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EXISTENCE AND MULTIPLICITY OF POSITIVE PERIODIC
SOLUTIONS FOR SECOND-ORDER FUNCTIONAL

DIFFERENTIAL EQUATIONS WITH INFINITE DELAY

QIANG LI, YONGXIANG LI

Abstract. In this article, the existence and multiplicity results of positive pe-

riodic solutions are obtained for the second-order functional differential equa-

tion with infinite delay

u′′(t) + b(t)u′(t) + a(t)u(t) = c(t)f(t, ut), t ∈ R
where a, b, c are continuous ω-periodic functions, ut ∈ CB is defined by ut(s) =
u(t+ s) for s ∈ (−∞, 0], CB denotes the Banach space of bounded continuous

function φ : (−∞, 0] → R with the norm ‖φ‖B = sups∈(−∞,0] |φ(s)|, and

f : R × CB → [0,∞) is a nonnegative continuous functional. The existence

conditions concern with the first eigenvalue of the associated linear periodic
boundary problem. Our discussion is based on the fixed point index theory in

cones.

1. Introduction

Let CB be the Banach space of bounded continuous function defined on (−∞, 0]
with the norm ‖φ‖B = sups∈(−∞,0] |φ(s)| and f : R×CB → [0,∞) is a nonnegative
continuous functional acting on R × CB . If u is a continuous ω-periodic function,
then ut ∈ CB for every t ∈ R, where ut is defined by ut(s) = u(t + s) for every
s ∈ (−∞, 0].

In this article, we sutdy the existence and multiplicity of positive periodic solu-
tions of the second-order functional differential equation with infinite delay

u′′(t) + b(t)u′(t) + a(t)u(t) = c(t)f(t, ut), t ∈ R, (1.1)

where a(t), b(t), c(t) are continuous ω-periodic functions on R.
In recent years, the existence of periodic solutions for some second-order func-

tional differential equations has been researched by some authors, and many results
have been obtained by applying monotone iterative technique, fixed point theorem
in cones, Leray-Schauder continuation theorem, coincidence degree theory and so
on, see [2, 4, 8, 9, 10, 11, 16, 6, 19, 20, 21] and the references therein.
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Jiang [8, 9] and others considered the periodic problem of the second-order delay
differential equation

−u′′(t) = g(t, u(t), u(t− τ(t))), t ∈ R,
where g ∈ C(R3,R) and τ ∈ C(R, [0,∞)). Using monotone iterative technique,
they obtained the existence results of non-constant ω-periodic solutions.

Guo and Guo [4] studied the second-order delay differential equation in Rn,

−u′′(t) = g(u(t− τ)), t ∈ R,
where g ∈ C(Rn,Rn) and τ > 0 is a given constant. By using critical point theory
and S1-index theory, they obtained the existence and multiplicity of non-constant
periodic solutions.

However, in some practice models, only positive periodic solutions are significant.
In [2, 11, 20, 21], the authors obtained the existence of positive periodic solutions of
some second-order functional differential equations by using fixed-point theorems of
cone mapping. Wu [21] considered the second-order functional differential equation

u′′(t) + a(t)u(t) = λ g(t, u(t− τ1(t)), . . . , u(t− τn(t))), t ∈ R, (1.2)

where g ∈ C(R × [0,∞)n, [0,∞)), τ1, . . . , τn ∈ C(R, [0,∞)). He obtained the ex-
istence result of positive periodic solution by using the Krasnoselskii fixed-point
theorem of cone mapping when the coefficient a(t) satisfies the condition that
0 < a(t) < π2

ω2 for every t ∈ R. Li [11] obtained the existence results of posi-
tive ω-periodic solutions for the second-order functional differential equation with
constant delays

− u′′(t) + a(t)u(t) = g(t, u(t− τ1), . . . , u(t− τn)), t ∈ R (1.3)

by employing the fixed point index theory in cones.
Recently, Kang and Cheng [6] discussed the second-order functional differential

equation with damped term

u′′(t) + b(t)u′(t) + a(t)u(t) = λc(t) g(t, u(t− τ(t))), t ∈ R (1.4)

and obtained the existence and multiplicity of positive periodic solutions by us-
ing the Krasnoselskii fixed point theorem of cone mapping when the coefficients
a(t), b(t) are nonnegative continuous functions and g ∈ C(R × [0,∞), [0,+∞)) is
nondecreasing in the second variable. For the second-order differential equation
without delay, the existence of positive periodic solutions has been discussed by
more authors, see [1, 7, 12, 13, 14, 15, 17, 18].

Motivated by the papers mentioned above, we research the existence and mul-
tiplicity of positive periodic solutions of the more general functional differential
equation (1.1) with infinite delay, in which the coefficients a(t), b(t) may be sign-
changing.

Throughout this paper we make the following assumptions:
(H1) a, b ∈ C(R,R) are ω-periodic functions, a(t) 6≡ 0 and one of the following

two conditions is satisfied:
(i) the following two inequalities hold∫ ω

0

a(s) Φ(b)(s) Ψ(−b)(s) ds ≥ 0, (1.5)

sup
0≤t≤ω

{∫ t+ω

t

Φ(−b)(s)ds
∫ t+ω

t

a+(s) Φ(b)(s)ds
}
≤ 4, (1.6)
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(ii)
∫ ω

0
b(s)ds = 0,

∫ ω
0
a(s)Φ(b)(s)ds > 0 and there exists a constant 1 ≤

p ≤ +∞ such that

‖Φ(−b)‖12−1/p · ‖Φ2−1/p(b) a+‖p < K(2p∗), (1.7)

where

Φ(b)(t) = exp
(∫ t

0

b(s)ds
)
, t ∈ R, (1.8)

Ψ(b)(t) = Φ(b)(ω)
∫ t

0

Φ(b)(s)ds+
∫ ω

t

Φ(b)(s)ds, t ∈ R (1.9)

and a+(s) = max{a(s), 0}, ‖a‖p is the p-norm of a in Lp[0, ω], p∗ is
the conjugate exponent of p defined by 1

p + 1
p∗ = 1, and the function

K(q) is defined by

K(q) =

{
2π
q

(
2

2+q

)1−2/q( Γ(1/q)
Γ(1/2+1/q)

)2
, if 1 ≤ q < +∞,

4 , if q = +∞
(1.10)

in which Γ is the Gamma function.
(H2) c ∈ C(R, [0,∞)) is an ω-periodic function and c 6≡ 0.
(H3) f : R×CB → [0,∞) is continuous and it maps every bounded set of R×CB

into a bounded set of [0,+∞), f(t, φ) is ω-periodic in t.

We aim to discuss the existence and multiplicity of positive ω-periodic solution
of (1.1) under Assumptions (H1)–(H3). Condition (H1) is taken from [1, 7]. In
our discussion, the maximum principles built by Cabada and Cid in [1] and Hakl
and Torres in [7] for the periodic problem of the corresponding linear second-order
different equation

u′′ + b(t)u′(t) + a(t)u(t) = h(t), t ∈ R (1.11)

plays an important role. According to these maximum principles, we obtain some
new existence and multiplicity results by constructing a special cone in Cω(R) and
applying the fixed-point index theory in cones. Our result improve and extend the
results in [6, 21] and other existing results.

The techniques used in this paper are different from those in [6, 21]. Our results
are more general than thiers in three aspects. Firstly, equation (1.1) is infinitely
delayed, and equations (1.2) and (1.4) discussed in [6, 21] are finitely delayed.
Secondly, we relax the conditions of the coefficient a(t) appeared in (1.2) in [21] and
the coefficients b(t) appeared in (1.4) in [6], and expand the range of their values,
and we do not require that f to be monotonic in the second variable. Thirdly, by
constructing a special cone and applying the theory of the fixed-point index in cones,
we obtain the essential conditions on the existence of positive periodic solutions of
Equations (1.1). The conditions concern the first eigenvalue of the associated linear
periodic boundary problem, which improve the existence results in [6, 21]. To our
knowledge, there are very few works on the existence of positive periodic solutions
for the above functional differential equation under the conditions concerning the
first eigenvalue of the corresponding linear differential equation.

Our main results are presented and proved in Section 3. Some preliminaries to
discuss Equation (1.1) are presented in Section 2.
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2. Preliminaries

To study (1.1), we consider the periodic problem of the corresponding linear
ordinary differential equation

u′′ + b(t)u′(t) + a(t)u(t) = c(t)h(t), t ∈ R, (2.1)

where h ∈ C(R) is a ω-periodic function. For this we consider the linear periodic
boundary value problem

u′′ + b(t)u′(t) + a(t)u(t) = h(t), t ∈ [0, ω],

u(0) = u(ω), u′(0) = u′(ω).
(2.2)

By the maximum principle in Cabada, Cid and Hakl et al [1, Theorem 5.1] and [7,
Theorem 2.2], we have the following Lemma.

Lemma 2.1. Assume that (H1) holds. Then the periodic boundary value problem
(2.2) has a positive Green’s function G ∈ C([0, ω]2, (0,∞)), and for every h ∈
C[0, ω], the equation (2.2) has a unique solution expressed by

u(t) =
∫ ω

0

G(t, s)h(s) ds, t ∈ [0, ω]. (2.3)

Let Cω(R) denote the Banach space of all continuous ω-periodic function u(t)
with norm ‖u‖C = max0≤t≤ω |u(t)|. Let C+

ω (R) be the nonnegative function cone
in Cω(R). Generally, for n ∈ N we use Cnω(R) to denote the space of all nth-order
continuous differentiable ω-periodic functions.

Clearly, if u ∈ Cω(R), the restriction of u on (−∞, 0] belongs to CB , ut ∈ CB
for every t ∈ R, and

‖u‖B = ‖u‖C ; ‖ut‖B = ‖u‖C , t ∈ R. (2.4)

Hence, we think that Cω(R) ⊂ CB .
Assume that (H1) holds and G(t, s) is the positive Green’s function of the peri-

odic boundary value problem (2.2). Let

G = min
0≤t,s≤ω

G(t, s), G = max
0≤t,s≤ω

G(t, s), σ = G/G (2.5)

and define a cone K in Cω(R) by

K = { u ∈ Cω(R) : u(t) ≥ σ‖u‖C , t ∈ R }. (2.6)

Lemma 2.2. Assume that (H1) and (H2) hold. Then for every h ∈ Cω(R), Equa-
tion (2.1) has a unique ω-periodic solution u := T h ∈ C2

ω(R). Moreover, the
periodic solution operator T : Cω(R) → Cω(R) is a completely continuous linear
operator and T (C+

ω (R)) ⊂ K.

Proof. For h ∈ Cω(R), by Lemma 2.1 the following linear periodic boundary prob-
lem with the weighting function c,

u′′ + b(t)u′(t) + a(t)u(t) = c(t)h(t), t ∈ [0, ω],

u(0) = u(ω), u′(0) = u′(ω)
(2.7)

has a unique solution u ∈ C2[0, ω]. Extend u to an ω-periodic function which is still
denoted by u, then u ∈ C2

ω(R) is a unique ω-periodic solution of Equation (2.7),
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we denote it by Th. Thus we obtain the ω-periodic solution operator T : Cω(R)→
Cω(R) of Equation (2.1). By Lemma 2.1, Th is expressed by

Th(t) =
∫ ω

0

G(t, s)c(s)h(s) ds, t ∈ [0, ω]. (2.8)

Form this, we easily see that T : Cω(R)→ Cω(R) is a completely continuous linear
operator.

Let h ∈ C+
ω (R). For every t ∈ [0, ω], from (2.8) it follows that

0 ≤ Th(t) =
∫ ω

0

G(t, s)c(s)h(s) ds ≤ G
∫ ω

0

c(s)h(s) ds,

and therefore
‖Th‖C ≤ G

∫ ω

0

c(s)h(s) ds.

By (2.8) and this inequality, we have

Th(t) =
∫ ω

0

G(t, s)c(t)h(s) ds ≥ G
∫ ω

0

c(t)h(s) ds

=
(
G/G

)
·G
∫ ω

0

c(t)h(s) ds

≥ σ|Th‖.

Combining this with the periodicity of u, we show that u ∈ K. Hence T (C+
ω (R)) ⊂

K. �

Hereafter, we use r(T ) to denote the spectral radius of the operator T : Cω(R)→
Cω(R).

Lemma 2.3. Assume that (H1) and (H2) hold. Then r(T ) > 0.

Proof. Choose h0 ≡ 1. Then by (2.8) and the positivity of G(t, s) we have

Th0(t) =
∫ ω

0

G(t, s)c(s) ds ≥ G
∫ ω

0

c(s) ds := m > 0, t ∈ [0, ω],

T 2h0(t) =
∫ ω

0

G(t, s)c(s)Th0(s) ds ≥ mG

∫ ω

0

c(s)ds = m2, t ∈ [0, ω],

. . .

Inductively, we obtain that

T kh0(t) ≥ mk, t ∈ [0, ω], k = 1, 2, . . . .

Consequently,
‖T k‖ ≥ ‖T kh0‖C ≥ mk, k = 1, 2, . . . .

By this and the Gelfand’s formula of spectral radius we have

r(T ) = lim
k→∞

‖T k‖1/k ≥ m > 0. (2.9)

The proof of Lemma 2.4 is complete. �

Thus by the well-known Krein-Rutman theorem, r(T ) is the maximum positive
real eigenvalue of the operator T . So we have

Lemma 2.4. Assume that (H1) and (H2) hold. Then there exists a eigenfunction
φ1 ∈ K \ {θ} such that

T φ1 = r(T )φ1. (2.10)
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Set λ1 = 1/r(T ), then φ1 = T (λ1φ1). By Lemma 2.2 and the definition of T ,
φ1 ∈ C2

ω(R) satisfies the differential equation

φ′′1(t) + b(t)φ′1(t) + a(t)φ1(t) = λ1c(t)φ1(t), t ∈ R. (2.11)

Thus, λ1 is the minimum positive real eigenvalue of the linear equation (2.1) under
the ω-periodic condition.

Let f : R× CB → [0,∞) satisfy Assumption (H3). For every u ∈ K, set

F (u)(t) := f(t, ut), t ∈ R. (2.12)

Since j : t 7→ ut maps R into CB and it is continuous, by Assumption (H3),
F (u) ∈ C+

ω (R) and F : K → C+
ω (R) is continuous and maps every bounded set of

K into a bounded set of C+
ω (R). Hence, by Lemma 2.2 the composite mapping

A = T ◦ F. (2.13)

maps K into K and A : K → K is completely continuous. Thus we have

Lemma 2.5. Assume that (H1)-(H3) hold. Then A = T ◦F : K → K is completely
continuous.

By the definition of operator T , the positive ω-periodic solution of (1.1) is equiv-
alent to the nontrivial fixed point of A. We will find the nonzero fixed point of A
by using the fixed point index in cones.

We recall some concepts and conclusions on the fixed point index in [3, 5]. For
the details, see [3, Chapter 6] or [5, Chapter 3]. Let X be a Banach space and
K ⊂ X be a closed convex cone in X. Assume Ω is a bounded open subset of X
with boundary ∂Ω, and K ∩Ω 6= ∅. Let A : K ∩Ω→ K be a completely continuous
mapping. If Au 6= u for every u ∈ K∩∂Ω, then the fixed point index i(A,K∩Ω,K)
is well defined. One important fact is that if i(A,K ∩Ω,K) 6= 0, then A has a fixed
point in K ∩Ω. The following two lemmas are needed in our argument. The proofs
of these lemmas can be found in [3, 5].

Lemma 2.6. Let X be a Banach space, K ⊂ X be a closed convex cone, Ω ⊂ X be
a bounded open subset, and A : K ∩ Ω → K be a completely continuous mapping.
Then the following conclusions hold:

(i) If there exists e ∈ K \ {θ} such that u−Au 6= µe for every u ∈ K ∩∂Ω and
µ ≥ 0, then i(A,K ∩ Ω,K) = 0.

(ii) If θ ∈ Ω and Au 6= µu for every u ∈ K ∩ ∂Ω and µ ≥ 1, then i(A,K ∩
Ω,K) = 1.

Lemma 2.7. Let X be a Banach space, K ⊂ X be a closed convex cone, Ω ⊂ X
be a bounded open subset with θ ∈ Ω, A : K ∩ Ω → K be a completely continuous
mapping and it satisfies that Au 6= u for every u ∈ K ∩ ∂Ω. Then the following
conclusions hold:

(i) If ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω, then i(A,K ∩ Ω,K) = 0.
(ii) If ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω, then i(A,K ∩ Ω,K) = 1.

3. Main results

Suppose that f : R × CB → [0,∞) satisfies Assumption (H3). We consider the
existence and multiplicity of positive ω-periodic solutions of Equation (1.1). Define
a closed convex cone K in CB by

K = {φ ∈ CB : φ(s) ≥ σ‖φ‖B , s ∈ (−∞, 0]}. (3.1)
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Let K be the cone in Cω(R) defined by (2.6). We easily see that for every u ∈ K
and t ∈ R, ut ∈ K and ‖ut‖B = ‖u‖C . For r > 0, set

Kr = {φ ∈ K : ‖φ‖B < r}, ∂Kr = {φ ∈ K : ‖φ‖B = r}, (3.2)

Kr = {u ∈ K : ‖u‖C < r}, ∂Kr = {u ∈ K : ‖u‖C = r}. (3.3)

For convenience, we introduce the following symbols:

f0 = lim inf
φ∈K‖φ‖B→0+

min
t∈[0,ω]

f(t, φ)
‖φ‖B

,

f0 = lim sup
φ∈K‖φ‖B→0+

max
t∈[0,ω]

f(t, φ)
‖φ‖B

,

f∞ = lim inf
φ∈K‖φ‖B→∞

min
t∈[0,ω]

f(t, φ)
‖φ‖B

,

f∞ = lim sup
φ∈K‖φ‖B→∞

max
t∈[0,ω]

f(t, φ)
‖φ‖B

.

Our main results are as follows.

Theorem 3.1. Suppose that (H1)–(H3) hold. If f satisfies the condition
(F1) f0 < σλ1, f∞ > λ1,

then (1.1) has at least one positive ω-periodic solution.

Theorem 3.2. Suppose that (H1)–(H3) hold. If f satisfies the condition
(F2) f0 > λ1, f∞ < σλ1,

then (1.1) has at least one positive ω-periodic solution.

Theorem 3.3. Suppose that (H1)–(H3) hold. If f satisfies the following conditions
(F3) f0 < σλ1, f∞ < σλ1;
(F4) there exists α > 0 such that

f(t, φ) >
α

G
∫ ω

0
c(s)ds

, for φ ∈ ∂Kα, t ∈ [0, ω],

then (1.1) has at least two positive ω-periodic solutions.

Theorem 3.4. Suppose that (H1)–(H3) hold. If f satisfies the following conditions
(F5) f0 > λ1, f∞ > λ1;
(F6) there exists β > 0 such that

f(t, φ) <
β

G
∫ ω

0
c(s)ds

, for φ ∈ ∂Kβ , t ∈ [0, ω],

then (1.1) has at least two positive periodic solutions.

Proof of Theorem 3.1. Choose the working space X = Cω(R). Let K be the closed
convex cone in Cω(R) defined by (2.6) and A : K → K be the operator defined by
(2.13). Then the positive ω-periodic solution of Equation (1.1) is equivalent to the
nontrivial fixed point of A. Let 0 < r < R < +∞ and set

Ωr = {u ∈ Cω(R) : ‖u‖C < r}, ΩR = {u ∈ Cω(R) : ‖u‖C < R}. (3.4)

We show that the operator A has a fixed-point in K ∩ (ΩR \ Ωr) when r is small
enough and R large enough.
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Since f0 < σλ1, by the definition of f0, there exist η ∈ (0, σλ1) and δ > 0 such
that

f(t, φ) ≤ η|φ‖B , t ∈ [0, ω], φ ∈ Kδ. (3.5)

Choosing r ∈ (0, δ), we prove that A satisfies the condition of Lemma 2.6 (ii) in
K ∩ ∂Ωr, namely Au 6= µu for every u ∈ K ∩ ∂Ωr and µ ≥ 1. In fact, if it is not
true, there exist u0 ∈ K ∩ ∂Ωr = ∂Kr and µ0 ≥ 1 such that Au0 = µ0u0. From the
definitions of ∂Kr and ∂Kr, we easily see that u0t ∈ ∂Kr ⊂ Kδ and ‖u0t‖B = ‖u0‖C
for every t ∈ R. From this and (3.4) it follows that

f(t, u0t) ≤ η|u0t‖B = η|u0‖C ≤
η

σ
u0(t), t ∈ [0, ω]. (3.6)

By this and the definition of A and (2.8), we have

u0(t) =
1
µ0

Au0(t) ≤ Au0(t)

=
∫ ω

0

G(t, s)c(s)f(s, u0s)ds

≤ η

σ

∫ ω

0

G(t, s)c(s)u0(s)ds

=
η

σ
Tu0(t), t ∈ [0, ω].

Hence, we have

θ ≤ u0 ≤
η

σ
Tu0.

By the positivity of T , inductively, we obtain that

u0 ≤
( η
σ

)k
T ku0, k = 1, 2, 3, . . . . (3.7)

So we have

‖u0‖C ≤
( η
σ

)k‖T ku0‖C ≤
( η
σ

)k‖T k‖ · ‖u0‖C . k = 1, 2, 3, . . . .

From this it follows that

‖T k‖ ≥
(σ
η

)k
, k = 1, 2, 3, . . . .

By this and the Gelfand’s formula of spectral radius, we have

r(T ) = lim
k→∞

‖T k‖1/k ≥ σ

η
>

1
λ1

= r(T ),

which is a contradiction. Hence A satisfies the condition of Lemma 2.6 (ii) in
K ∩ ∂Ωr. By Lemma 2.6 (ii), we have

i(A,K ∩ Ωr,K) = 1. (3.8)

On the other hand, since f∞ > λ1, by the definition of f∞, there exist η1 > λ1 and
H > 0 such that

f(t, φ) ≥ η1‖φ‖B , t ∈ [0, ω], φ ∈ K, ‖φ‖B > H. (3.9)

Choose R > max{H/σ, δ} and e(t) ≡ 1. Clearly, e ∈ K \ {θ}. We show that A
satisfies the condition of Lemma 2.6 (i) in K ∩ ∂ΩR, namely u−Au 6= µe for every
u ∈ K ∩ ∂ΩR and µ ≥ 0. In fact if it is not true, there exist u1 ∈ K ∩ ∂ΩR = ∂KR
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and µ1 ≥ 0 such that u1 − Au1 = µ1e. For every t ∈ R, since u1t ∈ K, from the
definition of K it follows that

u1t(s) ≥ σ‖u1t‖B = σ‖u1‖C = σR > H, s ∈ (−∞, 0],

and hence ‖u1t‖B > H. By (3.9), we have

f(t, u1t) ≥ η1|u1t‖B = η1|u1‖C ≥ η1u1(t), t ∈ [0, ω]. (3.10)

By this and the definition of A and (2.8), we have

u1(t) = Au1(t) + µ1e(t) ≥ Au1(t)

=
∫ ω

0

G(t, s)c(s)f(s, u1s)ds

≥ η1

∫ ω

0

G(t, s)c(s)u1(s)ds

= η1Tu1(t), t ∈ [0, ω].

This implies u1 ≥ η1Tu1. By the positivity of T , inductively, we obtain that

u1 ≥ η1
kT ku1, k = 1, 2, 3, . . . . (3.11)

Since u1(t) ≥ σ‖u1‖C for t ∈ R, by the positivity of T k, we have

T ku1 ≥ T k(σ‖u1‖C) = σ‖u1‖CT k(1), k = 1, 2, 3, . . . .

From this and (3.11) it follows that

‖u1‖C ≥ η1
k σ‖u1‖C ‖T k(1)‖C k = 1, 2, 3, . . . .

Thus, we have

‖T k(1)‖C ≤
1

ση1
k
, k = 1, 2, 3, . . . . (3.12)

Next we show that
‖T k‖ ≤ ‖T k(1)‖C , k = 1, 2, 3, . . . . (3.13)

Given k ∈ N, for every h ∈ Cω(R), since −‖h‖C ≤ h(t) ≤ ‖h‖C for every t ∈ R, by
the positivity of T k we have

−‖h‖CT k(1)(t) ≤ T kh(t) ≤ ‖h‖CT k(1)(t), t ∈ R,
and hence,

‖T kh‖C ≤ ‖T k(1)‖C |h‖c.
This means that (3.13) holds.

Now from (3.12) and (3.13) it follows that

‖T k‖ ≤ 1
ση1

k
, k = 1, 2, 3, . . . . (3.14)

By this and the formula of spectral radius we have

r(T ) = lim
k→∞

‖T k‖1/k ≤ 1
η1

<
1
λ1

= r(T ),

which is a contradiction. Hence A satisfies the condition of Lemma 2.6 (i) in
K ∩ ∂ΩR. By Lemma 2.6 (i), we have

i(A,K ∩ ΩR,K) = 0. (3.15)

Now, by the additivity of fixed point index, (3.8) and (3.15), we have

i(A,K ∩ (ΩR \ Ωr),K) = i(A,K ∩ ΩR,K)− i(A,K ∩ Ωr,K) = −1.
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Hence A has a fixed point in K ∩ (ΩR \Ωr), which is a positive ω-periodic solution
of Equation (1.1). �

Proof of Theorem 3.2. Let Ωr,ΩR ⊂ Cω(R) be defined by (3.3). We prove that
the operator A defined by (2.13) has a fixed point in K ∩ ΩR \ Ωr when r is small
enough and R large enough.

Since f0 > λ1, by the definition of f0, there exist η1 > λ1 and δ > 0 such that

f(t, φ) ≥ η1‖φ‖B , t ∈ [0, ω], φ ∈ Kδ. (3.16)

Choose r ∈ (0, δ) and e(t) ≡ 1. Clearly, e ∈ K \ {θ}. We show that A satisfies the
condition of Lemma 2.6 (i) in K ∩∂Ωr, namely u−Au 6= µe for every u ∈ K ∩∂Ωr
and µ ≥ 0. In fact if it’s not true, there exist u0 ∈ K ∩ ∂Ωr = ∂Kr and µ0 ≥ 0
such that u0 − Au0 = µ0 e. Since u0t ∈ ∂Kr ⊂ Kδ and ‖u0t‖B = ‖u0‖C for every
t ∈ R, from (3.16) it follows that

f(t, u0t) ≥ η1|u0t‖B = η1|u0‖C ≥ η1u0(t), t ∈ [0, ω]. (3.17)

By this and the definition of A and (2.8), we have

u0(t) = Au1(t) + µ0 e(t) ≥ Au0(t)

=
∫ ω

0

G(t, s)c(s)f(s, u0s)ds

≥ η1

∫ ω

0

G(t, s)c(s)u0(s)ds

= η1Tu0(t), t ∈ [0, ω].

This implies u0 ≥ η1Tu0. By the positivity of T , inductively, we obtain that

u0 ≥ η1
kT ku0, k = 1, 2, 3, . . . . (3.18)

Using this and a demonstration similar to (3.15), we obtain that

i(A,K ∩ Ωr,K) = 0. (3.19)

Since f∞ < σλ1, by the definition of f∞, there exist η ∈ (0, λ1) and H > 0 such
that

f(t, φ) ≤ η|φ‖B , t ∈ [0, ω], φ ∈ K, ‖φ‖B > H. (3.20)
Choosing R > max{Hσ , δ}, we prove that A satisfies the condition of Lemma 2.6
(ii) in K ∩ ∂ΩR, namely Au 6= µu for every u ∈ K ∩ ∂ΩR and µ ≥ 1. In fact, if it’s
not true, there exist u1 ∈ K ∩ ∂ΩR = ∂KR and µ1 ≥ 1 such that Au1 = µ1u1. For
every t ∈ R, since u1t ∈ K, from the definition of K it follows that

u1t(s) ≥ σ‖u1t‖B = σ‖u1‖C = σR > H, s ∈ (−∞, 0],

and hence ‖u1t‖B > H. By (3.20), we have

f(t, u1t) ≤ η|u1t‖B = η|u1‖C ≤
η

σ
u1(t), t ∈ [0, ω]. (3.21)

By this and the definition of A and (2.8), we have

u1(t) =
1
µ1
Au1(t) ≤ Au1(t) =

∫ ω

0

G(t, s)c(s)f(s, u1s)ds

≤ η

σ

∫ ω

0

G(t, s)c(s)u1(s)ds

=
η

σ
Tu1(t), t ∈ [0, ω].
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This implies
θ ≤ u1 ≤

η

σ
Tu1.

By the positivity of T , inductively, we obtain that

u1 ≤
( η
σ

)k
T ku1, k = 1, 2, 3, . . . . (3.22)

Using this and a demonstration similar to (3.8), we can obtain that

i(A,K ∩ ΩR,K) = 1. (3.23)

Now, from (3.19) and (3.23) it follows that

i(A,K ∩ (ΩR \ Ωr),K) = i(A,K ∩ ΩR,K)− i(A,K ∩ Ωr,K) = 1.

Hence A has a fixed point in K ∩ (ΩR \Ωr), which is a positive ω-periodic solution
of (1.1). �

Proof of Theorem 3.3. Set Ωα = {u ∈ Cω(R) : ‖u‖C < α}, we show that

‖Au‖C > ‖u‖C , u ∈ K ∩ ∂Ωα. (3.24)

Let u ∈ K∩∂Ωα = ∂Kα. Since ‖u0t‖B = ‖u0‖C = α and ut ∈ ∂Kα for every t ∈ R,
by the assumption (F5), we have

f(t, ut) >
α

G
∫ ω

0
c(s)ds

, t ∈ [0, ω].

By the definition of A and (2.8), we have

Au(t) =
∫ ω

0

G(t, s)c(s)f(s, us)ds >
α

G
∫ ω

0
c(s)ds

∫ ω

0

G(t, s)c(s) ds ≥ α,

from which it follows that ‖Au‖C > α = ‖u‖C . Hence (3.24) holds. By Lemma 2.7
(i), we have

i(A,K ∩ Ωα,K) = 0. (3.25)
Since f0 < σλ1, by the proof of Theorem 3.1, there exists r < α such that (3.8)

holds, and since f∞ < σλ1, by the proof of Theorem 3.2, there exists R > α such
that (3.23) holds. Using the additivity of fixed point index, by (3.8), (3.23) and
(3.25) we have

i(A,K ∩ (Ωα \ Ωr),K) = i(A,K ∩ Ωα,K)− i(A,K ∩ Ωr,K) = −1,

i(A,K ∩ (ΩR \ Ωα),K) = i(A,K ∩ ΩR,K)− i(A,K ∩ Ωα,K) = 1.

Hence A has two fixed points u1 ∈ K ∩ (Ωα \Ωr) and u2 ∈ K ∩ (ΩR \Ωα), and u1

and u2 are two positive ω-periodic solutions of (1.1). �

Proof of Theorem 3.4. Set Ωβ = {u ∈ Cω(R) : ‖u‖C < β}, we show that

‖Au‖C < ‖u‖C , u ∈ K ∩ ∂Ωβ . (3.26)

Let u ∈ K ∩∂Ωβ = ∂Kβ . Since ‖u0t‖B = ‖u0‖C = β and ut ∈ ∂Kβ for every t ∈ R,
by the assumption (F6), we have

f(t, ut) <
β

G
∫ ω

0
c(s)ds

, t ∈ [0, ω].

By the definition of A and (2.8), we have

Au(t) =
∫ ω

0

G(t, s)c(s)f(s, us)ds <
β

G
∫ ω

0
c(s)ds

∫ ω

0

G(t, s)c(s) ds ≤ β,
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from which it follows that ‖Au‖C < β = ‖u‖C . Hence (3.24) holds. By Lemma 2.7
(ii), we have

i(A,K ∩ Ωβ ,K) = 1. (3.27)
Since f0 > λ1, by the proof of Theorems 3.2, there exists r < β such that (3.19)

holds, and since f∞ > λ1, by the proof of Theorems 3.1, there exists R > β such
that (3.15) holds. Using the additivity of fixed point index, by (3.19), (3.27) and
(3.15) we have

i(A,K ∩ (Ωβ \ Ωr),K) = i(A,K ∩ Ωβ ,K)− i(A,K ∩ Ωr,K) = 1,

i(A,K ∩ (ΩR \ Ωβ),K) = i(A,K ∩ ΩR,K)− i(A,K ∩ Ωβ ,K) = −1.

Hence A has two fixed points u1 ∈ K ∩ (Ωβ \ Ωr) and u2 ∈ K ∩ (ΩR \ Ωβ), and u1

and u2 are two positive ω-periodic solutions of Equation (1.1). �

We also have the following multiplicity result.

Theorem 3.5. Suppose that (H1)–(H3) hold. If f satisfies one of the following
conditions

(i) (F1) holds, and there exist positive constants α, β satisfying α < β, such
that (F5) and (F6) hold;

(ii) (F2) holds, and there exist positive constants β, α satisfying β < α, such
that (F6) and (F5) hold,

then (1.1) has at least three positive ω-periodic solutions.

Proof. We prove only the case of that the condition (i) holds. The case of that the
condition (ii) holds can be proved by the same method.

Since f0 < σλ1 and f∞ > λ1, by the proof of Theorem 3.1, there exist r < α
and R > β such that (3.8) and (3.15) hold. By the proofs of Theorems 3.3–3.4,
(3.25) and (3.27) hold. Hence by the additivity of fixed point index, we have

i(A,K ∩ (Ωα \ Ωr),K) = i(A,K ∩ Ωα,K)− i(A,K ∩ Ωr,K) = −1,

i(A,K ∩ (Ωβ \ Ωα),K) = i(A,K ∩ Ωβ ,K)− i(A,K ∩ Ωα,K) = 1,

i(A,K ∩ (ΩR \ Ωβ),K) = i(A,K ∩ ΩR,K)− i(A,K ∩ Ωβ ,K) = −1.

From these we conclude that A has three fixed point u1 ∈ K ∩ (Ωα \ Ωr), u2 ∈
K ∩ (Ωβ \ Ωα) and u3 ∈ K ∩ (ΩR \ Ωβ). Hence u1, u2 and u3 satisfy

r < ‖u1‖C < α < ‖u1‖C < β < ‖u1‖C < R, (3.28)

and are three positive ω-periodic solutions of (1.1). �

Example 3.6. Consider the second-order differential equation with infinite delay

u′′(t) + b(t)u′(t) + a(t)u(t) = c(t)
∫ t

−∞
eα(s−t)u2(s)ds, t ∈ R, (3.29)

where a(t), b(t), c(t) are continuous ω-periodic functions on R and they satisfy as-
sumptions (H1) and (H2), α > 0 is a constant. We show that (3.29) has at least
one positive ω-periodic solution.

For u ∈ Cω(R), since∫ t

−∞
eα(s−t)u2(s)ds =

∫ 0

−∞
eαsu2(t+ s) ds =

∫ 0

−∞
eαsut

2(s) ds,
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we define the mapping f : R× CB → [0,∞) by

f(t, φ) =
∫ 0

−∞
eαsφ2(s) ds, t ∈ R, φ ∈ CB , (3.30)

then (3.29) is rewritten to the form of Equation (1.1). By the definition (3.30),
f : R × CB → [0,∞) is continuous and it satisfies the assumption (H3). We show
f satisfies the condition (F1) of Theorem 3.1.

For every φ ∈ K, since σ‖φ‖B ≤ φ(s) ≤ ‖φ‖B for s ∈ (∞, 0], we have

f(t, φ) =
∫ 0

−∞
eαsφ2(s)ds ≤ 1

α
‖φ‖B2

, (3.31)

f(t, φ) =
∫ 0

−∞
eαsφ2(s)ds ≥ σ2

α
‖φ‖B2

. (3.32)

From (3.31) and (3.32) it follows that

f0 = lim sup
φ∈K‖φ‖B→0+

max
t∈[0,ω]

f(t, φ)
‖φ‖B

= 0,

f∞ = lim inf
φ∈K‖φ‖B→∞

min
t∈[0,ω]

f(t, φ)
‖φ‖B

= +∞.

Hence, f satisfies the condition (F1). By Theorem 3.1, equation (3.29) has at least
one positive ω-periodic solution.
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