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BIFURCATION OF LIMIT CYCLES FOR CUBIC REVERSIBLE
SYSTEMS

YI SHAO, KUILIN WU

Abstract. This article is concerned with the bifurcation of limit cycles of

a class of cubic reversible system having a center at the origin. We prove
that this system has at least four limit cycles produced by the period annulus

around the center under cubic perturbations.

1. Introduction

One of the main problems in the qualitative theory of real planar differential
systems is the determination of limit cycles. For polynomial differential systems,
the problem of the maximum number of limit cycles arises in the context of the
second part of the Hilbert’s 16th problem. A classical way to obtain limit cycles is
perturbing a polynomial differential system which has a center.

In this article we study the bifurcation of limit cycles of a cubic systems under
small cubic perturbations. We consider system

ẋ =
Hy(x, y)
R(x, y)

+ εf(x, y, ε), ẏ = −Hx(x, y)
R(x, y)

+ εg(x, y, ε), (1.1)

where H(x, y) is a first integral of system (1.1) with ε = 0 and integrating fac-
tor R(x, y), f(x, y, ε) and g(x, y, ε) are cubic polynomials in x, y with coefficients
depending analytically on the small parameter ε.

We assume that the unperturbed system of (1.1) has at least one centre which is
surrounded by a continuous set of period annuli Γh of real algebraic curve H(x, y) =
h, h ∈ (h1, h2). As well know, the maximum number of limit cycles produced by
period annuli of system (1.1) with ε = 0 is reduced to counting the number of zeros
of the displacement function

d(h, ε) = εM1(h) + ε2M2(h) +O(ε3), (1.2)

where d(h, ε) is defined below, which is parameterized by the Hamiltonian value
h. The number of zeros of the first non-vanish Melnikov function Mk(h) in (1.2)
determine the upper bound of limit cycles in (1.1) produced from periodic orbits
of the unperturbed system (1.1). As usual, we call the the upper bound of limit
cycles cyclicity and the first non-vanish Melnikov function the generating function.
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Most of the results concerned with the cyclicity of the period annulus is for
planar quadratic systems under quadratic perturbations, in particular for quadratic
systems with centers of genus one. We refer to [2, 4, 5, 6, 7], [10, 13], [16, 17, 20, 19],
the survey paper [9] and references therein. But there are less results concerned
with bifurcation from the periodic orbits of cubic system. The authors of [11]
investigated the upper bound of limit cycles that bifurcate from the periodic orbits
of cubic reversible isochronous centers having all their orbits formed by conics inside
the class of all polynomial systems of degree n. The paper [3] study the maximum
number of limit cycles from cubic Pleshkan’s isochronous system S∗1 under a small
polynomial perturbations of degree n. In [18], the authors study the number of
limit cycles produced by the period annulus of a cubic reversible isochronous center
under cubic perturbations.

In this article, we will study the cubic reversible system

ẋ = −y(1− x)(1− 2x),

ẏ = x− 2x2 + 2x3 + y2,
(1.3)

which has a first integral of the form

H(x, y) =
(x− 1)2(x2 + y2)

(2x− 1)2
, (1.4)

with the integrating factor R(x, y) = 2(1−x)
(2x−1)3 . It is easy to know that the origin is a

center of system (1.3), x = 1 and x = 1
2 are two invariant lines. Hence, there is an

unbounded period annulus surrounding the center of system (1.3) and h ∈ (0,+∞).
Chavarriga and Sabatini [1] have proved that the origin is a reversible isochronous
center.

The main purpose of this article is to deal with the bifurcation of limit cycles
of system (1.3) under cubic polynomial perturbations. We consider the following
perturbating system:

ẋ = −y(1− x)(1− 2x) + εf(x, y, ε),

ẏ = x− 2x2 + y2 + 2x3 + εg(x, y, ε),
(1.5)

where

f(x, y, ε) =

3∑
i+j=1

aij(ε)xiyj , g(x, y, ε) =

3∑
i+j=1

bij(ε)xiyj

with aij(ε) and bij(ε) depending analytically on the small parameter ε. By (1.2)
we know that the Abelian integrals of system (1.5) is

I(h) =
∮

Γh

R(x, y)f(x, y, 0)dy −R(x, y)g(x, y, 0)dx, (1.6)

where Γh is the compact component of H(x, y) = h, defined by (1.4).
The following theorem is the main result of this article.

Theorem 1.1. For cubic perturbed systems (1.5), the maximum number of zeros
in h ∈ (0,+∞), counting multiplicities, of the Abelian integral I(h) in (1.6) is equal
to four. Moreover, for each k = 0, 1, 2, 3, 4, there exist perturbations such that I(h)
have exactly k zeros.
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To prove this theorem, we shall change the Abelian integral I(h) in (1.6) to
a linear combination of five integrals in (2.2) and introduce some definitions of
Chebyshev system and lemmas in Section 2. In Section 3, we shall prove that the
five integrals in (2.2) form an extended complete Chebychev system. Accordingly,
we obtain the number of zeros of the generating function by some purely algebraic
computations.

It follows from (1.4) that system (1.3) is reversible. Hence, Theorem 1.1 and
(1.2) imply the following result.

Theorem 1.2. The least upper bound for the number of limit cycles of system
(1.5) bifurcating from the period annulus of unpertubing system (1.3) is equal to
four. Moreover, for each k = 0, 1, 2, 3, 4, there exist perturbations such that exactly
k limit cycles produced by the period annulus of system (1.3)

2. The generating function and preliminary results

To study the bifurcation of limit cycles of system (1.5), we need to calculate
the number of zeros of the Abelian integral I(h). The author of [4] use Chebyshev
property to study the number of zeros of Abelian integrals of several classes of
planar quadratic systems under quadratic perturbations. This method is valid for
some restricted forms of the first integrals.

We write the first integral H(x, y) in (1.4) as

H(x, y) = A(x) +B(x)y2, (2.1)

where A(x) = (x(x−1))2

(2x−1)2 and B(x) = (x−1)2

(2x−1)2 . There exists a period annulus by the
set of ovals Γh ∈ {(x, y)|H(x, y) = h} around the origin, which is parameterized by
the Hamiltonian value h ∈ (0,+∞).

Lemma 2.1 ([4]). Let Γh be an oval inside the level curve {A(x) +B(x)y2m = h}
and we consider a function F such that F

A′ is analytic at x = 0. Then, for any
k ∈ N, ∫

Γh

F (x)yk−2dx =
∫

Γh

G(x)ykdx ,

where G(x) = 2
k (BF

A′ )′(x)− (B′F
A′ )(x).

Using above lemma, we have the following proposition.

Proposition 2.2. The generating function I(h) defined by (1.6) can be rewritten
as

I(h) = µ0J0(h) + µ1J1(h) + µ2J2(h) + µ3J3(h) + µ4J4(h), (2.2)
where

J0(h) =
∫

Γh

x2y

(1− 2x)4
dx, J1(h) =

∫
Γh

xy

(1− 2x)4
dx,

J2(h) =
∫

Γh

y

(1− 2x)4
dx, J3(h) =

∫
Γh

y3

(1− 2x)4
dx,

J4(h) =
∫

Γh

xy3

(1− 2x)3
dx,

whith µ0, µ1, µ2, µ3 and µ4 are arbitrary constants.
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Proof. Integrating by parts, for any i, j ≥ 0, we obtain∫
Γh

R(x, y)xiyjdy =
1

j + 1

∫
Γh

R(x, y)xidyj+1

=
2

j + 1

∫
Γh

[ixi−1 + (5− 3i)xi + 2(i− 2)x1+i]y
j+1

(2x− 1)4
dx.

Since the system (1.3) is reversible,∫
Γh

xiyj

(2x− 1)4
dx = 0, for j = 2n, n ∈ N.

The Abel integral I(h) (also known as the first order Melnikov function) is the
divergence integral. By direct computation we have

I(h) =
∫

Γh

Rf(x, y, 0)dy −Rg(x, y, 0)dx

=
∫ ∫

intΓh

[(Rf)x + (Rg)y]dxdy

=
∫

Γh

(α0 + α1x+ α2x
2 + α3x

3 + α4x
4)y

(2x− 1)4
dx+

∫
Γh

(β0 + β1x+ β2x
2)y3

(2x− 1)4
dx,

where αi and βj are arbitrary constants independent on ε.
It is easy to show that xy3

(2x−1)4 and x2y3

(2x−1)4 can be expressed as line combination

of y3

(2x−1)4 , y3

(2x−1)3 and xy3

(2x−1)3 . By using lemma 2.1 and solving the differential
equation

1
(2x− 1)3

=
2
3

(BF
A′

)′
(x)−

(B′F
A′

)
(x),

we obtain

F (x) =
x(1− 2x+ 2x2)(3 + 2C − 4Cx+ 2Cx2)

2(−1 + 2x)4
,

where C ia a constant. Taking C = 0, we have∫
Γh

y3

(2x− 1)3
dx =

∫
Γh

3x(1− 2x+ 2x2)y
2(−1 + 2x)4

dx.

Similarly, we obtain∫
Γh

xy3

(2x− 1)3
dx = −

∫
Γh

3x(1− 2x+ 2x2)y
2(−1 + 2x)3

dx.

Obviously, there exist constants ci and dj such that

3x(1− 2x+ 2x2)
2(−1 + 2x)4

=
3∑

i=0

cix
i

(−1 + 2x)4
,

and
3x(1− 2x+ 2x2)

2(−1 + 2x)3
=

4∑
j=0

djx
i

(−1 + 2x)4
.

Thus, it follows from the above analysis we obtain the expression (2.3) and the
proof is complete. �

To prove Theorem 1.1, now we introduce some definitions and lemmas. The
reader is referred to [4] and [14] for details.
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Definition 2.3. Let ϕ0(x), ϕ1(x), . . . , ϕn−1(x) be analytic functions on an open
interval L of R.

(a) (ϕ0(x), ϕ1(x), . . . , ϕn−1(x)) is a Chebyshev system (for short, a T-system)
on L if any nontrivial linear combination

α0ϕ0(x) + α1ϕ1(x) + · · ·+ αn−1ϕn−1(x)

has at most n− 1 isolated zeros for x ∈ L.
(b) (ϕ0(x), ϕ1(x), . . . , ϕn−1(x)) is a complete Chebyshev system (for short, a

CT-system) on L if (ϕ0(x), ϕ1(x), . . . , ϕk−1(x)) is a T-system for all k =
1, 2, . . . , n.

(c) (ϕ0(x), ϕ1(x), . . . , ϕn−1(x)) is an extend complete Chebyshev system (for
short, an ECT-system) on L if for all k = 1, 2, . . . , n, any nontrivial linear
combination

α0ϕ0(x) + α1ϕ1(x) + · · ·+ αn−1ϕk−1(x)

has at most k − 1 isolated zeros on L counted with multiplicities.

Definition 2.4. Let ϕ0(x), ϕ1(x), . . . , ϕk−1(x) be analytic functions on an open
interval L of R. The continuous Wronskian of (ϕ0(x), ϕ1(x), . . . , ϕk−1(x)) at x ∈ L
is

W [ϕ0, ϕ1, . . . , ϕk−1](x) = det(ϕ(i)
j (x))0≤i,j≤k−1 =

∣∣∣∣∣∣∣∣
ϕ0(x) . . . ϕk−1(x)
ϕ′0(x) . . . ϕ′k−1(x)
. . . . . . . . .

ϕ
(k−1)
0 (x) . . . ϕ

(k−1)
k−1 (x)

∣∣∣∣∣∣∣∣ .
The following two lemmas are found in [14] and [8] for instance.

Lemma 2.5. (ϕ0(x), ϕ1(x), . . . , ϕn−1(x)) is an ECT-system on interval L, then,
for each k = 1, 2, . . . , n− 1, there exists a linear combination with exactly k simple
zeros on L.

Lemma 2.6. (ϕ0(x), ϕ1(x), . . . , ϕn−1(x)) is an ECT-system on L if and only if,
for each k = 1, 2, . . . , n,

W [ϕk](x) 6= 0 for all x ∈ L.

From (2.1) we can see that the projection of the period annulus Γh on the x-axis
is x ∈ (−∞, 1

2 ) and xA′(x) > 0 for any x ∈ (−∞, 1
2 )\0. Hence there exists an

analytic involution σ(x) (σ ◦ σ = Id and σ 6= Id) such that

A(x) = A(σ(x)) for all x ∈ (−∞, 1/2).

Let t = σ(x), then

A(x)−A(t) =
(x− t)(−1 + x+ t)p(x)q(x)

(−1 + 2x)2(−1 + 2t)2
= 0,

where p(x) = −x− t+ 2xt and q(x) = 1− x− t+ 2xt. Since σ(x) is an involution,
σ(0) = 0. It is easy to know that

t = σ(x) =
x

2x− 1
. (2.3)

Using [4, Theorem B] directly, we have the following result.
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Proposition 2.7. Let the Ablian integrals

Ii(h) =
∫

Γh

ϕi(x)y2m−1dx, i = 0, 1, 2, 3, 4.

where fi be analytic functions in (−∞, 1
2 ), m ∈ Z and Γh be the oval surrounding

the origin inside the level curve {A(x) +B(x)y2 = h}, h ∈ (0,+∞). Suppose that

Li(x) =
( ϕi

A′B
2m−1

2

)
(x)−

( ϕi

A′B
2m−1

2

)
(σ(x)).

Then (J0, J1, J2, J3, J4) is an ECT-system on the interval (0,+∞) if m > 3 and
(L0, L1, L2, L3, L4) is a CT-system on (0, 1/2).

3. Proof of Theorem 1.1

In this section we apply proposition 2.7 to prove that (J0, J1, J2, J3, J4) in (2.2) is
an ECT-system on (0,+∞). However, we find that proposition 2.7 can not directly
be applied for (J0, J1, J2, J3, J4). To solve this problem, by lemma 2.1 and (2.1),
we firstly change J0, J1 and J2 to

J0(h) =
∫

Γh

x2y

(1− 2x)4
dx =

∫
Γh

− (1 + x− 6x2 + 6x3)y3

3(−1 + 2x)3(1− 2x+ 2x2)2
dx,

J1(h) =
∫

Γh

xy

(1− 2x)4
dx =

∫
Γh

− 2(2− 5x+ 4x2)y3

3(−1 + 2x)3(1− 2x+ 2x2)2
dx,

J2(h) =
∫

Γh

y

(1− 2x)4
dx =

∫
Γh

− (−1 + 7x− 14x2 + 10x3)y3

3x2(−1 + 2x)3(1− 2x+ 2x2)2
dx.

Then, by applying twice Lemma 2.1 to J0(h) and taking m = 4, we obtain

J0(h) =
1
h2
J̄0(h) =

1
h2

∫
Γh

(1 + x− 6x2 + 6x3)(A(x) +B(x)y2)2y3

3(1− 2x+ 2x2)2(1− 2x)7
dx

=
1
h2

∫
Γh

(1 + x− 6x2 + 6x3)[(A(x))2y3 + 2A(x)B(x)y5 + (B(x))2y7]dx
3(1− 2x+ 2x2)2(1− 2x)7

.

=
1
h2

∫
Γh

ϕ0(x)y7dx,

(3.1)

where

ϕ0(x) =
−2(−1 + x)4

35(−1 + 2x)7(1− 2x+ 2x2)6

(
8− 41x− 20x2 + 740x3 − 2856x4

+ 5966x5 − 8092x6 + 7668x7 − 5240x8 + 2544x9 − 800x10 + 128x11
)
.

In the same way, we obtain

Ji(h) =
1
h2
J̄i(h) =

1
h2

∫
Γh

ϕi(x)y7dx, i = 1, 2, 3, 4, (3.2)

where

ϕ1(x) =
−2(−1 + x)4

35(−1 + 2x)7(1− 2x+ 2x2)6

(
32− 311x+ 1364x2 − 3504x3

+5816x4 − 6576x5 + 5296x6 − 3168x7 + 1408x8 − 416x9 + 64x10
)
,
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ϕ2(x) =
2(−1 + x)4

35x2(−1 + 2x)7(1− 2x+ 2x2)6

(
4− 60x+ 368x2 − 1249x3

+2588x4 − 3360x5 + 2680x6 − 1248x7 + 344x8 − 88x9 + 16x10
)
,

ϕ3(x) =
(−1 + x)4

35(−1 + 2x)8(1− 2x+ 2x2)4

(
48− 339x+ 1118x2 − 2196x3

+2848x4 − 2552x5 + 1592x6 − 632x7 + 128x8
)
,

ϕ4(x) =
−3x(−1 + x)4

35(−1 + 2x)7(1− 2x+ 2x2)4

(
21− 168x+ 624x2 − 1392x3

+2056x4 − 2080x5 + 1424x6 − 608x7 + 128x8
)
.

Clearly, (J0, J1, J2, J3, J4) is an ECT-system if and only if (J̄0, J̄1, J̄2, J̄3, J̄4) is
an ECT-system on (0,+∞). It follows from proposition 2.7 that

Li(x) =
( ϕi

A′B
7
2

)
(x)−

( ϕi

A′B
7
2

)
(σ(x))

=
(−1 + 2x)7(ϕi(x)− ϕi(σ(x))
2x(−1 + x)8(1− 2x+ 2x2)

, i = 0, 1, 2, 3, 4.
(3.3)

Substituting (2.2) into (3.3), by direct computation we have

L0(x) =
8(−1 + 2x)3p0(x)

35x(−1 + x)3(1− 2x+ 2x2)7
, (3.4)

where

p0(x) = 2− 24x+ 160x2 − 720x3 + 2286x4 − 5232x5 + 8805x6 − 11070x7

+ 10460x8 − 7336x9 + 3664x10 − 1184x11 + 192x12.
(3.5)

Similarly, we obtain

L1(x) =
32(−1 + 2x)3

35x(−1 + x)3(1− 2x+ 2x2)5

(
2− 16x+ 60x2 − 136x3 + 206x4

− 216x5 + 155x6 − 70x7 + 16x8
)
,

L2(x) =
8(−1 + 2x)3

35x3(−1 + x)3(1− 2x+ 2x2)7

(
− 1 + 14x− 78x2 + 208x3 − 124x4

− 1048x5 + 4372x6 − 9824x7 + 15434x8 − 18172x9 + 16264x10

− 10896x11 + 5232x12 − 1632x13 + 256x14),

L3(x) =
−8(−1 + 2x)2

35x(−1 + x)3(1− 2x+ 2x2)5

(
6− 60x+ 316x2 − 1088x3 + 2634x4

− 4604x5 + 5861x6 − 5380x7 + 3436x8 − 1392x9 + 280x10
)
,

L4(x) =
3744x3(−1 + 2x)9

35(−1 + x)3(1− 2x+ 2x2)5
.

By Proposition 2.7, we need to check that (L0, L1, L2, L3, L4) is a CT-system on
(0, 1/2). From definition 2.3, it is easy to show that if (L0, L1, L2, L3, L4) is an ECT-
system on (0, 1/2), then (L0, L1, L2, L3, L4) is a CT-system on (0, 1/2). Moreover,
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it follows from definitions of Li(x) and the involution σ(x) that Li(σ(x)) = −Li(x).
Therefore, we have

Lemma 3.1. (L0, L1, L2, L3, L4) is a CT-system on the interval (0, 1/2) if and
only if (L0, L1, L2, L3, L4) is a CT-system on (−∞, 0).

Lemma 3.2. (L0(x), L1(x), L2(x), L3(x), L4(x)) is an ECT-system on (−∞, 0).

Proof. By lemmas 2.6 and 3.1, we need only to prove that

W [Li](x) 6= 0, for x ∈ (−∞, 0) and for each i = 0, 1, 2, 3, 4. (3.6)

From (3.5), we can see that all coefficients of odd degree in p(x) are negative and
coefficients of even degree are all positive numbers. Hence,

W [L0](x) = L0(x) 6= 0, for any x ∈ (−∞, 0).

Direct calculations show that

W [L0, L1](x) =
2048(−1 + 2x)6q1(x)

1225x(−1 + x)5(1− 2x+ 2x2)13
,

where

q1(x) = 10− 180x+ 1540x2 − 8320x3 + 31825x4 − 91630x5 + 206144x6

− 371368x7 + 544647x8 − 657510x9 + 657886x10 − 547296x11 + 378133x12

− 215454x13 + 99596x14 − 36200x15 + 9776x16 − 1760x17 + 160x18.

By a similar process, we obtain

W [L0, L1, L2](x) =
262144(−1 + 2x)10q2(x)

8575x6(−1 + x)6(1− 2x+ 2x2)15
,

where

q2(x) = 1− 16x+ 118x2 − 532x3 + 1642x4 − 3688x5 + 6264x6 − 8256x7

+ 8583x8 − 7096x9 + 4684x10 − 2488x11 + 1082x12 − 392x13 + 116x14

− 24x15 + 3x16,

W [L0, L1, L2, L3](x) = − 3221225472(−1 + 2x)9q3(x)
60025x6(−1 + x)6(1− 2x+ 2x2)21

,

where

q3(x) = 1− 24x+ 276x2 − 2024x3 + 10627x4 − 42524x5 + 134786x6 − 347244x7

+ 740317x8 − 1323024x9 + 2000136x10 − 2574224x11 + 2831954x12

− 2668568x13 + 2154548x14 − 1488664x15 + 878272x16 − 441408x17

+ 188784x18 − 68768x19 + 21322x20 − 5544x21 + 1148x22 − 168x23 + 14x24

and

W [L0, L1, L2, L3, L4](x) = − 289446436012032(−1 + 2x)14q4(x)
2100875x6(−1 + x)12(1− 2x+ 2x2)29

,

where

q4(x) = 35− 1452x+ 28844x2 − 366456x3 + 3352785x4 − 23570688x5

+ 132619414x6 − 614002012x7 + 2386389535x8 − 7903353204x9

+ 22561391864x10 − 56016194208x11 + 121833124010x12
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− 233466766984x13 + 396026781404x14 − 596927677776x15

+ 801995647256x16 − 962896901056x17 + 1035219064208x18

− 998199356992x19 + 864222115830x20 − 672259532592x21

+ 469892104468x22 − 294979366008x23 + 166117090858x24

− 83767522232x25 + 37733705440x26 − 15140306400x27

+ 5393826536x28 − 1699627568x29 + 471031680x30 − 113633072x31

+ 23394448x32 − 3964800x33 + 519680x34 − 47040x35 + 2240x36.

Fortunately, for polynomials p1(x), p2(x), p3(x) and p4(x), we find that coeffi-
cients of odd degree in x are all positive numbers and all coefficients of even degree
are all positive numbers, this show that the Wronskian W [Li](x) of (J1, J2, J3, J4)
are all no-vanish on (−∞, 0) for i = 1, 2, 3, 4. Thus we have proved this lemma. �

Proof of Theorem 1.1. By lemma 3.2, propositions 2.2 and 2.7, it is easy to see that
the Abelian integral I(h) has at most four zeros. Moreover, from lemma 2.5 for
each k = 0, 1, 2, 3, 4, there exist perturbations such that k, the number of zeros, is
sharp. �
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