\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 94, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/94\hfil Necessary and sufficient conditions] {Necessary and sufficient conditions for the existence of periodic solution to singular problems with impulses} \author[J. Sun, J. Chu \hfil EJDE-2014/94\hfilneg] {Juntao Sun, Jifeng Chu} \address{Juntao Sun \newline School of Science, Shandong University of Technology, Zibo, 255049 Shandong, China} \email{sunjuntao2008@163.com} \address{Jifeng Chu \newline College of Science, Hohai University, Nanjing, 210098 Jiangsu, China} \email{jifengchu@126.com} \thanks{Submitted October 30, 2013. Published April 10, 2014.} \subjclass[2000]{34B15} \keywords{Positive periodic solution; singular differential equations; \hfill\break\indent impulses; variational methods} \begin{abstract} In this article we give a necessary sufficient conditions for the existence of periodic solutions to impulsive periodic solution for a singular differential equation. The proof is based on the variational method. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} In this article we discuss the $T$-periodic solution for the second-order singular problem with impulsive effects \begin{equation} \begin{gathered} u''(t)-\frac{1}{u^{\alpha}(t)}=e(t),\quad\text{a.e. } t\in(0,T),\\ \Delta u'(t_j)=b_j,\quad j=1,2,\dots,p-1, \end{gathered} \label{eSP} \end{equation} where $\alpha\geq 1$, $e\in L^1([0,T],\mathbb{R})$ is $T$-periodic, $\Delta u'(t_j)=u'(t_j^+)-u'(t_j^-)$ with $u'(t_j^\pm)=\lim_{t\to t_j^\pm} u'(t)$; $t_j$, $j=1,2,\dots,p-1,$ are the instants where the impulses occur and $0=t_0-\int_0^{T}\frac{1}{u^{\alpha}(t)}dt=\sum_{j=1}^{p-1}b_j+\int_0^{T}e(t)dt. \] Now we prove that if $\sum_{j=1}^{p-1}b_j+\int_0^{T}e(t)dt<0$, then Problem \eqref{eSP} has a positive $T$-periodic weak solution $u\in H_T^1$. The proof is based on the mountain pass theorem, see \cite{1989-Mawhin-p}. We divide it into four steps. \textbf{Step 1.} Let a sequence $\{u_n\}$ in $H_T^1$ satisfy $\Phi_{\lambda}(u_n)$ be bounded and $\Phi_{\lambda}'(u_n)\to0$, i.e., there exist a constant $c_1>0$ and a sequence $\{\epsilon_n\}_{n\in\mathbb{N}}\subset \mathbb{R}^+$ with $\epsilon_n\to0$ as $n\to+\infty$ such that for all $n$, \begin{equation} \label{3-3} \Big|\int_0^{T}\big[\frac{1}{2}|u_n'(t)|^2-F_{\lambda}(u_n(t))+e(t)u_n(t) \big]dt+\sum_{j=1}^{p-1}b_ju_n(t_j)\Big| \leq c_1, \end{equation} and for every $v\in H_T^1$, \begin{equation} \label{3-4} \Big|\int_0^{T}[u_n'(t) v'(t))-f_{\lambda}(u_n(t))v(t)+e(t)v(t)]dt+\sum_{j=1}^{p-1}b_jv(t_j)\Big| \leq\epsilon_n\|v\|_{H_T^1}. \end{equation} Now we show that $\{u_n\}$ is bounded in $H_T^1$. Taking $v(t)\equiv-1$ in \eqref{3-4} one has \[ \Big|\int_0^{T}[f_{\lambda}(u_n(t))-e(t)]dt-\sum_{j=1}^{p-1}b_j\Big| \leq\epsilon_n\sqrt{T}\quad \text{for all}\ n, \] which implies \[ \big|\int_0^{T}f_{\lambda}(u_n(t))dt\big| \leq\epsilon_n\sqrt{T}+\int_0^{T}e(t)dt+\sum_{j=1}^{p-1}|b_j|:=c_2. \] Note that for any $t\in[0,T]$, $f_{\lambda}(u_n(t))<0$. Thus \[ \int_0^{T}|f_{\lambda}(u_n(t))|dt =\big|\int_0^{T}f_{\lambda}(u_n(t))dt\big| \leq c_2. \] On the other hand, take, in \eqref{3-4}, $v(t)\equiv w_n(t):=u_n(t)-\bar{u}_n$, where $\bar{u}_n=\frac{1}{T}\int_0^{T}u_n(t)dt$, by \cite[Proposition 1.1]{1989-Mawhin-p} we have \begin{align*} c_3\|w_n\|_{H_T^1} &\geq \int_0^{T}[w_n'(t)^2-f_{\lambda}(u_n(t))w_n(t)+e(t)w_n(t)]dt +\sum_{j=1}^{p-1}b_jw_n(t_j)\\ &\geq \|w'_n\|^2_{L^2}-(c_2+\|e\|_{L^1})\|w_n\|_{L^{\infty}} -\sum_{j=1}^{p-1}|b_j|\|w_n\|_{L^{\infty}}\\ &= \|w'_n\|^2_{L^2}-(c_2+\|e\|_{L^1} +\sum_{j=1}^{p-1}|b_j|)\|w_n\|_{L^{\infty}}\\ &\geq \|w'_n\|^2_{L^2}-c_4\|w_n\|_{H_T^1}, \end{align*} where $c_3$ and $c_4$ are two positive constants. Thus, \[ \|w'_n\|^2_{L^2}\leq(c_3+c_4)\|w_n\|_{H_T^1}. \] Consequently, using the Wirtinger inequality, we obtain the existence of a positive constant $c_5$ such that \begin{equation} \label{3-5} \|u'_n\|^2_{L^2}\leq c_5. \end{equation} Now, suppose that $\|u_n\|_{H_T^1}\to+\infty$ as $n\to+\infty$. Since \eqref{3-5} holds, we have, passing to subsequence if necessary, that either \begin{gather*} M_n:=\max u_n\to+\infty\quad\text{as } n\to+\infty,\quad\text{or}\\ m_n:=\min u_n\to-\infty\quad\text{as } n\to+\infty. \end{gather*} (i) Assume that the first possibility occurs. In view to the fact that $f_{\lambda}<0$, one has \begin{align*} &\int_0^{T}[F_{\lambda}(u_n(t))-e(t)u_n(t)]dt-\sum_{j=1}^{p-1}b_ju_n(t_j)\\ &= \int_0^{T}\Big[\Big(\int_1^{M_n}f_{\lambda}(s)ds-\int_{u_n(t)}^{M_n} f_{\lambda}(s)ds\Big)-e(t)u_n(t)\Big]dt-M_n\sum_{j=1}^{p-1}b_j\\ &\quad -\sum_{j=1}^{p-1}b_j\left(u_n(t_j)-M_n\right) \\ &\geq \int_0^{T}F_{\lambda}(M_n)dt-\int_0^{T}M_ne(t)dt -\max_{t\in[0,T]}|M_n-u_n(t)|\int_0^{T}|e(t)|dt-M_n\sum_{j=1}^{p-1}b_j\\ &\quad -\max_{t\in[0,T]}|M_n-u_n(t)|\sum_{j=1}^{p-1}|b_j|\\ &\geq TF_{\lambda}(M_n)-M_n\Big(\int_0^{T}e(t)dt+\sum_{j=1}^{p-1}b_j\Big) -\Big(\|e\|_{L^1}+\sum_{j=1}^{p-1}|b_j|\Big)|M_n-m_n|\\ &= TF_{\lambda}(M_n)-M_n\Big(\int_0^{T}e(t)dt+\sum_{j=1}^{p-1}b_j\Big) -\Big(\|e\|_{L^1}+\sum_{j=1}^{p-1}|b_j|\Big) \Big|\int_{\bar{t}_n}^{\hat{t}_n}u'_n(t)dt\Big|\\ &\geq TF_{\lambda}(M_n)-M_n\Big(\int_0^{T}e(t)dt+\sum_{j=1}^{p-1}b_j\Big) -\Big(\|e\|_{L^1}+\sum_{j=1}^{p-1}|b_j|\Big) \int_{\bar{t}_n}^{\hat{t}_n}|u'_n(t)|dt, \end{align*} where $u_n(\hat{t}_n)=M_n$ and $u_n(\bar{t}_n)=m_n$. Thus, using the H$\ddot{\text{o}}$lder inequality, one has \begin{equation} \label{3-6} \begin{aligned} &-M_n\Big(\int_0^{T}e(t)dt+\sum_{j=1}^{p-1}b_j\Big) +TF_{\lambda}(M_n)\\ &\leq\int_0^{T} [F_{\lambda}(u_n(t))-e(t)u_n(t)]dt -\sum_{j=1}^{p-1}b_ju_n(t_j)+\sqrt{T}\Big(\|e\|_{L^1}+\sum_{j=1}^{p-1}|b_j| \Big)\|u_n'\|_{L^2}. \end{aligned} \end{equation} If $\alpha=1$, then $F_{\lambda}(M_n)=-\ln M_n$. By \eqref{3-6} one has \[ -M_n\Big(\int_0^{T}e(t)dt+\sum_{j=1}^{p-1}b_j\Big)-T\ln M_n\to+\infty\quad\text{as } n\to+\infty. \] If $\alpha>1$, then $F_{\lambda}(M_n)=-\frac{1}{\alpha-1}(\frac{1}{M_n^{\alpha-1}}-1)$. By \eqref{3-6} we obtain \[ -M_n\Big(\int_0^{T}e(t)dt+\sum_{j=1}^{p-1}b_j\Big) -\frac{1}{\alpha-1}(\frac{1}{M_n^{\alpha-1}}-1)\to+\infty\quad\text{as } n\to+\infty. \] From \eqref{3-3} and \eqref{3-5}, we see that the right hand side of \eqref{3-6} is bounded, which is a contradiction. (ii) Assume the second possibility occurs; i.e., $m_n\to-\infty$ as $n\to+\infty$. We replace $M_n$ by $-m_n$ in the preceding arguments, and we also get a contradiction. So $\{u_n\}$ is bounded in $H_T^1$. Since $H_T^1$ is a reflexive Banach space, there exists a subsequence of $\{u_n\}$, denoted again by $\{u_n\}$ for simplicity, and $u\in H_T^1$ such that $u_n\rightharpoonup u$ in $H_T^1$; then, by the Sobolev embedding theorem, we get $u_n\to u$ in $C([0, T])$ and $u_n\to u$ in $L^2([0, T])$. So \begin{equation} \label{3-7} \begin{gathered} \int_0^{T}(f_{\lambda}(u_n(t))-f_{\lambda}(u(t)))(u_n(t)-u(t))dt\to0, \\ \sum_{j=1}^{p-1}b_j(u_n(t_j)-u(t_j))\to0,\\ \int_0^{T}e(t)(u_n(t)-u(t))dt\to0, \\ (\Phi_{\lambda}'(u_n)-\Phi_{\lambda}'(u))(u_n-u)\to0,\quad\text{as } n\to\infty. \end{gathered} \end{equation} By \eqref{3-6}, \eqref{3-7} and the fact that $u_n\to u$ in $L^2([0, T])$, we have $\|u_n-u\|_{H_T^1}\to0$ as $n\to\infty$. That is, $\{u_n\}$ strongly converges to $u$ in $H^1_T$, which means that the Palais-Smale condition holds for $\Phi_{\lambda}$. \textbf{Step 2.} Let \[ \Omega=\big\{u\in H^1_T|\min_{t\in[0,T]}u(t)>1\big\}, \] and \[ \partial\Omega =\{u\in H^1_T|u(t)\geq1\ \text{for all}\ t\in(0,T),\ \exists t_u\in(0,T): u(t_u)=1\}. \] We show that there exists $d>0$ such that $\inf_{u\in\partial\Omega}\Phi_{\lambda}(u)\geq-d$ whenever $\lambda\in(0,1)$. For any $u\in\partial\Omega$, there exists some $t_{u}\in(0,T)$ such that $\min_{t\in[0,T]}u(t)=u(t_{u})=1$. By \eqref{2-1}, and extending the functions by $T$-periodicity, we have \begin{align*} \Phi_{\lambda}(u) &= \int_{t_{u}}^{t_{u}+T}\big[\frac{1}{2}|u'(t)|^2-F_{\lambda}(u(t))+e(t)u(t)\big]dt +\sum_{j=1}^{p-1}b_ju(t_j)\\ &\geq \frac{1}{2}\int_{t_{u}}^{t_{u}+T}|u'(t)|^2dt+\int_{t_{u}}^{t_{u}+T}e(t)(u(t)-1) dt+\int_{t_{u}}^{t_{u}+T}e(t)dt\\ &\quad +\sum_{j=1}^{p-1}b_j(u(t_j)-1)+\sum_{j=1}^{p-1}b_j\\ &\geq \frac{1}{2}\|u'\|^2_{L^2}-\Big(\|e\|_{L^1}+\sum_{j=1}^{p-1}|b_j|\Big) \max_{t\in[0,T]}(u(t)-1)-\|e\|_{L^1}+\sum_{j=1}^{p-1}b_j\\ &= \frac{1}{2}\|u'\|^2_{L^2}-\Big(\|e\|_{L^1}+\sum_{j=1}^{p-1}|b_j|\Big) \int_{t_{u}}^{\check{t}_{u}}u'(t)dt-\|e\|_{L^1}+\sum_{j=1}^{p-1}b_j\\ &\geq \frac{1}{2}\|u'\|^2_{L^2}-\Big(\|e\|_{L^1}+\sum_{j=1}^{p-1}|b_j|\Big) \int_{t_{u}}^{t_{u}+T}|u'(t)|dt-\|e\|_{L^1}+\sum_{j=1}^{p-1}b_j, \end{align*} where $\check{t}_{u}\in[0,T]$ and $\max_{t\in[0,T]}u(t)=u(\check{t}_{u})$. Applying the H$\ddot{\text{o}}$lder inequality, we get \[ \Phi_{\lambda}(u) \geq\frac{1}{2}\|u'\|^2_{L^2}-\sqrt{T}\Big(\|e\|_{L^1}+\sum_{j=1}^{p-1}|b_j|\Big) \|u'\|_{L^2}-\|e\|_{L^1}+\sum_{j=1}^{p-1}b_j. \] The above inequality shows that \[ \Phi_{\lambda}(u)\to+\infty\quad{as }\|u'\|_{L^2}\to+\infty. \] For any $u\in\partial\Omega$, it is easy to verify the fact that $\|u\|_{H_T^1}\to+\infty$ is equivalent to $\|u'\|_{L^2}\to+\infty$. Indeed, when $\|u'\|_{L^2}\to+\infty$, it is clear that $\|u\|_{H_T^1}\to+\infty$. When $\|u\|_{H_T^1}\to+\infty$. Assume that $\|u'\|_{L^2}$ is bounded, then $\|u\|_{L^2}\to+\infty$. Since $\min_{t\in[0,T]}u(t)=1$, we have \[ u(t)-1=\int_{t_{u}}^{t}u'(s)ds\leq\int_0^{T}|u'(s)|ds\leq\sqrt{T} \Big(\int_0^{T}|u'(t)|^2dt\Big)^{1/2}. \] Therefore, $u$ is bounded in $L^2(0,T)$, which is a contradiction. Hence \[ \Phi_{\lambda}(u)\to+\infty\quad\text{as } \|u\|_{H_T^1}\to+\infty,\; \forall u\in\partial\Omega, \] which shows that $\Phi_{\lambda}$ is coercive. Thus it has a minimizing sequence. The weak lower semi-continuity of $\Phi_{\lambda}$ yields \[ \inf_{u\in\partial\Omega}\Phi_{\lambda}(u)>-\infty. \] It follows that there exists $d>0$ such that $\inf_{u\in\partial\Omega}\Phi_{\lambda}(u)>-d$ for all $\lambda\in(0,1)$. \textbf{Step 3.} We prove that there exists $\lambda_0\in(0,1)$ with the property that for every $\lambda\in(0,\lambda_0)$, any solution $u$ of Problem \eqref{eSPl} satisfying $\Phi_{\lambda}(u)>-d$ is such that $\min_{u\in[0,T]}u(t)\geq\lambda_0$, and hence $u$ is a solution of Problem \eqref{eSP}. Assume on the contrary that there are sequences $\{\lambda_n\}_{n\in\mathbb{N}}$ and $\{u_n\}_{n\in\mathbb{N}}$ such that \begin{itemize} \item[(i)] $\lambda_n\leq \frac{1}{n}$; \item[(ii)] $u_n$ is a solution of Problem \eqref{2-1} with $\lambda=\lambda_n$; \item[(iii)] $\Phi_{\lambda_n}(u_n)\geq-d$; \item[(iv)] $\min_{t\in[0,T]}u_n(t)<\frac{1}{n}$. \end{itemize} Since $f_{\lambda_n}<0$ and $\int_0^{T}[f_{\lambda_n}(u_n(t))-e(t)]dt=0$, one has \[ \|f_{\lambda_n}(u_n(\cdot))\|_{L^1}\leq c_7,\quad \text{for some constant } c_7>0. \] Hence \begin{equation} \label{3-8} \|u'_n\|_{L^{\infty}}\leq c_8,\quad\text{for some constant } c_8>0. \end{equation} From $\Phi_{\lambda_n}(u_n)\geq-d$ it follows that there must exist two constants $l_1$ and $l_2$, with $0-\int_{\lambda}^1f_\lambda(s)ds =\int_1^{\lambda}f_\lambda(s)ds=F_{\lambda}(\lambda). \] Thus we have \begin{equation} \label{3-11} \Phi_{\lambda}(0) = -TF_{\lambda}(0)<-TF_{\lambda}(\lambda) = \begin{cases} T\ln\lambda,&\text{if } \alpha=1,\\ -\frac{T}{\alpha-1}\big(\frac{1}{\lambda^{\alpha-1}}-1\big), &\text{if }\alpha>1. \end{cases} \end{equation} We choose $\lambda\in(0,\lambda_0]\cap(0,e^{-d})\cap (0,[\frac{T}{T+d(\alpha-1)}]^{1/(\alpha-1)})$, then it follows from \eqref{3-11} that $\Phi_{\lambda}(0)<-d$. Also, we can choose a constant $R>1$ enough large such that \[ -\Big(\sum_{j=1}^{p-1}b_j+\int_0^{T}e(t)dt\Big)R -\frac{T}{\alpha-1}\big(1-\frac{1}{R^{\alpha-1}}\big)>d, \] and \[ -\Big(\sum_{j=1}^{p-1}b_j+\int_0^{T}e(t)dt\Big)R-T\ln R>d. \] Thus, $R\in H_T^1$ and \begin{align*} \Phi_{\lambda}(R) &= R\sum_{j=1}^{p-1}b_j-TF_{\lambda}(R) +R\int_0^{T}e(t)dt\\ &\leq \begin{cases} \sum_{j=1}^{p-1}b_jR+T\ln R+R\int_0^{T}e(t)dt,&\text{if } \alpha=1,\\[4pt] \sum_{j=1}^{p-1}b_jR+\frac{T}{\alpha-1}\big(1-\frac{1}{R^{\alpha-1}}\big) +R\int_0^{T}e(t)dt,&\text{if }\alpha>1. \end{cases}\\ &\leq \begin{cases} \big(\sum_{j=1}^{p-1}b_j+\int_0^{T}e(t)dt\big)R+T\ln R,& \text{if } \alpha=1,\\[4pt] \big(\sum_{j=1}^{p-1}b_j+\int_0^{T}e(t)dt\big)R+\frac{T}{\alpha-1} \big(1-\frac{1}{R^{\alpha-1}}\big),&\text{if }\alpha>1. \end{cases}\\ &<-d. \end{align*} Since $\Omega$ is a neighborhood of $R$, $0\not\in\Omega$ and \[ \max\{\Phi_{\lambda}(0), \Phi_{\lambda}(R)\}<\inf_{x\in\partial\Omega}\Phi_{\lambda}(u), \] Step 1 and Step 2 imply that $\Phi_{\lambda}$ has a critical point $u_\lambda$ such that \[ \Phi_{\lambda}(u_\lambda) =\inf_{h\in\Gamma}\max_{s\in[0,1]}\Phi_{\lambda}(h(s)) \geq\inf_{x\in\partial\Omega}\Phi_{\lambda}(u), \] where \[ \Gamma=\{h\in C([0,1],H_T^1):h(0)=0,h(1)=R\}. \] Since $\inf_{u\in\partial\Omega}\Phi_{\lambda}(u_\lambda)\geq-d$, it follows from Step 3 that $u_\lambda$ is a positive solution of Problem \eqref{eSP}. The proof of the main result is complete. \end{proof} \subsection*{Acknowledgments} Juntao Sun was supported by the National Natural Science Foundation of China (Grant No. 11201270), Shandong Natural Science Foundation (Grant No. ZR2012AQ010), and Young Teacher Support Program of Shandong University of Technology. Jifeng Chu was supported by the National Natural Science Foundation of China (Grant Nos. 11171090, 11271078, and 11271333), the Program for New Century Excellent Talents in University (Grant No. NCET-10-0325), and China Postdoctoral Science Foundation funded project (Grant Nos. 20110491345 and 2012T50431). \begin{thebibliography}{99} \bibitem{2002-Agarwal-p409-433} R. P. Agarwal, D. O'Regan; \newblock {Existence criteria for singular boundary value problems with sign changing nonlinearities.} \newblock {\em J. Differential Equations.} \textbf{183}, 409-433(2002). \bibitem{2005-Agarwal-p817-824} R. P. Agarwal, K. Perera, D. O'Regan; \newblock {Multiple positive solutions of singular problems by variational methods.} \newblock {\em Proc. Amer. Math. Soc.} \textbf{134}, 817-824(2005). \bibitem{2008-Boucherif-p147-158} A. Boucherif, N. Daoudi-Merzagui; \newblock {Periodic solutions of singular nonautonomous second order differential equations.} \newblock {\em NoDEA Nonlinear Differential Equations Appl.} \textbf{15}, 147-158(2008). \bibitem{2007-Chen-p233-244} L. Chen, C. C. Tisdell, R. Yuan; \newblock{On the solvability of periodic boundary value problems with impulse.} \newblock {\em J. Math. Anal. Appl.} \textbf{331}, 233-244(2007). \bibitem{2012-Chu-p665-675} J. Chu, N. Fan, P. J. Torres; \newblock {Periodic solutions for second order singular damped differential equations.} \newblock {\em J. Math. Anal. Appl.} \textbf{388}, 665-675(2012). \bibitem{2008-Chu-p143-150} J. Chu, J. J. Nieto; \newblock {Impulsive periodic solution of first-order singular differential equations.} \newblock {\em Bull. London. Math. Soc.} \textbf{40}, 143-150(2008). \bibitem{2009-Chu-p323-338} J. Chu, D. O'Regan; \newblock {Multiplicity results for second order non-autonomous singular Dirichlet systems.} \newblock {\em Acta Appl. Math.} \textbf{105}, 323-338(2009). \bibitem{2007-Chu-p196-212} J. Chu, P.J. Torres, M. Zhang; \newblock {Periodic solutions of second order non-autonomous singular dynamical systems.} \newblock {\em J. Differential Equations} \textbf{239}, 196-212(2007). \bibitem{2010-Hakl-p111-126} R. Hakl, P. J. Torres; \newblock {On periodic solutions of second-order differential equations with attractive-repulsive singularities.} \newblock {\em J. Differential Equations} \textbf{248}, 111-126(2010). \bibitem{1987-Lazer-p109-114} A.C. Lazer, S. Solimini; \newblock {On periodic solutions of nonlinear differential equations with singularities.} \newblock {\em Proc. Amer. Math. Soc.} \textbf{99}, 109-114(1987). \bibitem{2009-Nieto-p680-690} J.J. Nieto, D. O'Regan; \newblock {Variational approach to impulsive differential equations.} \newblock {\em Nonlinear Anal. Real World Appl.} \textbf{10}, 680-690(2009). \bibitem{1989-Mawhin-p} J. Mawhin, M. Willem; \newblock {\em Critical Point Theory and Hamiltonian Systems}. \newblock Springer, 1989. \bibitem{2013-Sun-p562-569} J. Sun, J. Chu, H. Chen; \newblock{Periodic solution generated by impulses for singular differential equations.} \newblock {\em J. Math. Anal. Appl.} \textbf{404}, 562-569(2013). \bibitem{2012-Sun-p193-204} J. Sun, D. O'Regan; \newblock {Impulsive periodic solutions for singular problems via variational methods.} \newblock {\em Bull. Aust. Math. Soc.} \textbf{86}, 193-204(2012). \bibitem{2010-Sun-p4575-4586} J. Sun, H. Chen, J. J. Nieto, M. Otero-Novoa; \newblock {Multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects.} \newblock{\em Nonlinear Anal.} \textbf{72}, 4575-4586(2010). \bibitem{2011-Sun-p544-555} J. Sun, H. Chen, J. J. Nieto; \newblock {Infinitely many solutions for second-order Hamiltonian system with impulsive effects.} \newblock{\em Math. Comput. Modelling} \textbf{54}, 544-555(2011). \bibitem{2008-Tian-p509-527} Y. Tian, W. Ge; \newblock {Applications of variational methods to boundary value problem for impulsive differential equation.} \newblock {\em Proc. Edin. Math. Soc.} \textbf{51}, 509-527(2008). \end{thebibliography} \end{document}