneous
triangularizability of a set of matrices, based on the work of N.H. McCoy. By
appealing to this theorem, we obtain tractable conditions which are easily checked
given the subsystem matrices. Two preliminary definitions are needed first.

Definition 4.6. Let A ∈ Rn×n be given. The jth subordinate principal submatrix
of A, denoted Sj(A), is the principal submatrix of A resulting from the deletion of
the first j many columns and rows.

This notation will be utilized in the following definition.

Definition 4.7. We introduce the terminology mutually deflatable to describe a
set of n× n matrices {Ai}i∈I which satisfy the following:

(1) Each of the matrices Ai share an eigenvector, v1 ∈ Rn.
(2) Given the n×n unitary matrix U1 formed by expanding v1 to a normalized

basis,1 each of the first subordinate principal (n− 1)× (n− 1) submatrices
of U−1

1 AiU1, denoted S1(U−1
1 AiU1), share an eigenvector, v2 ∈ Rn−1.

(3) Given the (n− 1)× (n− 1) unitary matrix U2 formed by expanding v2 to
a normalized basis, each of the first subordinate principal (n− 2)× (n− 2)
submatrices of U−1

2 S1(U−1
1 AiU1)U2 share an eigenvector, v3 ∈ Rn−2.

(n− 2) Given the 3 × 3 unitary matrix Un−2 formed by expanding vn−2 to a
normalized basis, each of the first subordinate principal 2 × 2 submatri-
ces of U−1

n−2S1(U−1
n−3 . . . S1(U−1 1AiU1) . . . Un−3)Un−2 share an eigenvector,

vn−1 ∈ R2.

1In Rn×n, this is done by finding n−1 many linearly independent vectors to v1 (e.g., members
of the standard basis), applying the Gram-Schmidt process, and creating a matrix whose columns

are the normalized vectors.
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Notice that it is fairly straightforward to verify whether a given set of N many
n× n matrices is mutually deflatable in N · n many computations.

Theorem 4.8 ([6]). Let {Ai}i∈I ⊆ Rn×n be a collection of mutually deflatable
matrices. Then the matrices are simultaneously triangularizable.

Theorem 4.8 justifies our exploration into sets of matrices that are simultaneously
triangularizable, as it easy to determine if a set of matrices are mutually deflat-
able. We now extend Theorem 4.3 to the case of switched systems under arbitrary
switching. For convention, we will state our theorems in terms of simultaneous
triangularizability. For the rest of the paper, we will take the term “compact” to
mean compact in the usual topology bestowed on R and Rn×n.

Theorem 4.9 ([7]). Let {Ai}i∈I ⊂ Rn×n be a compact collection of simultaneously
triangularizable matrices and T be a time scale. If each Ai is Hilger stable, then
there exists a common quadratic Lyapunov function for the system (3.1).

Proof. Let {Ai}i∈I be a compact collection of Hilger matrices. Since each Ai =
U∗TiU is triangularizable by the same unitary transformation, we construct a single
P = U∗DU such that LT

a(Ai, P, µmax) is negative definite for all i ∈ I. This is done,
as before, by choosing the eigenvalues of D such that LT

a(Ti, D, µmax) is negative
definite for all i ∈ I. Notice that the time scale must have a largest graininess µmax

since the set of Hilger matrices is compact.
Since each Ai is Hilger, the first eigenvalue p1 of the diagonal matrix D can

be chosen arbitrarily positive, as in the proof of Theorem 4.3. However, in the
induction step of this proof the successive pi must now be chosen across multiple
inequalities. Specifically, each eigenvalue must satisfy

pd > max
i∈I

Jd(Ai, µmax),

where Jd(Ai, µmax) was defined in (4.1). The maximum is obtainable since the
index set I is compact and the function Jd(·, ·) is continuous for each 1 ≤ d ≤ n
over invertible A (as the composition of continuous functions over invertible A and
µ). Then VP (x) with P = U∗DU is a CQLF for the system (3.1). �

A direct corollary to Theorem 4.9 generalizes to time scales the primary result
of [18]; this corollary is due to results in [6], which reveals that sets of pairwise
commutative matrices are also simultaneously triangularizable.

Corollary 4.10. Let {Ai}i∈I ⊂ Rn×n be a compact collection of pairwise commu-
tative matrices and T be a time scale. If each Ai is Hilger stable, then there exists
a common quadratic Lyapunov function for the system (3.1).

This corollary also improves upon the major result in [22], in which the author
found the time-varying, closed form solution to the TSALE (3.4). In that work,
the author was investigating time-varying Lyapunov functions of the form VP (t) =

xTP (t)x and an additional hypothesis had to be satisfied, namely

LT
a(Ai, P (t), µ(t)) + (In + µ(t)Ai)

TP∆(In + µ(t)Ai) ≺ 0, i ∈ I, for all t ∈ T.
Since the theory in this paper deals with constant P � 0, this condition is trivially
satisfied. In addition, Theorem 4.9 also generalizes a major result of [8], since sets
of simultaneously diagonal matrices are trivially simultaneously triangularizable.

One can also view the statement of Theorem 4.9 and its corollary in terms of the
Lie algebra generated by the subsystem matrices {Ai}i∈I , an approach that many
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authors [1, 14, 15] utilize. Recall that the Lie algebra generated by a set of matrices
{Ai}i∈I is the smallest finite-dimensional vector space closed under the Lie bracket
([A,B] := AB −BA) which contains {Ai}i∈I . For more information regarding Lie
algebras and their properties, the reader is referred to [23].

As a result of Lie’s Theorem [23], which states that every solvable Lie algebra
has a basis for which each matrix in the algebra has upper triangular form (i.e.,
the matrices are simultaneously triangularizable), Theorem 4.9 is a generalization
to hybrid domains of the central result in [15]. This result is stated in its newfound
generality below.

Corollary 4.11. Let T be given. If the matrices {Ai}i∈I are Hilger and their
generated Lie algebra {Ai : i ∈ I}LA is solvable, then the switched system x∆ ∈
{Aix}i∈I is globally uniformly exponentially stable under arbitrary switching.

When viewing switched systems under arbitrary switching in terms of their gen-
erated Lie algebras, an alternate proof of Corollary 4.10 arises. Pairwise commuta-
tivity of a set of matrices implies that their Lie algebra generated is nilpotent, and
thus solvable [23]. This allows one to appeal to Corollary 4.11 to imply the exis-
tence of a CQLF for a switched system comprised of pairwise commuting subsystem
matrices.

While interesting properties of switched systems can be gleaned by studying their
generated Lie algebras, the benefit of viewing switched systems in terms of simul-
taneous triangularizablity is that it can be quickly determined in N · n many steps
whether a given set of matrices are mutually deflatable and hence simultaneously
triangularizable. For this reason, we will continue throughout this paper to state
our hypotheses in terms of simultaneous triangularizability. It is also important
to keep in mind that the existence of a CQLF is not equivalent to the GUES of
a switched system and as such there exist systems that are stable under arbitrary
switching which do not have CQLFs.

To illustrate the proof of Theorem 4.9, we construct a CQLF for a given switched
system.

Example 4.12. Let

A1 =

−1 −3 1
0 −3 0
−1 −1 −1

 , A2 =

−2 −1 1
0 −1 0
−1 1 −2

 , A3 =

−1 −1 2
0 −2 0
−2 2 −1

 ,
and T be any time scale with a compact set of graininesses and µmax = 1

4 . This
generalizes a result from [22] since none of the three matrices commute with each
other. These three matrices are simultaneously unitarily upper triangularizable by
the unitary matrix

U =


1√
2

0 −i√
2

1√
2

0 i√
2

0 1 0

 ,
and are all Hilger, which can be seen by evaluating g(λ, µmax) for each eigenvalue
of Ai and noticing that spec(Ai) is bounded away from −1

µ(t) for all t ∈ T. By

Theorem 4.9, the switched system x∆ ∈ {Aix}3i=1, x(t0) = x0, is stable under
arbitrary switching.
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To construct the CQLF detailed in the proof of Theorem 4.9, the unitary trans-
form is used to triangularize each of the subsystem matrices:

T1 = UA1U
∗ =

−1 + i 0 −−3−i√
2

0 −1− i
√

4 + 3i
0 0 −3

 ,
T2 = UA2U

∗ =

−2 + i 0 −(−1)1/3

0 −2− i (−1)3/4

0 0 −1

 ,
T3 = UA3U

∗ =

−1 + 2i −1 − 1+2i√
2

0 −1− 2i − 1−2i√
2

0 0 −2

 .
As argued in the proof, each leading principal minor of −LT

a(Ti, DP , µmax) must be
positive. Let D be a diagonal matrix with the entries {pk}nk=1. Evaluating the 1, 1
entry yields the three expressions:

[−LT
a(T1, DP , µmax)]1,1 =

3

2
p1,

[−LT
a(T2, DP , µmax)]1,1 =

11

4
p1,

[−LT
a(T2, DP , µmax)]1,1 =

3

4
p1.

Since each Ai is Hilger, these expressions are positive for any choice of p1 > 0; set
p1 = 1.

Next, in order for the second leading principal minors of −LT
a(Ti, DP , µmax) to

be positive for i = 1, 2, 3, the following three conditions must be satisfied:

9

4
p2 > 0,

121

16
p2 > 0,

9

16
p2 > 0.

As before, any p2 > 0 can be chosen; for simplicity, let p2 = 1.
Finally, det−LT

a(Ti, DP , µ) must be positive, leading to the inequalities

det(−LT
a(T1, DP , µmax)) = −15 +

135

16
p3 > 0,

det(−LT
a(T2, DP , µmax)) = −11

2
+

847

64
p3 > 0,

det(−LT
a(T3, DP , µmax)) = −15

4
+

27

16
p3 > 0.

A choice of p3 = 7/3 satisfies the three inequalities. Thus,

P = U∗DPU

=


1√
2

0 −i√
2

1√
2

0 i√
2

0 1 0


∗ 1 0 0

0 1 0
0 0 7

3

1/
√

2 0 −i/
√

2

1/
√

2 0 i/
√

2
0 1 0


=

1 0 0
0 7

3 0
0 0 1
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produces the common quadratic Lyapunov function

VP (x) = xT

1 0 0
0 7

3 0
0 0 1

x.
To verify that this is indeed a bona fide common quadratic Lyapunov function,

the spectrum of the algebraic Lyapunov operator outputs are evaluated below:

spec(LT
a(A1, P, µmax)) ≈ {−7.3233,−1.5,−0.4267},

spec(LT
a(A2, P, µmax)) ≈ {−4.0603,−2.75,−2.2730},

spec(LT
a(A3, P, µmax)) ≈ {−6.4613,−.75,−0.0387}.

Since the outputs of the operator are negative definite, VP (x(t)) = xTPx is indeed
a common quadratic Lyapunov function for the switched system x∆ ∈ {Aix}3i=1,
and the switched system is stable under arbitrary switching.

5. Using constrained switching to stabilize switched systems

If the requirement that switched systems must produce stable trajectories under
arbitrary switching is relaxed, we can be less conservative about the placement of
the subsystem eigenvalues. To account for this, we consider switched systems like
(3.2); that is,

x∆ = Ai(t)x, x(t0) = x0,

where i(t) : T → I is a single switching signal being investigated regardless of
whether or not it is necessarily known a priori. We wish to find a single P � 0
such that LT

a(Ai(t), P, µ(t)) is negative definite at each t ∈ T. This amounts to the

identification of a single QLF for the time-varying “aggregate” system x∆ = Ai(t)x,
and not the construction of a QLF that is common to each of the subsystems. In
doing so, we first require a definition.

Definition 5.1. Let {Ai}i∈I be a collection of real invertible matrices with eigen-
values in the open left-half complex plane. Then a time scale T is said to be
admissible with respect to {Ai}i∈I if for every t ∈ T, there exists an i ∈ I such that
spec(Ai) ⊂ H(t). The time scale is completely admissible if it is admissible and for
every i ∈ I, there exists a t ∈ T such that spec(Ai) ∈ H(t).

Theorem 5.2 ([7]). Let {Ai}i∈I ⊂ Rn×n be a compact collection of simultaneously
triangularizable matrices and T a time scale with whose graininesses form a compact
set. If T is (completely) admissible, then there exists a (complete) stable switching
pattern for the switched system (3.2).

Proof. Let Ai each be triangularizable by the unitary matrix U . Set

Sµ(t) := {i ∈ I | spec(Ai) ⊂ H(t)}, (5.1)

and notice that Sµ(t) is nonempty for all t ∈ T since T is admissible (furthermore, if
T is completely admissible, then

⋃
t∈T Sµ(t) = I). Let i(t) : T→ I be defined such

that i(t) ∈ Sµ(t) for each t ∈ T, which can be defined to be a complete switching
signal if the time scale is completely admissible. Once such a switching signal has
been chosen, we can construct a QLF for the time-varying system (3.2).

We show that there exists a diagonal D with eigenvalues {pk}nk=1 such that
LT
a(Ti(t), D, µ(t)) is negative definite for all t ∈ T. Consider µ(t) = µ1 and let
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i(t) ∈ Sµ1
. The first positive eigenvalue of D can be arbitrarily chosen, so let

p1 = 1. Now for each 1 < j ≤ n, choose pj,µ1 > maxk∈Sµ1
Jj(Ak, µ1), where

Jj(Ak, µ1) is the set defined in (4.1) and Sµ1
is the closure of Sµ1

. It is necessary
to take the closure since Sµ1

may be open, although it must be bounded due to the
compactness of I.

Similarly, for each value of µr in the compact set {µ(t)}t∈T and for each 1 < j ≤
n, choose

pj,µr > max
k∈Sµr

{Jj(Ak, µr)}.

Thus we can choose the eigenvalues of D to be

p1 = 1, p2 > max
r
{p2,µr}, . . . , pn > max

r
{pn,µr},

all of which are obtainable values due to the compactness of {µ(t)}t∈T. Evaluat-
ing at each t ∈ T, the time-invariant matrix LT

a(Ti(t), D, µ(t)) is negative definite
according to Sylvester’s Theorem, due to the chosen switching signal i(t) and the
eigenvalue construction of D. Therefore, P = U∗DU is a QLF for the time-varying
system x∆ = Ai(t)x. �

The proof of Theorem 5.2 leads to the following corollary.

Corollary 5.3. Let T be given and {Ai}i∈I ⊂ Rn×n be a compact collection of
simultaneously triangularizable matrices. If the time-varying matrix Ai(t) is Hilger,
then there exists a QLF for the switched system (3.2).

Example 5.4. We consider a switched system comprised of the subsystem matrices[
0.1124 −2.3597
0.2887 −1.6124

]
and

[
−6.2887 0.6124
0.8067 −7.7113

]
whose dynamics evolve over a time scale T comprised of only two graininesses which
occur equally often in groups of five, µ1 = 1 and µ2 = 1

5 . The region of exponential
stability and the associated Hilger circles for this type of time scale are shown
in Figure 2, along with the spectrum of the two matrices; notice that A2 is not
exponentially stable over this time scale.

These matrices are both triangularizable by the unitary matrix

U =

 3√
11

√
2
11

−
√

2
11

3√
11

 ,
which gives

U∗A1U =

[
−1 −2.6484
0 −0.5

]
, U∗A2U =

[
−6 −0.1943
0 −8

]
.

Since the spectrum of at least one of the matrices is contained in Hmin and each
eigenvalue of A1 and A2 is contained in at least one Hilger circle, the sets defined
by (5.1) are nonempty for all t ∈ T; specifically, Sµ1

= {1} and Sµ2
= {1, 2}.

Therefore, any switching pattern which satisfies i(t) ∈ Sµ(t) at each t ∈ T will
produce stable behavior. This can be interpreted in the following manner: for any
t ∈ T with µ(t) = µ1, the activated subsystem must be A1, while for any t ∈ T
where µ(t) = µ2 either A1 or A2 can be activated.

To prove the stability of any such a switching pattern, we construct the QLF
outlined in Theorem 5.2. The notation is taken from the proof of Theorem 4.3 with
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Figure 2. The region in the complex plane of exponential stability
and the associated Hilger circles for µ1 = 1 and µ2 = 1

5 . The
eigenvalues of A1 are on the right and the eigenvalues of A2 are on
the left

the addition of superscripts to denote A1 and A2. Since the matrices are 2× 2, the
principal minors for the output of (3.6), denoted Mi,j , are scalars. We consider µ1

and let i(t) ∈ Sµ1
, that is i(t) = 1. The first positive eigenvalue of D is arbitrarily

chosen to be p1 = 1. We now compute p2,µ1
and p2,µ2

. Based on the proof of
Theorem 5.2, p2,µ1

must satisfy

p2,µ1
> max
k∈Sµ1

J2(Ak, µ1)

= J2(A1, 1)

=
p1|t11,2|2M1

2,2 − (−1)2+1L1
2,1M

1
2,1

−M1
2,2g(t12,2, µ1)

≈ 9.3520,

so let p2,µ1
= 10. Similarly, p2,µ2

must satisfy

p2,µ2
> max
k∈Sµ2

J2(Ak, µ2) = max
{
J
(
A1, 2,

1

5

)
, J
(
A2, 2,

1

5

)}
where

J
(
A1, 2,

1

5

)
=

1
5p1|t11,2|2M1

2,2 − (−1)2+1L1
2,1M

1
2,1

−M1
2,2g(t12,2,

1
5 )

≈ 4.1017,

and

J
(
A2, 2,

1

5

)
=

1
5p1|t21,2|2M2

2,2 − (−1)2+1L2
2,1M

2
2,1

−M2
2,2g(t22,2,

1
5 )

≈ 0.0025.

So p2,µ2
must be chosen to be larger than 4.1017, say p2,µ2

= 5. Finally, in choosing
the second eigenvalue of the quadratic Lyapunov function, p2 must satisfy p2 >
max{p2,µ1 , p2,µ2}; let p2 = 11. This yields the quadratic Lyapunov function

VP (x) = xTPx = xT

[
31
11 − 30

√
2

11

− 30
√

2
11

101
11

]
x,
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where P = U∗DU . To verify that VP (x) is indeed a quadratic Lyapunov function
for the time-varying system x∆ = Ai(t)x (where i(t) ∈ Sµ(t) for all t ∈ T), we
examine the spectrum of the output of the time scale algebraic Lyapunov operator:

spec(LT
a(A1, P, µ1)) ≈ {−1.2361,−1}

spec(LT
a(A1, P, µ2)) ≈ {−9.6212,−1.2261}

spec(LT
a(A2, P, µ1)) ≈ {−35.1925,−4.8000}.

So for all t ∈ T, LT
a(Ai(t), P, µ(t))) is negative definite, and the switched system is

GUES under the constrained switching pattern. It is worth noting that VP (x) is
not a CQLF for the system since spec(LT

a(A2, P, µ1)) ≈ {528.0370, 23.9983}.

In Theorem 5.2 and Corollary 5.3, it is assumed that a time scale with a com-
pact set of graininesses was given a priori and then a QLF was derived for certain
switching signals implying the GUES of trajectories under those switching signals.
Even if the subsystem matrices themselves were not all exponentially stable, cer-
tain switching signals (which still activate the systems which are not exponentially
stable) yield GUES behavior, as demonstrated in Example 5.4. This is possible be-
cause the hypotheses of Theorem 5.2 can be met with matrices whose eigenvalues
are in the open left-half complex plane but not in the time scale region of exponen-
tial stability S(T); however, to satisfy the hypotheses there must be at least one
subsystem whose eigenvalues are in the smallest Hilger circle Hmin ⊂ S(T).

In [3] the authors proved stability of switched systems over continuous domains
comprised of unstable matrices (by appealing to the average dwell time of an un-
stable matrix and multiple Lyapunov functions). The situation described in Theo-
rem 5.2 still has a single QLF which guarantees that solutions decrease monotoni-
cally with respect to the norm defined by the QLF; there is no analogous phenom-
enon when T = R or Z, since in those situations the set of exponential stability
coincides with the active Hilger circle for all t ∈ T. While results based on dwell
time and multiple Lyapunov functions allow some subsystem matrices with eigen-
values in the right-half complex plane, Theorem 5.2 and Corollary 5.3 still require
that subsystem matrices have their spectrum in the open left-half plane (which,
however, is not equivalent to exponential stability on general time scales).

We now discuss stability results which arise when a particular switching order is
desired from a given set of matrices. In this situation the only cog that is manipu-
lated is the time scale domain, and priority is given to the order in which switching
will occur without exact knowledge of specifically when the switching will take place
(since switching can only occur at points in the timescale). However, depending
on the graininesses that comprise the time scale, the exact times of which switch-
ing will occur can be given within a reasonable error defined by the graininesses.
The next result shows that this is sufficient freedom to produce switched systems
with stable trajectories which follow the desired switching order. A few required
definitions are introduced first.

Definition 5.5. A switching order is an infinite sequence of N letters

O = {s0, s1, . . . , sn, . . . } ∈ Nω

coupled with a successor shift operation σ̃ : Nω → Nω, where

σ̃({s0, s1, . . . , sn, . . . }) := {s1, s2, . . . , sn−1, . . . }.
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A switching signal i(t) is said to be associated with a switching order O if

i(σn(t)) = σ̃n(O)

for all n ∈ N0.

Because we will be constructing time scales in the following proof, we must adjust
our Hilger circle notation.

Definition 5.6. The Hilger circle associated with graininess µ, denoted Hµ, is the
open region of the complex plane given by

Hµ :=
{
z ∈ C : |z +

1

µ
| < 1

µ

}
.

The following theorem depends heavily on the QLF that was constructed in the
proof to Theorem 5.2.

Theorem 5.7 ([7]). Let {Ai}Ni∈1 be a collection of simultaneously triangularizable
matrices with eigenvalues in the open left-half complex plane, and O ∈ Nω be a
specified switching order. Then there exist time scales and at least one switching
signal i(t) : T→ {1, . . . , N} associated with O such that x∆ = Ai(t)x has a QLF.

Proof. To begin, we define a base equivalence class of time scales; this is done by
selecting graininesses µj such that for each Ai, there exists at least one j = 1, . . . ,M
such that spec(Ai) ⊂ Hµj . That is, the graininesses which are chosen must give rise
to stabilizing time scales. This collection of graininesses can be refined to include
smaller graininesses if desired (possibly to have more control of when the switching
occurs, as opposed to just what order it occurs); the smallest graininess will define
the potential “error” (with respect to continuous time) possible in the timing of
switching instances. Once refined, a stabilizing time scale can be constructed as
follows.

Let s0 be the first element of O and choose the next point in the time scale,
denoted σ(0), such that spec(As0) ⊂ Hµ(0). Continuing in this manner for each
point in the time scale, we define the stabilizing time scale domain to be given by
the closed set

T := {σn(0) : spec(Aσ̃(i0)) ⊂ Hµ(σn(0)) , n ∈ N}.

Constructing the time scale in this manner guarantees that the set

SH(t) := {i ∈ N0 : spec(Ai) ⊂ H(t)}

is nonempty for each t ∈ T. Following the construction in the proof of Theorem 5.2,
a QLF can be obtained for the time-varying system generated by the switching order
O. �

It should be emphasized that it’s possible for this construction to generate a time
scale for which the eigenvalues of one or more of the subsystem matrices are not
contained in the region of exponential stability. However, the time scale has been
generated in such a way that the associated switching order will produce solutions
which decrease monotonically with respect to the norm defined by the QLF.
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Figure 3. A schematic of how the various classes of switched
systems interrelate with one another with respect to the existence
of CQLFs, based on the results of [8], this work, and generalizations
of [8] made possible by this work. Here,
SD = {simultaneously diagonalizable},
SUD = {simultaneously unitarily diagonalizable},
ST = {simultaneously triangularizable},
PC = {pairwise commutative},
D = {diagonal},
N = {normal}.
Switched systems are assumed to be compact, Hilger stable, and
uniformly regressive

6. Conclusions

We have extended a major result for switched systems on uniform domains [15]
to hybrid domains and extended the theory in [8, 22] over time scales to include
switched systems comprised of subsystem matrices which are not normal nor pair-
wise commutative. In doing so, the proofs for the results in [8, 15, 22] have been
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explained in a new light, highlighting the importance of the simultaneous triangu-
larizability of a given set of matrices. The relationship of the results presented in
this paper to the results presented by the authors in [8] is illustrated in Figure 3.
In addition, new results concerning the construction of stabilizing switching pat-
terns over hybrid domains were established for a larger class of matrices than those
included in [8], which first introduced the concept for switched systems over time
scale domains.
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