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EXPLICIT EXPRESSIONS FOR THE MATRIX EXPONENTIAL
FUNCTION OBTAINED BY MEANS OF AN ALGEBRAIC

CONVOLUTION FORMULA

JOSÉ ROBERTO MANDUJANO, LUIS VERDE-STAR

Abstract. We present a direct algebraic method for obtaining the matrix

exponential function exp(tA), expressed as an explicit function of t for any
square matrix A whose eigenvalues are known. The explicit form can be used

to determine how a given eigenvalue affects the behavior of exp(tA). We use

an algebraic convolution formula for basic exponential polynomials to obtain
the dynamic solution g(t) associated with the characteristic (or minimal) poly-

nomial w(x) of A. Then exp(tA) is expressed as
P

k gk(t)wk(A), where the

gk(t) are successive derivatives of g and the wk are the Horner polynomi-
als associated with w(x). Our method also gives a number δ that measures

how well the computed approximation satisfies the matrix differential equation

F ′(tA) = AF (tA) at some given point t = β. Some numerical experiments
with random matrices indicate that the proposed method can be applied to

matrices of order up to 40.

1. Introduction

The importance of the function etA, where A is a square matrix and t is a
real or complex variable, is well-known. For example, many problems in areas
such as Control and Systems Theory, Physics, Biomathematics, Nuclear Sciences,
etc., require the solution of a linear system of first-order differential equations with
constant coefficients and given initial conditions. Such solution has the form etAC,
where C is a constant vector. The behavior of etA as a function of t depends in a
complex way on the eigenvalues and the entries of A.

In this article we present a method that gives an explicit formula for etA in terms
of linear combinations of functions of the form tk exp(λt). Consequently, we can
easily compute etA (and also etAC) for a large number of values of t.

The explicit expressions can also be used to determine the influence of each
eigenvalue in the behavior of the matrix exponential function, and the effect of
small perturbations of the eigenvalues. We can also study how the distribution
of the eigenvalues in the complex plane determines how accurately etA can be
computed in some given region.
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Our method is a direct algebraic construction of etA using the entries of A and
its eigenvalues. It does not use numerical integration, integral transforms, Padé
approximations, orthogonal polynomial series, nor differential equations solvers.
We use an algebraic convolution formula for exponential polynomials which is based
on the multiplication of basic rational functions.

Our approach is similar to the one used by Luther and Rost [2], but we do not
need the inversion of confluent Vandermonde matrices. A straightforward applica-
tion of our method yields all the explicit formulas obtained by Wu in [9] and many
other formulas for matrices with a small number of distinct eigenvalues.

As a consequence of the Cayley-Hamilton theorem, all the powers Am of a square
matrix A can be expressed in terms of the initial powers I, A, . . . An, for some fixed
n. This fact can be used to show that functions of the form f(tA) may be expressed
as polynomials in A with coefficients that depend on t. See [7], where this approach
is used to study matrix functions f(tA) where f is given by a power series. In
particular, for the exponential function we obtained in [7] the formula

etA =
n∑
k=0

gk(t)wk(A), (1.1)

where A is a square matrix, the wk are the Horner polynomials associated with a
polynomial w(x) of degree n+ 1 such that w(A) = 0, and the gk(t) are exponential
polynomials that depend only on the eigenvalues of A. Note that w(x) may be the
minimal or the characteristic polynomial of A. Note also that formula (1.1) holds
when A is replaced by any matrix B that is similar to A, with the same coefficient
functions gk(t). The set {wk(x) : 0 ≤ k ≤ n} is often called the control basis
associated with w.

The function gn(t), called the dynamic solution, is the solution of the scalar
differential equation w(D)y(t) = 0 with initial conditions Dkgn(0) = 0 for k =
0, 1, 2, . . . , n−1 and Dngn(0) = 1. The other coefficient functions gk(t) are obtained
by repeated differentiation of gn(t), that is, gn−k(t) = Dkgn(t) for 0 ≤ k ≤ n. In
the present paper we compute the dynamic solution directly from the roots of w
using an algebraic formula for the convolution of basic exponential polynomials. If
the number of distinct roots and nonzero coefficients of the polynomial w is small,
then the numerical errors in the computation are negligible. This is the case of the
polynomials considered by Wu in [9] to obtain explicit formulas.

The use of the dynamic solution to solve matrix differential equations was intro-
duced in [5]. For an algebraic approach to convolutions see [8].

If the number of distinct eigenvalues is relatively large then there are some
sources of numerical errors. The quality of the computed function f(tA) as an
approximation of etA can be determined by measuring how well it satisfies the
differential equation f ′(tA) = Af(tA). This is easily done and requires only one
additional derivative of gn and the computation of f ′(tA), which is analogous to
(1.1).

It is well-known that the computation of the matrix exponential is a difficult
numerical problem. See [4] and [1]. Our numerical experiments show that our
method works well for matrices A of moderate size, whose characteristic values are
known with sufficient accuracy, regardless of the norm of A and the multiplicities
of the eigenvalues. In order to determine the accuracy of the computations with
the explicit expressions produced by our algorithm we performed some numerical
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experiments with random matrices of order up to 40, using a Maple program. Since
our method is essentially equivalent to Hermite interpolation of the exponential
function at the spectrum of A, the accuracy of the results depend on a complex
way on the distribution of the eigenvalues in the complex plane.

It is important to notice that the main objective of our method is to obtain an
explicit expression for etA, where t is a variable. Our method can not be directly
compared to algorithms of a different nature that compute eA for a given A, such
as the ones based on scaling and squaring, or Padé approximations, which are
designed to obtain high accuracy or to handle large matrices for certain restricted
sets of matrices.

2. Notation and basic results

In this section we introduce notation that we use in the rest of the paper and
present some basic results taken from [6] and [7], where the proofs and more detailed
discussion can be found.

Let n be a nonnegative integer and let w(z) = zn+1 + b1z
n + · · · + bn+1 be a

monic polynomial of degree n+ 1 with complex coefficients. The sequence {wk} of
Horner polynomials associated with w is defined by

wk(z) = zk + b1z
k−1 + b2z

k−2 + · · ·+ bk, k ≥ 0, (2.1)

where b0 = 1 and bj = 0 for j > n + 1. Note that {wk : k ≥ 0} is a basis for the
vector space of all the polynomials and {w0, w1, . . . , wn} is a basis for the subspace
Pn of all polynomials with degree at most n. This basis is often called the control
basis. Note also that wn+1 = w, wn+1+k(z) = zkw(z) for k ≥ 0, and

wk+1(z) = zwk(z) + bk+1, k ≥ 0. (2.2)

In [6] we proved the following result, that we call the general interpolation formula.

Theorem 2.1. Let w be as previously defined, let f be a function defined on the
multiset of roots of w, and let p(x) be the polynomial in Pn that interpolates f at
the roots of w. Then

p(x) = ∆w (f(z)w[z, x]) , (2.3)

where ∆w is the divided difference functional with respect to the roots of w and acts
with respect to z, and w[z, x] is the difference quotient

w[z, x] =
w(z)− w(x)

z − x
.

A simple computation yields

w[z, x] =
n∑
k=0

wk(x)zn−k. (2.4)

For f as in the previous theorem and a parameter t, define

gk(t) = ∆w(z)

(
zn−kf(tz)

)
, 0 ≤ k ≤ n. (2.5)

Now let A be any square matrix such that w(A) = 0. Then we have

f(tA) = ∆w(z)

(
f(tz)w[z,A]

)
=

n∑
k=0

gk(t)wk(A). (2.6)



4 J. R. MANDUJANO, L. VERDE-STAR EJDE-2014/79

In the simple case in which w has n+ 1 distinct roots λ0, λ1, . . . , λn we have

gk(t) =
n∑
j=0

λn−kj f(tλj)
w′(λj)

, 0 ≤ k ≤ n. (2.7)

If f(x) = exp(x) then each gk(t) is an exponential polynomial.
In the general case we have

w(z) =
r∏
j=0

(z − λj)mj+1, (2.8)

where the λj are distinct complex numbers, the mj are nonnegative integers, and∑
j(mj + 1) = n+ 1. Let us define the basic exponential polynomials

f̃x,k(t) =
tk

k!
ext, x ∈ C, k ∈ N. (2.9)

In [7] we proved that the dynamic solution gn associated with w is given by

gn = f̃λ0,m0 ∗ f̃λ1,m1 ∗ · · · ∗ f̃λr,mr
, (2.10)

gk−1 = g′k for 1 ≤ k ≤ n, and the convolution of two basic exponential polynomials
is given by

f̃x,k ∗ f̃x,m = f̃x,k+m+1, x ∈ C, k,m ∈ N, (2.11)
and

f̃y,k ∗ f̃x,m = (−1)k+1
m∑
i=0

(
k + i

i

)
f̃x,m−i

(y − x)k+i+1

+ (−1)m+1
k∑
j=0

(
m+ j

j

)
f̃y,k−j

(x− y)m+j+1
, x 6= y.

(2.12)

This convolution product coincides with the Duhamel convolution, usually defined
by means of integrals, when it is applied to exponential polynomials.

3. Proposed algorithm

Let A be a given square matrix, let w be a monic polynomial such that w(A) = 0,
let λ0, λ1, λ2, . . . , λr be the distinct roots of w, and let mj + 1 be the multiplicity
of λj for 0 ≤ j ≤ r.
Step 1. Compute the dynamic solution gn, defined by (2.10), by repeated appli-
cation of the convolution formula (2.12). In this way we obtain gn in the form

gn =
r∑
j=0

mj∑
k=0

αj,k f̃λj ,k,

where the coefficients αj,k are numbers. Using (2.9) we get gn(t) as a linear com-
bination of the basic exponential polynomials associated with the roots of w.
Step 2. Obtain the functions gk by repeated differentiation of gn; that is, gk−1 = g′k
for k = n, n− 1, n− 2, . . . , 1.
Step 3. Find the matrices wk(A) using Horner’s recurrence relation (2.2).
Step 4. Substitute the scalar functions gk(t) and the matrices wk(A) in formula
(2.6) to obtain exp(tA).

Note that computing the wk(A) is the step with the largest computational cost,
since it requires n − 1 multiplications by the matrix A. Note also that this step
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is independent of steps 1 and 2. If we want to compute exp(tA)C, where C is a
vector, then we can compute the vectors wk(A)C and this requires n matrix-vector
multiplications.

Once we have the explicit expression for exp(tA), to find exp(βA) for a given β,
it is sufficient to compute the n+1 scalar functions g0(β), g1(β), . . . , gn(β), and then
use (2.6), which reduces to the computation of a linear combination of the already
known matrices wk(A). Notice that there are no matrix multiplications involved
here. It is clear that we can get any entry of exp(tA) as an explicit exponential
polynomial.

An important property of our algorithm is that it also provides a simple way to
estimate the relative error in the computation of exp(tA) at a point t = β. Note
first that Dt exp(tA) = A exp(tA), where Dt denotes differentiation with respect to
t. Therefore exp(tA) satisfies the matrix equation

A = exp(−tA)Dt exp(tA), t ∈ R (3.1)

Let F (t) denote the computed right-hand side of (2.6). We measure how well F (t)
satisfies (3.1) in the following way. By differentiation of (2.6) with respect to t we
get

F ′(t) = g′0(t)I +
n∑
k=1

gk−1(t)wk(A). (3.2)

For a given number β let B = F (−β)F ′(β) and define

δ =
‖B −A‖
‖A‖

, (3.3)

where ‖A‖ denotes a suitable matrix norm, such as the infinity norm. Then the
number δ measures how well F (t) satisfies (3.1) at t = β. The numerical experi-
ments show that δ is a good approximation of the “true” relative error

µ =
‖F (β)− E(bA)‖
‖E(bA)‖

, (3.4)

where E(bA) is produced by the Maple command “MatrixExponential(βA)”, using
a precision of 100 digits. In most cases we obtain δ ≥ µ.

It is important to detect multiple roots correctly and not deal with them as if they
were distinct roots very close to each other, since that would introduce relatively
large errors, due to the denominators in (2.12), which are powers of differences of
eigenvalues.

4. Numerical results

The computational cost of the proposed algorithm increases with the size of the
matrix A, since, in general, the computation of the matrices wk(A) for 0 ≤ k ≤ n
requires n−1 multiplications by A, and w is typically the characteristic polynomial
of A. Therefore for large matrices A we ca not expect to get high accuracy in the
matrices computed with the explicit formula produced by our algorithm, unless A
is a sparse matrix and w has a small number of suitably distributed distinct roots.
We performed some numerical experiments to determine the range of values of the
order of A for which the algorithm produces acceptable results.

We tested our algorithm taking A as a random matrix of order n for a few values
of n between 20 and 40, and using different parameters for the random matrix
generator which yield different distributions of the eigenvalues.
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Table 1. Some numerical results

n D a b ‖A‖ ρ ‖ exp(A)‖ δ µ
20 50 -4 2 10.7875 4.99504 13.6899 2.54043e-45 2.48411e-45
20 50 -2 4 9.58886 4.70923 173.594 1.80540e-39 1.17495e-39
25 50 -4 2 13.6732 6.43704 29.7808 7.33657e-44 5.09239e-44
25 50 -2 4 13.7619 6.40041 982.736 1.31585e-34 8.66711e-35
30 60 -4 2 15.5971 8.29544 46.79 2.51331e-52 2.05524e-52
30 60 -2 4 14.7011 7.10494 1894.19 4.09793e-40 2.72607e-40
35 64 -4 2 17.0037 9.35093 48.1121 9.91921e-55 6.16559e-55
35 64 -2 4 17.7606 8.70811 8599.8 8.54165e-39 6.12971e-39
40 70 -4 2 21.3238 10.4744 46.52 2.23268e-60 2.04208e-60
40 70 -2 4 19.4641 9.73745 28070.4 8.35698e-40 5.04061e-40
40 70 -1 4 20.4786 14.8176 3.65e+06 4.83707e-30 2.49511e-30

In Table 1 the columns correspond to the following parameters: n is the order
of the matrix A, D is the number of digits used in the computations, a and b are
the end points of the interval where the random entries are generated using the
uniform distribution, ‖A‖ is the infinity norm of A, ρ is the spectral radius of A,
‖ exp(A)‖ is the infinity norm of the computed exp(A), δ and µ are the relative
errors defined by (3.3) and (3.4). In these computations we computed the matrix
function at t = 1. The matrix A is the generated random matrix multiplied by a
scaling factor of 0.25. This was done in order to deal with matrices whose norms
have a reasonable size. Note that the less accurate results are obtained when the
norm of exp(A) is large. Note also that as n increases it is necessary to increase the
number of digits used in the computations in order to obtain acceptable error sizes.
The entries of the computed matrix are expressed as explicit linear combinations
of (complex) exponentials, for example, an entry obtained in a case with n = 20
looks like

0.2745 exp(1.6103t) cos(0.8201t)− 0.0166 exp(1.6103t) sin(0.8201t)

− 0.2018 exp(0.5083t) cos(0.4520t)− 0.1724 exp(0.5083t) sin(0.4520t)

+ 0.0063 exp(0.8337t) cos(1.1256t) + 0.1363 exp(0.8337t) sin(1.1256t)

− 0.9704 exp(−2.1568t) cos(0.4983t) + 0.5197 exp(−2.1568t) sin(0.4983t)

+ 0.8632 exp(−1.8023t) cos(0.2841t)− 1.4200 exp(−1.8023t) sin(0.2841t)

− 0.0190 exp(0.6122t) cos(2.4512t)− 0.0273 exp(0.6122t) sin(2.4512t)

− 0.1654 exp(−1.4406t) sin(1.4041t)− 0.0217 exp(−1.4406t) cos(1.4041t)

+ 0.0345 exp(−0.4696t) cos(2.0036t) + 0.0760 exp(−0.4696t) sin(2.0036t)

− 0.0075 exp(−0.2615t) + 0.0426 exp(0.9229t)− 0.0193 exp(1.6650t)

+ 0.0186 exp(−0.7649t),

where the number of digits was truncated to abbreviate the expression. Therefore,
using this method for matrices of large order n is not very convenient. In addition,
in such cases computing the eigenvalues with the required accuracy is not easy.

In [3] we use another algorithm, where the functions gk are expressed as truncated
Taylor series and the eigenvalues of A are not used.
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Since the computation of exp(tA) is essentially a matrix valued Hermite interpo-
lation at the multiset of eigenvalues, the accuracy of the computed results depends
on the distribution of the eigenvalues on the complex plane. This is why the error
estimate δ is very useful.

The repeated differentiation to compute the functions gk(t) and the computation
of the matrices wk(A) are steps that may reduce the accuracy of the computation if
there are either eigenvalues or entries of A with large absolute values. In addition,
if there are sets of eigenvalues very close to each other then the repeated application
of formula (2.12) is another source of errors.

Relatively large errors are obtained when an eigenvalue of multiplicity greater
than one is not properly detected and is treated as several distinct eigenvalues that
are very close to each other. In that case some of the denominators in (2.12) be-
come very small. Therefore the multiple eigenvalues and their multiplicities should
be properly identified, for example, using some root refining algorithm such as
Newton’s method.
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