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REGULARITY OF PLANAR FLOWS FOR SHEAR-THICKENING
FLUIDS UNDER PERFECT SLIP BOUNDARY CONDITIONS

JAKUB TICHÝ

Abstract. For evolutionary planar flows of shear-thickening fluids in bounded
domains we prove the existence of a solution with the Hölder continuous veloc-

ity gradients and pressure. The problem is equipped with perfect slip boundary

conditions. We also show Lq theory result for Stokes system under perfect slip
boundary conditions.

1. Introduction

We study flows of incompressible shear-thickening fluids, which in evolutionary
case are governed by the following initial value problem

∂tu− divS(Du) + (u · ∇)u+∇π = f, div u = 0 in Q,

u(0, ·) = u0 in Ω,
(1.1)

where u is the velocity, π represents the pressure, f stands for the density of volume
forces and S(Du) denotes the extra stress tensor. Du is the symmetric part of
the velocity gradient; i.e., Du = 1

2 [∇u + (∇u)>], Ω ⊂ R2 is a bounded domain,
I = (0, T ) denotes a finite time interval and Q = I × Ω. We are interested in the
case, when (1.1) is equipped with the perfect slip boundary conditions

u · ν = 0, [S(Du)ν] · τ = 0 on I × ∂Ω, (1.2)

where τ is the tangent vector and ν is the outward normal to ∂Ω. The constitutive
relation for S is given via the generalized viscosity µ and is of the form

S(Du) := µ(|Du|)Du.
The extra stress tensor S is assumed to possess p-potential structure with p ≥ 2.
More precisely, we can construct scalar potential Φ : [0,∞) 7→ [0,∞) to the stress
tensor S; i.e.,

S(A) = ∂AΦ(|A|) = Φ′(|A|) A
|A|

∀A ∈ R2×2
sym,

such that Φ ∈ C1,1((0,∞)) ∩ C1([0,∞)), Φ(0) = 0 and there exist p ∈ [2,∞) and
0 < C1 ≤ C2 such that for all A,B ∈ R2×2

sym

C1(1 + |A|2)
p−2
2 |B|2 ≤ ∂2

AΦ(|A|) : B ⊗B ≤ C2(1 + |A|2)
p−2
2 |B|2. (1.3)
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2 J. TICHÝ EJDE-2014/70

In the analysis of equations of fluid motions the question of Hölder continuity
of velocity gradients is an important issue. For instance, in optimal control prob-
lems, global regularity results that guarantee boundedness of velocity gradients are
needed in order to establish the existence of the weak solution for adjoint equation
to the original problem and for linearised models. These results are closely related
to the regularity of the coefficients in the main part of the associated differential
operators and enable to derive corresponding optimality conditions, as is done for
example in [25]. For optimal control of flows with shear dependent viscosities in
the stationary case where the author is dealing with the lack of the regularity result
we refer to [4] and [5].

Hölder continuity of velocity gradients is also important when one studies expo-
nential attractors. With such a regularity it is possible to show the differentiability
of the solution operator with respect to the initial condition, which is the key tech-
nical step in the method of Lyapunov exponents. Differentiability of the solution is
equivalent to the linearisation of the equation around particular solution which is
used to study infinitesimal volume elements and leads to sharp dimension estimates
of the global attractor. This is done for example in [17].

This article closely follows [13], where P. Kaplický shows Hölder continuity of
velocity gradients and pressure for (1.1) with p ∈ [2, 4) under no slip boundary
conditions. Based on the same structure of the proof and using the results from [18]
we extend the result to perfect slip boundary conditions and p ∈ [2,∞). Although
some steps of the proof in [13] can be easily modified, we have to overcome a
new difficulties connected to the another type of boundary conditions. First of all,
the Lp theory result for the Stokes problem equipped with perfect slip boundary
conditions has to be established. Keep at our disposal the paper [18], we are able
to cover the case p ≥ 4. From the point of application it would be very interesting
to obtain also the result for the case p ∈ (1, 2) for perfect slip or homogeneous
Dirichlet boundary condition.

The idea of the proof goes back to [21], where the authors show that every weak
solution u of ∂tu− div(S(∇u)) = 0 in Q has locally Hölder continuous gradient in
case that Ω ⊂ R2 and p = 2. This result was extended in [12] to the case p ∈ (1, 2).
Regularity of ∂tu is shown first and after moving ∂tu to the right hand side the
stationary Lq theory is applied.

In the case of generalized Newtonian fluids this method was modified in [16],
where the authors consider the shear-thinning fluid model with periodic boundary
conditions. In contrary to [21] the regularity of ∂tu and ∇u had to be obtained
at once. The authors showed that velocity gradients are Hölder continuous for
p ∈ (4/3, 2]. These results were extended to electro-rheological fluids and non-zero
initial condition in [10].

Among many works concerning regularity theory for generalized Newtonian flu-
ids we would like to mention two papers dealing with the stationary case. In [15]
the stationary version of (1.1) under homogeneous Dirichlet boundary conditions
is considered. The same authors later in [14] studied the problem equipped with
non-homogeneous Dirichlet boundary conditions with two types of restriction on
boundary data and perfect slip boundary conditions.

Let E be a Banach space and α ∈ (0, 1), p, q ∈ [1,∞), s ∈ R. In this paper we use
standard notation for Lebesgue spaces Lq(Ω), Sobolev-Slobodeckĭıspaces W s,q(Ω),
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Bochner spaces Lq(I, E) and Wα,q(I, E). (We do not use different notation for
scalar, vector-valued or tensor-valued functions).

By Hs
q (Ω) we mean Bessel potential spaces and Bsp,q(Ω) are Besov spaces. BUC

stands for bounded and uniformly continuous functions.
Since the domain Ω is in our case at least C2,1, we can define Lqσ(Ω) and W 1,q

σ (Ω)
as follows:

Lqσ(Ω) = {ϕ ∈ Lq(Ω),divϕ = 0 in Ω, ϕ · ν = 0 on ∂Ω},
W 1,q
σ (Ω) = {ϕ ∈W 1,q(Ω),divϕ = 0, in Ω, ϕ · ν = 0 on ∂Ω}.

The duality between Banach space E and its dual E′ is denoted by 〈·, ·〉. Set
W−1,p′

σ (Ω) := (W 1,p
σ (Ω))′.

We begin with the definition of the weak solution to the problem (1.1) with (1.2).

Definition 1.1. Let f ∈ Lp′(I,W−1,p′

σ (Ω)), p ∈ [2,∞) and u0 ∈ L2(Ω). We say
that the function u : Q 7→ R2 is a weak solution to the problem (1.1) with (1.2), if
u ∈ L∞(I, L2(Ω)) ∩ Lp(I,W 1,p

σ (Ω)), ∂tu ∈ Lp
′
(I,W−1,p′

σ (Ω)), u(0, ·) = u0 in L2(Ω)
and weak formulation∫

I

〈∂tu, ϕ〉dt+
∫
Q

S(Du) :Dϕdxdt+
∫
Q

(u · ∇)uϕdx dt =
∫
I

〈f, ϕ〉dt

holds for all ϕ ∈ Lp(I,W 1,p
σ (Ω)).

If we studied also the case p ∈ (1, 2), we would have to consider only test functions
from the space of smooth functions. It is well known that the weak solution exists
and is unique. It could be easily proven using the monotone operator theory. See
for example [19, Chapter 5] for periodic boundary conditions. Now we formulate
the main results of this paper.

Theorem 1.2. Let Ω ⊂ R2 be a bounded non-circular C3 domain and (1.3) holds
for some p ∈ [2,∞). Let u0 ∈ W 2+β,2(Ω) for β ∈ (0, 1/4), div u0 = 0, f ∈
L∞(I, Lq0(Ω)) and ∂tf ∈ Lq0(I,W−1,q′0

σ (Ω)) for some q0 > 2. Then there exists a
unique solution (u, π) of (1.1) with (1.2), such that for some α > 0

∇u, π ∈ C0,α(Q).

Remark 1.3. Perfect slip boundary conditions (1.2) are, as well as homogeneous
Dirichlet boundary conditions, the limit case of partial slip boundary conditions
which are are also often called Navier’s slip boundary conditions:

u · ν = 0, α[S(Du)ν] · τ + (1− α)uτ = 0 α ∈ [0, 1] on ∂Ω.

It would be very interesting to obtain the same result as in Theorem 1.2 also for the
Navier’s boundary condition. In several parts of the proof of Theorem 1.2 we apply
results from [18] that are formulated only for perfect slip boundary conditions. We
don’t know how to generalize these results also for partial slip boundary conditions.

The paper is organized as follows: Section 2 contains preliminaries needed later,
in Section 3 we gather Lq theory results for the classical Stokes system. Further we
extend Lq theory results to generalized Stokes system where the Laplace operator is
replaced by a general elliptic operator in divergence form with bounded measurable
coefficients.

Section 4 is devoted to the proof of the main theorem in the case of quadratic
growth, i.e. p = 2. In Section 5 we introduce the quadratic approximation of the
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stress tensor S(Du) which is done by the truncation of the generalized viscosity
from above; i.e., µε(|Duε|) := min{µ(|Du|), 1/ε} for ε ∈ (0, 1). We prove the main
result for the approximated problem and pass from the approximated problem to
the original one at the end.

2. Preliminary general material

2.1. Function spaces. Let E and F be reflexive Banach spaces. Although it is
not necessary to have reflexive spaces in all definitions, for convenience we assume
it. By L(E,F ) we mean the Banach space of all bounded linear operators from E
to F and L(E) := L(E,E). If E is a linear subspace of F and the natural injection
i : x 7→ x belongs to L(E,F ), we write E ↪→ F . In the case E is also dense in F ,

it will be denoted by E
d
↪→ F . Furthermore, Lis(E,F ) consists of all topological

linear isomorphisms from E onto F . We also write E .= F if E ↪→ F and F ↪→ E,
i.e. E equals F with equivalent norms.

A Banach space E is said to be of class HT , if the Hilbert transform is bounded
on Lp(R, E) for some (and then for all) p ∈ (1,∞). Here the Hilbert transform
H of a function f ∈ S(R, E), the Schwartz space of rapidly decreasing E-valued
functions, is defined by Hf := 1

πPV ( 1
t ) ∗ f . It is well known theorem that the set

of Banach spaces of class HT coincides with the class of UMD spaces, where the
UMD stands for the property of unconditional martingale differences. Note that
all closed subspaces of Lq(Ω) are UMD spaces provided q ∈ (1,∞).

2.2. Semigroups and interpolation-extrapolation scales. For a linear oper-
ator A in E0 we denote the domain of A by D(A). A ∈ H(E1, E0) means that A
is the negative infinitesimal generator of a bounded analytic semigroup in E0 and
E1

.= D(A). It holds

H(E1, E0) = ∪κ≥1, ω>0H(E1, E0, κ, ω),

where A ∈ H(E1, E0, κ, ω) if ω +A ∈ Lis(E1, E0) and

κ−1 ≤ ‖(λ+A)u‖E0

|λ|‖u‖E0 + ‖u‖E1

≤ κ, Re(λ) ≥ ω, u ∈ E1.

By σ(A) we mean the spectrum of A and %(A) denotes the resolvent set. A linear
operator A in E is said to be of positive type if it belongs to P(E) := ∪K>1PK(E).
A ∈ PK(E) if it is closed, densely defined, R+ ⊂ %(−A) and (1+s)‖(s+A)−1‖L(E) ≤
K for s ∈ R+, where K ≥ 1.

We say that a linear operator A in E is of type (E,K, ϑ), denoted by A ∈
P(E,K, ϑ), if it is densely defined and if

Σϑ := {| arg z| ≤ ϑ}∪{0} ⊂ %(−A) and (1+|λ|)‖(λ+A)−1‖L(E) ≤ K, λ ∈ Σϑ.

Put P(E, ϑ) := ∪K>1P(E,K, ϑ).
A linear operator A in E is said to have bounded imaginary powers, in symbols,

A ∈ BIP(E) := ∪K≥1, θ≥0BIP(E,K, θ),

provided A ∈ P(E) and there exist θ ≥ 0 and K ≥ 1 such that Ais ∈ L(E) and
‖Ais‖L(E) ≤ Keθ|s| for s ∈ R.

We introduce an interpolation-extrapolation scale which is essential in the proof
of Theorem 3.9. Let p, q ∈ (1,∞), θ ∈ (0, 1) and [·, ·]θ denotes the complex and
(·, ·)θ,q the real interpolation functor. Let A ∈ H(E1, E0). Then we denote by
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[(Eα, Aα);α ∈ R] the interpolation-extrapolation scale generated by (E,A) and
[·, ·]θ or (·, ·)θ,q, where we set Ek := D(Ak) for k ∈ N with k ≥ 2. Also set E] := E′

and A] := A′, where A′ is the dual of A in E in the sense of unbounded linear
operators. Finally let E]k := D((A])k) for k ∈ N. Then we define E−k for k ∈ N by
E−k := (E]k)′. We put Ek+θ := [Ek, Ek+1]θ (and similarly for the real interpolation
functor). If α ≥ 0 we denote by Aα the maximal restriction of A to Eα whose
domain equals {u ∈ Eα ∩ E1; Au ∈ Eα}. If α < 0 then Aα is the closure of A in
Eα.

For the dual interpolation functor (·, ·)]θ (which is equal to [·, ·]θ for the complex
interpolation and (·, ·)θ,q′ for real interpolation) we abbreviate the interpolation-
extrapolation scale generated by (E], A]) and (·, ·)]θ, by [(E]α, A

]
α);α ∈ R] and call

it interpolation-extrapolation scale dual to [(Eα, Aα);α ∈ R]. It holds (E−α)′ .= E]α
and (A−α)′ = A]α. For more details see [2, Section V.2].

3. Lq theory for Stokes system

In this section we collect facts about Lq theory for the Stokes system
∂tu−∆u+∇π = f, div u = 0 in Q,

u(0, ·) = u0 on Ω,
(3.1)

equipped with the perfect slip boundary conditions

u · ν = 0, [(Du)ν] · τ = 0 on I × ∂Ω. (3.2)

Unlike the main theorem of this paper which is formulated for Ω ⊂ Rn, n = 2,
results of this sections are valid for n ≥ 2. Let P denote the projection operator
from Lq(Ω) to Lqσ(Ω) associated with the Helmholtz decomposition. By Bu = 0 we
mean that (3.2) holds in the sense of traces. Using the projection P we shall define
the Stokes operator A by Au = −P∆u for u ∈ D(A), where

D(A) = Lqσ(Ω) ∩H2
q,B(Ω), H2

q,B(Ω) := {u ∈ H2
q (Ω), Bu = 0, on ∂Ω}.

Applying the Helmholtz projection P to (3.1) with (3.2), we eliminate the pres-
sure from equations and with the help of the newly established notation the Stokes
system reduces to

∂tu+ Au = Pf, div u = 0 in Q,

u(0, ·) = u0 on Ω, Bu = 0 on I × ∂Ω.
(3.3)

At first we mention some basic properties of the Stokes operator A. From [23] we
know that A ∈ H(Lqσ(Ω)∩H2

q,B(Ω), Lqσ(Ω)). This also tells us that A ∈ P(Lqσ(Ω), ω)
for ω ∈ [0, π/2) (see [11, Theorem II.4.6]). Shimada later showed in [22] the Lq-
maximal regularity for A. In [1, Theorem 1] Abels and Terasawa proved the fol-
lowing result.

Proposition 3.1. Let q ∈ (1,∞), n ≥ 2, r ∈ (n,∞] such that q, q′ ≤ r. Let
Ω ⊂ Rn be a domain with W 2− 1

r ,r-boundary and ϑ ∈ (0, π). Then there is some
R > 0 such that (λ+ A)−1 exists and

(1 + |λ|)‖(λ+ A)−1‖L(Lq(Ω)) ≤ C
for all λ ∈ Σϑ with |λ| ≥ R. Moreover,∥∥∫

ΓR

h(−λ)(λ+ A)−1 dλ
∥∥
L(Lq(Ω))

≤ C‖h‖L∞(Σπ−ϑ)
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for every h ∈ H∞(ϑ), where Γ = ∂Σϑ, ΓR = Γ \ BR(0) and H∞(ϑ) denotes the
Banach algebra of all bounded holomorphic functions h : Σπ−ϑ → C. In particular,
for every ω ∈ R and ϑ′ ∈ (0, ϑ] such that ω + Σϑ′ ⊂ %(−A) the shifted Stokes
operator ω + A admits a bounded H∞-calculus with respect to ϑ′; i.e.,

h(ω + A) :=
1

2πi

∫
Γ

h(−λ)(λ+ ω + A)−1 dλ

is a bounded operator satisfying

‖h(ω + A)‖L(Lq(Ω)) ≤ C‖h‖L∞(Σπ−ϑ)

for all h ∈ H∞(ϑ′).

Note that the class of operators with a bounded H∞-calculus is a subclass of the
operators which have BIP, therefore these operators admit all important properties
which has operators with bounded imaginary powers. For another properties of a
bounded H∞-calculus we refer for example to [8, Section 2, Subsection 2.4].

From the result of Shibata and Shimada in [23] follows that ω + Σϑ′ ⊂ %(−A)
even for ω = 0 provided the domain Ω is bounded and non-axisymmetric (see
Definition 3.8). Thus, Proposition 3.1 and [23, Theorem 1.3] gives A ∈ BIP. The
Stokes operator A has realizations Aα on Eα for some α. Concretely, from [24,
Section 2.2] we know that Aα ∈ H(Eα+1,Eα) for α ≥ −1. Steiger in [24] provides
the characterization of spaces Eα:

Proposition 3.2 ([24, Corollary 2.6]). Set sα := {−2+1/q,−1+1/q, 1/q, 1+1/q}
and F sq (Ω) := Hs

p(Ω) for the complex interpolation functor and F sq (Ω) := Bsq,q(Ω)
for the real interpolation functor. Define

F sq,B(Ω) :=


{u ∈ F sq (Ω), Bu = 0 on ∂Ω}, s ∈ (1 + 1/q, 2],
{u ∈ F sq (Ω), u · ν = 0 on ∂Ω}, s ∈ [1/q, 1 + 1/q),
F sq (Ω), s ∈ [0, 1/q),(
F−sq′,B,σ(Ω)

)′
, s ∈ [−2, 0) \ sα

(3.4)

and

F sq,B,σ(Ω) :=

{
F sq,B(Ω) ∩ Lqσ(Ω), s ∈ [0, 2] \ sα,(
F−sq′,B,σ(Ω)

)′
, s ∈ [−2, 0) \ sα.

(3.5)

Then Eα
.= F 2α

q,B,σ(Ω) for 2α ∈ [−2, 2] \ sα.

This gives

Aα ∈ H(F 2α+2
q,B,σ (Ω), F 2α

q,B,σ(Ω)), 2α ∈ [−2, 2] \ sα. (3.6)

Remark 3.3 ([24, Remark 2.3c]). The Helmholtz projection P enjoys following
continuity properties:

P ∈ L(F sq,B(Ω)) ∩ L(F sq,B(Ω), F sq,B,σ(Ω)), s ∈ (−1 + 1/q, 1 + 1/q) \ sα. (3.7)

We will use the fact, that the property of bounded imaginary powers can be
carried over the interpolation-extrapolation scales.

Proposition 3.4 ([2, Proposition V.1.5.5]). Let A ∈ P(E) and let [(Eα, Aα);α ∈
(−n,∞)] be the interpolation-extrapolation scale generated by (E,A) and an exact
functor. If A ∈ BIP(E,M, σ) then Aα ∈ BIP(Eα,M, σ).

The reiteration property will be needed.
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Proposition 3.5 ([2, Theorem V.1.5.4]). Suppose that A ∈ BIP(E). Then the
interpolation-extrapolation scale [(Eα, Aα);α ∈ [−n,∞)] generated by (E,A) and
complex interpolation functor possesses the reiteration property

[Eα, Eβ ]η
.= E(1−η)α+ηβ , −n ≤ α ≤ β <∞, η ∈ (0, 1).

Let us define the maximal Lq-regularity for the operator A (compare [2, Section
III.1, Subsection 1.5 and Section III.4, Remark 4.10.9.c])

Definition 3.6. Let A ∈ H(E1, E0) and q ∈ (1,∞). We say that the pair(
Lq(I, E0), Lq(I, E1) ∩ W 1,q(I, E0)

)
is a pair of maximal regularity for A (or A

has maximal regularity), if for u0 ∈ (E0, E1)1−1/q,q and f ∈ Lq(I, E0) there exists
a unique solution u ∈ Lq(I, E1) ∩W 1,q(I, E0) of (3.3), and

‖∂tu‖Lq(I,E0) + ‖u‖Lq(I,E0) + ‖Au‖Lq(I,E0) ≤ C
(
‖f‖Lq(I,E0) + ‖u0‖(E0,E1)1−1/q,q

)
.

(3.8)

Further we mention the relation between maximal regularity and negative infin-
itesimal generators of a bounded analytic semigroup.

Proposition 3.7 ([2, Theorem III.4.10.7]). Suppose that E0 is a UMD space, A ∈
H(E1, E0) and there are constants M > 0, ϑ ∈ (0, π/2) such that Σϑ ⊂ %(−A) and
for λ ∈ Σϑ and j = 0, 1 holds

‖A‖L(E1,E0) + (1 + |λ|)1−j‖(λ+A)−1‖L(E0,Ej) ≤M

and suppose that there exist constants N ≥ 1 and θ ∈ [0, π/2) such that A ∈
BIP(E0, N, θ). Then A has maximal regularity and the estimate (3.8) holds uni-
formly with respect to T .

To specify the shape of the domain Ω we add the definition of axisymmetric
domain in the same way as in [9, Definition-Lemma 1].

Definition 3.8. Let Ω be a smooth bounded open subset of Rn, n ≥ 2. We say
that Ω is axisymmetric if and only if there exists a nontrivial rigid motion R which
is tangent to ∂Ω; or equivalently, which satisfies for all t ∈ R etRΩ = Ω. Here etR

is the isometry defined via d
dte

tR(x) = RetR(x).

By rigid motions R we understand affine maps R : Ω → Rn whose linear part
is antisymmetric. If we consider the most common dimensions n = 2 and n = 3
we can use simpler definition. A domain in R2 is axisymmetric if it has a circular
symmetry around some point. A domain in R3 is axisymmetric if it admits an
axis of symmetry; i.e., the domain is preserved by a rotation of arbitrary angle
around this axis. If the domain admits two nonparallel axes of symmetry, then it
is spherically symmetric around some point.

The main result of this section is the following.

Theorem 3.9. Let Ω ⊂ Rn be a bounded non-axisymmetric C2,1 domain, q ∈
[2,∞), f ∈ Lq(I,W−1,q′

σ (Ω)), u0 ∈ B1−2/q
q,q,B,σ(Ω) then there exists a constant C > 0

and the unique weak solution of (3.3) satisfying

‖∇u‖Lq(Q) + ‖u‖
BUC(I,B

1−2/q
q,q,B,σ(Ω))

≤ C
(
‖f‖

Lq(I,W−1,q′
σ (Ω))

+ ‖u0‖B1−2/q
q,q,B,σ(Ω)

)
.

The constant C is independent of T, u, f and u0.
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Proof. We consider the system (3.3) instead of (3.1) with (3.2). Since for UMD
space E, E′ is one as well and for an interpolation couple of UMD spaces the
interpolation spaces are also UMD (see [2, Theorem III.4.5.2]), E−1/2 is a UMD
space. Proposition 3.4 gives us A−1/2 has BIP. Together with (3.6), [2, Corollary
I.1.4.3] and [23, Theorem 1.3] we can see that assumptions of Proposition 3.7 are
fulfilled for A−1/2. Therefore we obtain (3.8) for A−1/2 and E0 = E−1/2:

‖∂tu‖Lq(I,E−1/2) + ‖u‖Lq(I,E−1/2) + ‖A−1/2u‖Lq(I,E−1/2)

≤ C
(
‖f‖Lq(I,E−1/2) + ‖u0‖(E−1/2,E1/2)1−1/q,q

)
.

(3.9)

It remains to determine the correct spaces in (3.9). For the space of initial
condition u0 we get by Proposition 3.2 for the complex interpolation functor

u0 ∈ (H−1
q,B,σ(Ω), H1

q,B,σ(Ω))1−1/q,q.

This space equals (with equivalent norms) to B1−2/q
q,q,B,σ(Ω) since for q ≥ 2,

B
1−2/q
q,q,B,σ(Ω) .= (Lqσ(Ω), H1

q,B,σ(Ω))1−2/q,q

.= ([H−1
q,B,σ(Ω), H1

q,B,σ(Ω)]1/2, H1
q,B,σ(Ω))1−2/q,q

.= (H−1
q,B,σ(Ω), H1

q,B,σ(Ω))1−1/q,q,

(3.10)

where we used Proposition 3.5. The similar interpolation of the solenoidal functions
in case of Dirichlet boundary conditions is done in [3, Proof of Lemma 9.1]. From
the embedding [2, Theorem V.4.10.2]

Lq(I, E1) ∩W 1,q(I, E0) ↪→ BUC(I, (E0, E1)1−1/q,q),

we obtain u ∈ BUC(I,B1−2/q
q,q,B,σ(Ω)). Due to ‖A−1/2u‖E−1/2 = ‖u‖E1/2 and E1/2

.=
W 1,q
σ (Ω) we have boundedness of ∇u in Lq(Q). It remains to find the space for f .

By Proposition 3.2,
f ∈ Lq(I,W−1,q′

σ (Ω)),
since Hs

q (Ω) .= W s,q(Ω) for s ∈ Z. �

Without loss of generality we may assume that there exists a symmetric tensor
G ∈ Lq(Q), such that the weak formulation of the right hand side of (3.1) can be
written in the form∫

Q

G : Dϕdx dt =
∫
I

〈f, ϕ〉dt ∀ϕ ∈ Lq
′
(I,W 1,q′

σ (Ω)). (3.11)

To prove it, we proceed in the same way like in [16, Proof of Proposition 2.1,
Step 1] where the authors are dealing with periodic boundary conditions. Consider
the Stokes system which can be formulated in the weak form for a. a. t ∈ I as
follows ∫

Ω

Dw(t) : Dϕdx = 〈f(t), ϕ〉 ∀ϕ ∈W 1,q
σ (Ω). (3.12)

As f ∈ Lq(I,W−1,q
σ (Ω)), there exists a solution w(t) ∈ W 1,q

σ (Ω) of (3.12) enjoying
the estimate

‖w(t)‖W 1,q(Ω) ≤ C‖f‖W−1,q
σ (Ω)

with the positive constant C independent of t. Consequently, w ∈ Lq(I,W 1,q
σ (Ω))

and
‖w‖Lq(I,W 1,q(Ω)) ≤ C‖f‖Lq(I,W−1,q

σ (Ω)).



EJDE-2014/70 REGULARITY OF PLANAR FLOWS 9

Defining G = Dw we conclude (3.11) from (3.12) by density arguments. Therefore,
for all f ∈ Lq(I,W−1,q

σ (Ω)) there exists G ∈ Lq(Q) such that (3.11) and estimate

‖G‖Lq(Q) ≤ C‖f‖Lq(I,W−1,q
σ (Ω))

holds. We would like to point out that the perfect slip boundary conditions are
hidden in the weak formulation. If G is smooth enough then it holds∫
I

〈f, ϕ〉dt = −
∫
Q

divG ·ϕdx dt+
∫
I

∫
∂Ω

(Gν)τ(ϕ · τ) dσ dt ∀ϕ ∈ Lq(I,W 1,q
σ (Ω)).

The Stokes system (3.1) with (3.2) can be formulated in the weak form as follows∫
I

〈∂tu, ϕ〉dt+
∫
Q

Du : Dϕdx dt =
∫
Q

G : Dϕdxdt ∀ϕ ∈ Lq(I,W 1,q
σ (Ω)). (3.13)

Introducing the solution operator S : (G, u0) 7→ Du, we conclude first from
the existence theory, that S is continuous from L2(Q) × L2

σ(Ω) to L2(Q) with
the norm less or equal to 1. By Theorem 3.9 we know that S is continuous from
Lq1(Q)×B1−2/q1

q1,q1,B,σ
(Ω) to Lq1(Q) with norm estimated by Cq > 1. Since S(G, u0) =

S(G, 0)+S(0, u0), Riesz-Thorin theorem and the real interpolation method implies
following assertion, see for example [7, Theorem 5.2.1 and Theorem 6.4.5].

Lemma 3.10. Let Ω be a bounded non-axisymmetric C2,1 domain and q1 > 2.
There exist constant C > 0 and K := C

q1/(q1−2)
q1 such that for every q ∈ (2, q1),

arbitrary G ∈ Lq(I, Lqσ(Ω)), u0 ∈ B
1−2/q
q,q,B,σ(Ω) there exists a unique solution u of

(3.13) satisfying

‖Du‖Lq(Q) ≤ K1− 2
q

(
‖G‖Lq(Q) + C‖u0‖B1−2/q

q,q,B,σ(Ω)

)
.

For q > 2 small enough Lemma 3.10 allows us to prove the Lq theory for a
generalized Stokes system, where the Stokes operator is replaced by a general elliptic
operator with bounded measurable coefficients. More precisely, let 0 < γ1 ≤ γ2

and suppose that the coefficient matrix M ∈ L∞(Q) is symmetric in the sense
Mkl
ij = M ij

kl = M ji
kl for i, j, k, l = 1, 2 and fulfils for all B ∈ R2×2, x ∈ Ω and t ∈ I,

γ1|B|2 ≤M(t, x) : B ⊗B ≤ γ2|B|2.

We consider the system∫
I

〈∂tu, ϕ〉dt+
∫
Q

M : Du⊗Dϕdxdt

=
∫
Q

G : Dϕdx dt ∀ϕ ∈ Lq(I,W 1,q
σ (Ω)).

(3.14)

The following lemma states the Lq theory result.

Lemma 3.11. Let Ω be a bounded non-axisymmetric C2,1 domain and q > 2.
There exist constants K,L > 0 such that if q ∈ [2, 2 + Lγ1γ2 ), G ∈ Lq(Q) and u0 ∈
B

1−2/q
q,q,B,σ(Ω) then the unique weak solution u ∈ Lq(I,W 1,q

σ (Ω)) of (3.14) satisfies

‖Du‖Lq(Q) + γ
− 1
q

2 ‖u‖
BUC(I,B

1−2/q
q,q,B,σ(Ω))

≤ K

γ1

(
‖G‖Lq(Q) + γ

1− 1
q

2 ‖u0‖B1−2/q
q,q,B,σ(Ω)

)
.
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Proof. We omit the proof. It can be found in [15, Proposition 2.1] for periodic
boundary conditions or in [13, Proposition 2.1] for homogeneous Dirichlet boundary
conditions. The only generalization consists of including perfect slip boundary
conditions. Lq theory result for classical Stokes system with perfect slip boundary
conditions is needed, but it is shown in Lemma 3.10. �

We also use the Lq theory for stationary variant of the system (3.14). For
symmetric coefficient matrix M ∈ L∞(Ω) fulfilling for all B ∈ R2×2 and x ∈ Ω,
γ1|B|2 ≤M(x) : B ⊗B ≤ γ2|B|2, 0 < γ1 ≤ γ2 we sutdy the problem∫

Ω

M : Du⊗Dϕdx =
∫

Ω

G : Dϕdx ∀ϕ ∈W 1,q
σ (Ω). (3.15)

Lemma 3.12. Let Ω be a bounded non-axisymmetric C2,1 domain. Then there are
constants K,L > 0 such that if q ∈ [2, 2 + Lγ1γ2 ) and G ∈ Lq(Ω), then the unique
weak solution of (3.15) satisfies

‖Du‖Lq(Ω) ≤
K

γ1
‖G‖Lq(Ω).

Proof. See [15, Lemma 2.6] for no slip boundary conditions. For perfect slip bound-
ary conditions we would proceed analogically. �

4. Proof of the main results for the quadratic potential

In this section we prove Theorem 1.2 for p = 2.
Step 1. In this step we obtain a priori estimates from the existence theory. For
f ∈ W 1,2(I,W−1,2

σ (Ω)) with f(0) ∈ L2(Ω) and u0 ∈ W 2,2(Ω) ∩W 1,2
σ (Ω) we know

the existence of a unique weak solution of (1.1) with (1.2) fulfilling

u ∈ L∞(I, L2(Ω)) ∩ L2(I,W 1,2
σ (Ω)),

∂tu ∈ L∞(I, L2(Ω)) ∩ L2(I,W 1,2
σ (Ω)), π ∈ L2(I, L2(Ω)).

(4.1)

It can be shown using Galerkin approximation. Let {ωk}∞k=1 be the orthogonal
basis of L2

σ(Ω) and W 1,2
σ (Ω) consisting of eigenvectors of the Stokes operator with

perfect slip boundary conditions. Such basis can be easily constructed provided
Ω is non-circular domain. Set Hn = span{ω1, . . . , ω

N} and define the continuous
projection PN : L2

σ(Ω)→ HN as follows:

PNu =
N∑
k=1

(u, ωk)ωk.

Define uN (t, x) =
∑N
k=1 c

N
k (t)ωk where cNk (t) solves the Galerkin system

〈∂tuN (t), ωk〉+
∫

Ω

S(DuN ) : D(ωk) dx+
∫

Ω

(un ⊗ un) : ∇ωk dx = 〈f, wk〉,

uN (0) = uN0 = PNu0, 1 ≤ k ≤ N.
(4.2)

After multiplying the Galerkin system (4.2) by cNk (t), summing up, using Gronwall’s
and Korn’s inequalities we derive the following a priori estimate,

sup
t∈I
‖uN (t)‖22 +

∫
I

‖uN (τ)‖21,2 dτ ≤ C.
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Further we apply the time derivative to (4.2), multiply it by ∂tc
N
k (t) and sum

up. Unlike the previous apriori estimates, before using Gronwall’s inequality, the
boundedness of ‖∂tuN (0)‖22 needs to be shown. This can be done easily, since
PN : W 2,2(Ω)∩W 1,2

σ (Ω)→ HN is bounded uniformly with respect to N (c. f. [19,
Lemma 4.26]), we can use (4.2). Thus, after Gronwall’s inequality we have

sup
t∈I
‖∂tuN (t)‖22 +

∫
I

‖∂tuN (τ)‖21,2 dτ ≤ C.

Passing to the limit with N →∞ (where we use the Aubin-Lions’ lemma to obtain
the strong convergence of uN in L2(I, L4(Ω)) and Minty’s trick to identify the limit
of S(DuN ) with S(Du)) we get the first two relations in (4.1).

Since ∂tu, divS(Du), div(u ⊗ u) and f lie in L2(I,W−1,2
σ (Ω)), we can recon-

struct the pressure π at almost every time level via De Rham’s theorem and Nečas’
theorem on negative norms and obtain π ∈ L2(Ω) for almost every t ∈ I.

Step 2. We improve the regularity in space. If we additionally assume f ∈
L∞(I, L2(Ω)) we are able to show that

u ∈ L∞(I,W 2,2(Ω)), π ∈ L∞(I,W 1,2(Ω)). (4.3)

From Step 1 we know that ∂tu is regular enough in order to move it to the right
hand side of (1.1)1. At almost every time level t ∈ I we can use the stationary
theory. Boundary regularity in tangent direction is based on the difference quotient
technique. In normal direction near the boundary the main tools are the operator
curl and Nečas’ theorem on negative norms. See for example [20, Section 3] for
homogeneous Dirichlet boundary conditions. The information about the pressure
comes from the fact that the right hand side of ∇π = f + divS − div(u⊗ u)− ∂tu
is in L2(Ω) for a. a. t ∈ I. Adding the assumption

∫
Ω
π dx = 0 we get by Poincaré

inequality the existence of π ∈ W 1,2(Ω) at almost every time level t ∈ I together
with a bound independent of t.

Step 3. We improve the regularity in time using Lq theory for Stokes system. If we
moreover suppose that f ∈ Lq1(I,W−1,q′1

σ (Ω)) for some q1 > 2 and u0 ∈W 2+β,2(Ω)
for β ∈ (0, 1/4) we are able to prove the existence of q2 > 2 such that the unique
weak solution satisfies for all q ∈ (2, q2)

∂tu ∈ Lq(I,W 1,q
σ (Ω)) ∩BUC(I,B1−2/q

q,q,B,σ(Ω)). (4.4)

Denoting w := ∂tu and τ := ∂tπ in the sense of distributions, we observe from
(1.1) that (w, τ) solves∫

I

〈∂tw,ϕ〉dt+
∫
Q

∂2
DuΦ(|Du|) : Dw⊗Dϕdxdt =

∫
I

〈∂t(f − (u ·∇)u), ϕ〉dt, (4.5)

for all ϕ ∈ Lq(I,W 1,q
σ (Ω)). It is easy to see that ∂t(u · ∇u) ∈ Ls(I,W−1,s(Ω)) for

all s ∈ [1, 4].
To obtain (4.4) as a result of application of Lemma 3.11 for the system (4.5)

we need to ensure that ‖∂tu(0)‖
B

1−2/q
q,q,B,σ(Ω)

is bounded. Let β ∈ (0, 1/4) and

ϕ ∈ W−β,2(Ω) with ‖ϕ‖W−β,2(Ω) ≤ 1 be arbitrary. We recall that the Helmholtz
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projection P enjoys the continuity properties as mentioned in Remark 3.3. Thus,

|〈∂tu(0), ϕ〉| = |〈∂tu(0), Pϕ〉|
≤ |〈divS(Du0) + (u0 · ∇)u0 − f(0), Pϕ〉|
≤ C(‖u0‖W 2+β,2(Ω) + ‖u0‖2W 2,2(Ω) + ‖f(0)‖Wβ,2(Ω)) ≤ C.

(4.6)

SinceW β,2(Ω) ↪→ B
1−2/q
q,q (Ω) if q is close enough to 2 we obtain ‖∂tu(0)‖

B
1−2/q
q,q,B,σ(Ω)

≤
C for all q ∈ (2, q2) where q2 is sufficiently close to 2.
Step 4. We show that u ∈ L∞(I,W 2,q(Ω)) due to the stationary theory. The
previous step shows us that ∂tu ∈ L∞(I, Lq(Ω)) for some q > 2. Therefore we are
able to move ∂tu to the right hand side of (1.1)1 and apply the result [14, Theorem
3] for p = 2 which tells us that there exists a positive ε, such that u ∈ W 2,2+ε(Ω)
and π ∈W 1,2+ε(Ω) for (1.1) with perfect slip boundary conditions.
Step 5. We improve the regularity of π in time. There exists a q > 2 such that for
all s ∈ (0, 1

2 )
π ∈W s,q(I, Lq(Ω)).

We closely follow the proof of [13, Lemma 3.4]. For a function g(t) defined on the
time interval I and (t1, t2) ⊂ I set δtg := g(t2) − g(t1). The idea of the proof is
based on subtracting the equation (1.1)1 in the time t2 from the same equation in
time t1 which leads to∫

Ω

δtπ divϕdx =
∫

Ω

[δt(∂tu− f)ϕ− δt(u⊗ u− S(Du))Dϕ] dx, (4.7)

which holds for all ϕ ∈W 1,2(Ω) with ϕ ·ν = 0 on ∂Ω. From (4.3) and (4.4) one may
easily show the existence of q > 2 and s ∈ (0, 1/2) such that u ∈W s,q(I,W 1,q(Ω))
and ∂tu ∈W s,q(I, Lq(Ω)). Together with the assumptions on the right hand side f
we can notice that (4.7) holds also for all ϕ ∈W 1,q′(Ω) with ϕ = 0 at ∂Ω. Consider
the problem

divϕt = δtπ|δtπ|q−2 − 1
|Ω|

∫
Ω

δtπ|δtπ|q−2 dx in Ω,

ϕt = 0 on ∂Ω.
(4.8)

The right hand side of (4.8) has zero mean value over Ω and belongs to Lq
′
(Ω) due

to (4.3), therefore Bogovskĭı’s Lemma (for the formulation and proof c.f. [6, Lemma
3.3]) guaranties the existence of ϕt satisfying the estimate ‖ϕt‖1,q′ ≤ C‖δtπ‖q−1

q .
Taking ϕt as a test function in (4.7) leads to

‖δtπ‖qq ≤ ε‖δtπ‖qq + Cε(‖δt∂tu‖qq + ‖δtf‖q−1,q + ‖δt∇u‖qq). (4.9)

Dividing (4.9) by |t2 − t1|1+sq and integrating twice over I gives

‖π‖qW s,q(I,Lq(Ω)) =
∫
I

∫
I

‖δtπ‖qq
|t2 − t1|1+sq

dt1 dt2 ≤ C,

which completes the proof.
Step 6. We summarize the result of this section and uses imbedding theorems to
complete the proof. Up to now we have shown

u ∈ L∞(I,W 2,q(Ω)) ∩W 1,q(I, Lq(Ω)), π ∈ L∞(I,W 1,q(Ω)) ∩W s,q(I, Lq(Ω)).
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As we are in two dimensions, q > 2, s ∈ ( 1
q ,

1
2 ), following imbeddings hold

L∞(I,W 1,q(Ω)) ↪→ L∞(I, C0,1− 2
q (Ω)), (4.10)

W 1,q(I, Lq(Ω)) ↪→ C1− 1
q (I, Lq(Ω)), (4.11)

W s,q(I, Lq(Ω)) ↪→ Cs−
1
q (I, Lq(Ω)). (4.12)

Now we are ready to apply the following lemma.

Lemma 4.1 ([13, Lemma 2.6]). Let Ω ⊂ R2 be a bounded C2 domain. Let f ∈
L∞(I, C0,α(Ω)) and f ∈ C0,β(I, Ls(Ω)) for some α, β ∈ (0, 1) and s > 1. Then
f ∈ C0,γ(Q) with γ = min{α, αβs

αs+2}.

Using (4.10) and (4.11) together with Lemma 4.1 we obtain ∇u ∈ C0,α(Q) for
certain α > 0. (4.10), (4.12) with Lemma 4.1 gives us π ∈ C0,α(Q) for some α > 0,
which concludes the proof of main results for p = 2.

5. Proof of the main results for the super-quadratic potential

In this section we prove Theorem 1.2 for p > 2. The proof consists of several
steps.
Step 1. We introduces quadratic approximations. In a similar way as in [18] we
are concerned with the regularized problem

∂tu
ε − divSε(Duε) + (uε · ∇)uε +∇πε = f, div uε = 0 in Q,

uε(0, ·) = u0 in Ω,
(5.1)

where we consider quadratic approximation Sε of S defined for ε ∈ (0, 1) by the
truncation of the viscosity µ from above,

µε(|Duε|) := min
{
µ(|Du|), 1

ε

}
, Sε(Duε) := µε(|Duε|)Duε. (5.2)

Scalar potential Φε to Sε(Duε) can be constructed in the following way

Φε(s) :=
∫ s

0

µε(t)tdt

and satisfies growth conditions (1.3) for p = 2, i.e. there exists C1 > 0 and C(ε)
such that for all A,B ∈ R2×2

sym

C1|B|2 ≤ ∂2
AΦε(|A|) : B ⊗B ≤ C(ε)|B|2. (5.3)

The approximation (5.2) guarantees that for a fixed ε ∈ (0, 1) the results of the
previous section holds for uε and πε solving (5.1) equipped with the perfect slip
boundary conditions.
Step 2. We present growth conditions dependent on ε. Due to the results of the
previous section we are able to use techniques which enable us to gain uniform
estimates with respect to ε. At first we need a growth estimates of Φε with precise
dependence on ε. In other words, the constant C(ε) in the estimate (5.3) needs to be
specified. To this purpose we define the function ϑε by ϑε(s) := min{(1 + s2)

1
2 , 1

ε}.
Now, there exist constants 0 < C3 ≤ C4 such that for all ε ∈ (0, 1) and A,B ∈ R2×2

sym

C3ϑε(|A|)p−2|B|2 ≤ ∂2
AΦε(|A|) : B ⊗B ≤ C4ϑε(|A|)p−2|B|2. (5.4)
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As a corollary of (5.4), the following estimates can be derived (see [20, Lemma 2.22]
for the proof.)

Cϑε(|A|)p−2|A|2 ≤ Sε(A) : A, (5.5)

C|Sε(A)| ≤ ϑε(|A|)p−2|A|. (5.6)

The lower estimate in (5.5) can be done independent of ε, since (5.3) holds:

C5|A|2 ≤ Sε(A) : A. (5.7)

At this point we would like to emphasize that from now all constants in following
steps are independent of ε.
Step 3. We provide L∞(I, L2(Ω)) ∩ L2(I,W 1,2(Ω)) estimates of uε and ∂tu

ε. We
recall estimates from the previous section which hold also for the approximated
problem since the lower bound in (5.7) is independent on ε.

‖uε‖L∞(I,L2(Ω)) + ‖∇uε‖L2(Q) ≤ C, (5.8)

‖∂tuε‖2L∞(I,L2(Ω)) + ‖∇∂tuε‖L2(Q) ≤ C. (5.9)

The relation (5.8) is an a priori estimate obtained by taking solution as a test
function (at the level of Galerkin approximation). Roughly speaking, the estimate
(5.9) is performed by taking time derivative of the equation (5.1) and testing by
time derivative of uε. More precisely, it is not applied directly to the equation (5.1),
but still to the Galerkin system. To estimate the time derivative of the Galerkin
approximation of uε at the time t = 0 we proceed in the same way like in (4.6).

Note that (5.8) and (5.9) give uε ∈ L∞(I,W 1,2(Ω)),

‖∇uε(s, ·)‖22 − ‖∇uε(0, ·)‖22 =
∫

Ω

∫ s

0

∂t|∇uε(t, ·)|2 dtdx

≤ 2‖∇uε‖L2(Q)‖∂t∇uε‖L2(Q) ≤ C.

Step 4. We escribe the boundary ∂Ω. To discuss boundary regularity in following
steps, we need a suitable description of the boundary ∂Ω. Let us denote x =
(x1, x2). We suppose that Ω ∈ C3, therefore there exists c0 > 0 such that for all
a0 > 0 there exists n0 points P ∈ ∂Ω, r > 0 and open smooth set Ω0 ⊂⊂ Ω that
we have

Ω ⊂ Ω0 ∪
⋃
P

Br(P )

and for each point P ∈ ∂Ω there exists local system of coordinates for which P = 0
and the boundary ∂Ω is locally described by C3 mapping aP that for x1 ∈ (−3r, 3r)
fulfils

x ∈ ∂Ω⇔ x2 = aP (x1), B3r(P ) ∩ Ω = {x ∈ Br(P ) andx2 > aP (x1)} =: ΩP3r,

∂1aP (0) = 0, |∂1aP (x1)| ≤ a0, |∂2
1aP (x1)|+ |∂3

1aP (x1)| ≤ c0.

Point P can be divided into k groups such that in each group ΩP3r are disjoint and
k depends only on dimension n. Let the cut-off function ξP (x) ∈ C∞(B3r(P )) and
reaches values

ξP (x)


= 1 x ∈ Br(P ),
∈ (0, 1) x ∈ B2r(P ) \Br(P ),
= 0 x ∈ R2 \B2r(P ).
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Next, we assume that we work in the coordinate system corresponding to P . Par-
ticularly, P = 0. Let us fix P and drop for simplicity the index P . The tangent
vector and the outer normal vector to ∂Ω are defined as

τ =
(
1, ∂1a(x1)

)
, ν =

(
∂1a(x1),−1

)
,

tangent and normal derivatives as

∂τ = ∂1 + ∂1a(x1)∂2, ∂ν = −∂2 + ∂1a(x1)∂1.

Step 5. We show that uε ∈ L∞(I,W 2,2(Ω)) uniformly in ε ∈ (0, 1). From Step
3 we obtained that ∂tuε ∈ L∞(I, L2(Ω)), therefore we can fix t ∈ I, move ∂tuε to
the right hand side of (5.1) and at almost every time level consider the stationary
problem

−divSε(Duε) + (uε · ∇)uε +∇πε = h, div uε = 0 in Ω,

uε · ν = 0, [Sε(Duε)ν] · τ = 0 on ∂Ω,
(5.10)

where h := f − ∂tuε ∈ L2(Ω). Previous section provides uε ∈W 2,2(Ω), Sε(Duε) ∈
W 1,2(Ω) and πε ∈W 1,2(Ω). Thus we can multiply (5.10) by a suitable test function
which is at least in L2(Ω) and integrate over Ω. We focus only on the boundary
regularity and work in the local system of coordinates. Following [18, Lemma 4.2,
Remark 4.9] we choose as a test function ϕ = (ϕ1, ϕ2),

ϕ = (∂2[Θ− ∂τ (uε · ν)ξ2], ∂1[−Θ + ∂τ (uε · ν)ξ2]),

Θ := ∂ν(uε · τ)ξ2 − uε · (∂ντ + ∂τν)ξ2.

This test function is constructed to get rid of the pressure πε and to obtain optimal
information from the elliptic term. These most difficult estimates, in which we ex-
tract from −

∫
Ω

divSε(Duε)·ϕdx boundedness of the term
∫

Ω
µε(|Duε|)|∇2uε|2 dx,

are done in [18, Proof of Theorem 1.7], therefore we omit the calculations. It re-
mains to estimate the convective term and the right hand side of (5.10). After long,
but elementary calculations we are able to show that

|
∫

Ω

(uε · ∇)uε · ϕdx| ≤ C
∫

Ω

(|uε||∇uε|2 + |uε|2|∇uε|) dx, (5.11)

where we used the divergence-free constraint and the properties of the test function
ϕ. Using Hölder and Young inequalities, ‖ · ‖24 ≤ C‖ · ‖1,2‖ · ‖2 and the information
uε ∈ L∞(I,W 1,2(Ω)) we continue estimating (5.11):

C(‖uε‖2‖∇uε‖24 + ‖uε‖24‖∇uε‖2) ≤ ε‖∇2uε‖22 + C‖u‖21,2 + C‖∇uε‖22‖uε‖22.
The last estimate is easy.∣∣ ∫

Ω

h · ϕdx
∣∣ ≤ ∫

Ω

|h|(|∇2uε|+ |∇uε|+ |uε|) dx ≤ C‖h‖22 + ε‖∇2uε‖22 + C‖u‖21,2.

Since µε(|Duε|) > 1 and ε > 0 can be chosen arbitrarily small, we obtain

‖∇2uε‖22 ≤
∫

Ω

µε(|Duε|)|∇2uε|2 dx ≤ C, (5.12)

where C does not depend on ε and t ∈ I, therefore we have

uε ∈ L∞(I,W 2,2(Ω)). (5.13)
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Step 6. We improve the information about ∂tuε. In the same spirit as in Step
3 from the previous section we denote w := ∂tu and τ := ∂tπ in the sense of
distributions, which solves (4.5) where Φ is replaced by Φε. The right hand side of
(4.5) is bounded uniformly with respect to ε ∈ (0, 1) in Lq0(I,W−1,q′0

σ (Ω)) for some
q0 > 2, since from (5.8), (5.9) and (5.13) we have ∂t[(uε · ∇)uε] ∈ Ls(I,W−1,s(Ω))
for all s ∈ [1, 4].

Set Vε := supQ |ϑε(|Duε|)|. From (5.4) we have for all t ∈ I, x ∈ Ω, for all
ε ∈ (0, 1) and A,B ∈ R2×2

sym

c|B|2 ≤ ∂2
AΦε(|A|) : B ⊗B ≤ CV p−2

ε (|A|)|B|2.

From Lemma 3.11 we have the existence of positive constants K and L such that
for all q ∈ (2, q2], where q2 := 2 + L/V p−2

ε holds

‖∇w‖Lq(Q) + V
2−p
q

ε ‖w‖
BUC(I,B

1−2/q
q,q,B,σ(Ω))

≤ K
(
‖f‖Lq(I,W−1,q′ (Ω)) + V (p−2)(1−1/q)

ε ‖∂tu0‖B1−2/q
q,q,B,σ(Ω)

)
.

(5.14)

Without loss of generality we may assume that q2 < q0. Thus, after estimating last
norm on the right hand side of (5.14) in the same way like in Step 3 in Section 3
we have

‖∂tuε‖BUC(I,B
1−2/q
q,q,B,σ(Ω))

≤ C
(
V
p−2
q

ε + V p−2
ε

)
≤ CV p−2

ε .

Step 7. We improve the information about ∇2uε. In this step we obtain better
space regularity. Up to now we have ϑε ∈ L∞(I,W 1,2(Ω)). We are going to show
that ϑε ∈ L∞(I,W 1,q(Ω)) for some q > 2.

We omit estimates of ∇2uε in the interior of Ω and we focus on estimates near
the boundary. We start with the tangential direction. Localizing the problem, we
work in ΩP3r, where the boundary is locally described by the C3 mapping ap. For
simplicity we drop the index P .

We multiply (5.10) by −∂τϕξ, integrate over Ω3r and after similar steps as in
[18, Lemma 4.6] we derive the identity∫

Ω3r

∂τSε(Duε) : Dϕξ dx

= −
∫

Ω3r

h · ∂τ (ϕξ) dx+
∫

Ω

(uε · ∇)uε∂τϕξ dx

+
∫

Ω3r

Sε(Duε) :
[
∂τϕ⊗∇ξ −∇ϕ∂τξ + (∂2

1a, 0)⊗ ∂2ϕξ +∇
(
ϕ · ∂τν

ν

|ν|2
ξ
)]

dx

+
∫

Ω3r

divSε(Duε) · [(ϕ · ∂τν)
ν

|ν|2
ξ − ϕ∂τξ] dx

+
∫

Ω3r

∂2
1a[h2 + (divSε(Duε))2 − (uε · ∇uε)2]ϕ1ξ dx

+
∫

Ω3r

[h1 + ∂1ah2 + (divSε(Duε))1 + ∂1a(divSε(Duε))2 + (uε · ∇uε)1

+ ∂1a(uε · ∇uε)2]ϕ∇ξ dx
(5.15)
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for all ϕ ∈W 1,q′

σ (Ω), suppϕ ⊂ Ω3r. Terms on the right hand side of (5.15) comes at
first from the fact that we add and subtract some lower order terms in order to let
the boundary term vanish while integrating by parts. Second, tangent derivative
does not commute with the gradient and we use ∇∂τϕ = ∂τ∇ϕ + (∂2

1a, 0) ⊗ ∂2ϕ.
Third, we use (5.10) and replace ∂2π

ε by h2 + (divSε(Duε))2 + (uε · ∇uε)2 and
similarly for ∂τπε.

We denote w := ∂τu
εξ − (0, ∂2

1au
ε
1)ξ + z, where z is the solution of

div z = −∂τuε · ∇ξ − ∂2
1au

ε
1∂2ξ in Ω3r, (5.16)

z = 0 on ∂Ω3r. (5.17)

The right hand side of (5.16) was obtained from div
(
− ∂τuεξ + (0, ∂2

1au
ε
1)ξ
)

using
the fact that div uε = 0. The role of z is to ensure that divw = 0. On ∂Ω it holds
w · ν = 0 since

w · ν = [∂τuε · ν + ∂2
1au

ε
1]ξ + z · ν = ∂τ (uε · ν)ξ = 0.

Thus, the compatibility condition holds∫
∂Ω

z · ν dσ =
∫

Ω

div z dx =
∫

Ω

div(−∂τuεξ + (0, ∂2
1au

ε
1)ξ) dx

= −
∫
∂Ω

∂τ (uε · ν)ξ dσ = 0

and z solving (5.16) and (5.17) exists by Bogovskĭı’s Lemma and enjoys the estimate
‖z‖1,q ≤ C‖∇uε‖q for some C > 0.

Using the definition of w, from (5.15) we obtain∫
Ω

∂DuεSε(Duε) : Dw ⊗Dϕdx = 〈g, ϕ〉 ∀ϕ ∈W 1,q′

σ (Ω),

with

〈g, ϕ〉 = RHS of (5.15) +
∫

Ω

∂DuεSε(Duε) : [Dz + ∂τu
ε ⊗∇ξ

+ (∂2
1a, 0)⊗S ∂2u

εξ −D
(
(0, ∂2

1a, 0)ξ
)
]Dϕdx.

Due to the assumption on f and results from Step 4 we have ‖g‖−1,q′2
≤ CV p−2

ε

and after application of Lemma 3.12 we obtain

‖∇∂τuεξ‖Lq(Ω) ≤ CV p−2
ε . (5.18)

We recall that q depends on ε by the relation q ∈ (2, 2 + L/V p−2
ε ]. In order

to control whole ∇2uε we need an estimate of type (5.18) in the normal direction
which is locally x2. Since ∂2

2u
ε
2 can be expressed from the condition div uε = 0, we

focus on ∂2
2u

ε
1. Following [15, Theorem 3.19] we can extract the desired estimate

from the equation (5.10) after employment of the operator curl. Let us shorten
Sε(Duε) to Sε and ϑε(|Duε|) to ϑε. Denoting G := ∂2Sε12 we have due to (5.6) and
(5.4),

‖ξG‖−1,q ≤ ‖Sε12‖q ≤ ‖ϑε
p−2Duε‖q,

‖∂1(ξG)‖−1,q ≤ C‖ϑεp−2Duε‖q + C ′‖ϑεp−2∂1∇uε‖q.
From (5.10) after applying curl we have

‖∂2(ξG)‖−1,q ≤ C(‖∂1(Sε21 + Sε22 − Sε11)‖q + ‖f‖q + ‖uε · ∇uε‖q + ‖∂tuε‖q)

≤ C
{
‖ϑεp−2Duε‖q + ‖ϑεp−2∂1∇uε‖q + V p−2

ε + 1
}

:= H.
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Nečas’ theorem on negative norms gives

‖ξG‖q ≤ C(‖ξG‖−1,q + ‖∇(ξG)‖−1,q) ≤ H.

From the definition of G and symmetry of Du we obtain

∂12Sε12∂2Du
ε
12 =

G

2
− 1

2
∂11Sε12∂2Du

ε
11 −

1
2
∂22Sε12∂2Du

ε
22.

Using ∂12Sε12 ≥ Cϑε
p−2 and the condition div uε = 0 we get that ‖ξϑεp−2∂2

2u
ε
1‖q ≤

H. Thus,

‖ξϑp−2
ε ∇2uε‖q ≤ C‖ξG‖q + ‖ξϑp−2

ε ∇∂τuε‖q + C̃ sup
x1∈(−3r,3r)

|∂1a|‖ξϑp−2
ε ∇2uε‖q,

(5.19)
where C̃ is absolute constant. Since we can choose r sufficiently small in order to
C̃ maxP∈∂Ω supx1∈(−3r,3r) |∂1a| ≤ 1/2, the last term (5.19) can be absorbed into
the left hand side. We have

‖ξϑp−2
ε ∇2uε‖q2 ≤ CV p−2

ε V p−2
ε . (5.20)

From (5.12) the boundedness of the term
∫

Ω
µε(|Duε|)|∇2uε|2 dx is obtained, in

other words ‖ϑ
p−2
2

ε ∇2uε‖2 ≤ C. Interpolation of this result with (5.20) gives for
q ∈ (2, q2)

‖ϑ
p−2
2

ε ∇2uε‖q ≤ CV β2(p−2)
ε , (5.21)

where 1/q = β/q2 + (1− β)/2. Since it holds

‖ϑp/2ε ‖1,q ≤ ‖ϑp/2ε ‖q + ‖ϑ
p−2
2

ε ∇2uε‖q,

we want to use the following lemma for f = ϑ
p/2
ε .

Lemma 5.1. Let Ω ⊂ R2 be a bounded C2 domain and f ∈ W 1,q(Ω) for some
q > 2. Then f ∈ C(Ω) and there is C > 0 independent of q such that

sup
Ω
|f | ≤ C

(q − 1
q − 2

)1−1/q

‖f‖1,q. (5.22)

Proof. It follows from the proof of [26, Theorem 2.4.1]. The result holds also for
Ω ⊂ Rn, with q > n and q − n instead of q − 2 in the denominator of (5.22). �

Because q−1
q−2 ≤ CV

p−2, we obtain

V p/2ε ≤ CV (p−2)(1− 1
q )V β2(p−2)

ε . (5.23)

Note that (p − 2)(1 − 1/q) → p/2 − 1 as q → 2 and the exponent containing the
interpolation parameter β can be made arbitrarily small, therefore we can rewrite
(5.23) as Vε ≤ Ĉ. This together with (5.21) gives

sup
t∈I
‖∇2uε‖q ≤ C.

Step 8. We pass from the regularized problem to the original problem. In the
previous step we showed Vε ≤ Ĉ, where Vε = supQ |ϑε(|Duε|)|. Since ϑε(s) =
min{(1 + s2)1/2, 1

ε} ≤
1
ε , it is sufficient to choose ε in order to have Ĉ ≤ 1

ε . Thus,
uε = u is the solution of the original problem (1.1) and it holds that supQ(1 +
|Du|2)1/2 ≤ C which leads to supt∈I ‖∇2u‖q ≤ C.
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Since we passed from the regularized problem to the original one, the regularity
of pressure π which we proved in Section 4 for quadratic potential holds also for
the super-quadratic case. �
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