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NONCONTINUOUS SOLUTIONS TO DEGENERATE
PARABOLIC INEQUALITIES

KRZYSZTOF A. TOPOLSKI

Abstract. We consider the initial value problem for degenerate parabolic
equations. We prove theorems on differential inequalities and comparison the-

orems in unbounded domain. As a solution of differential inequality we con-

sider upper absolutely (lower absolutely) continuous in t function (we admit
discontinuity in time variable). In the last section we compare our notion of

subsolutions to the notion of viscosity subsolutions smooth in space variable.

By giving a counterexample we show that upper absolutcontinuity plays crucial
role in the equivalence of the two notions.

1. Introduction

The aim of this paper is to investigate generalized inequalities and comparison
problems for degenerate parabolic equations with nonlinear comparison function.
As it is well known they found numerous applications in differential problems. The
basic examples are estimates of solutions, estimates of the domain of existence of
solutions, uniqueness and error estimates for approximate solutions. Upper and
lower functions are important in existence results. In the paper we admit non-
continuous in time solutions for differential inequalities (semiabsolutely continuous
in time variable) and noncontinuous comparison functions.

In our opinion this paper is probably the first where semiabsolutely in time
variable solutions of partial differential inequalities are considered. In the case of
ordinary differential inequalities non-continuous solutions where considered in [14]
where some class of piecewise continuous solutions (lower and upper functions)
were defined and in [16] where some special functions of bounded variation were
investigated. Both cases are covered by our definition.

First order partial differential inequalities were first treated in [7, 11]. Second
order inequalities of parabolic type were first treated in [12, 13, 20] where the first
step involves a strict inequality, and the result for weak inequality is then obtained
by introduction of a suitable perturbation. For the first time the classical theory
of parabolic differential inequalities was widely described in [18, 19]. Comparison
theorems for viscosity solutions of first order were first investigated in [5]. Unique-
ness results were only obtainable at the time. The best general reference for second
order viscosity solutions is [4].
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Our paper is divided into three main parts. In Section 2 we present a definition
and properties of semiabsolutely continuous functions of one variable. In Section 3,
using this definition we consider noncontinuous solutions of parabolic inequalities
in unbounded domain. We prove comparison theorems for generalized subsolutions
(supersolutions) and solutions. In the last section we compare our notions of sub-
solutions to the notions of viscosity subsolutions smooth in space variable. We
give sufficient conditions under which these two types of solutions are equivalent.
We show that these conditions are optimal and that upper absolutcontinuity plays
crucial role in the equivalence.

2. Semiabsolutely continuous functions

The genesis of the notion of semiabsolutely continuous functions dates to [17]
(see also [10] and [15] where the term absolute upper (lower) semicontinuous was
used). In this paper we base on the definition which is the most convenient in
our investigation. We follow some of the notation proposed in [10]. In our nota-
tion the word semiabsolutly continiuous means that a function is upper absolutely
continuous or lower absolutely continuous.

Definition 2.1. Let a, b ∈ R, a < b, z : [a, b] → R. We write z ∈ UAC([a, b],R)
(upper absolutely continuous) if z′(t) exists a.e. in [a, b] is integrable and for all
s, t ∈ [a, b],

s ≤ t⇒ z(t)− z(s) ≤
∫ t

s

z′(τ)dτ. (2.1)

Similarly, we write z ∈ LAC([a, b],R) (lower absolutely continuous ) if z′(t) exists
a.e. in [a, b] is integrable and for all s, t ∈ [a, b],

s ≤ t⇒ z(t)− z(s) ≥
∫ t

s

z′(τ)dτ. (2.2)

It is clear that AC([a, b],R) = UAC([a, b],R)∩LAC([a, b],R), where AC([a, b],R)
is the set of all absolutely continuous scalar function in [a, b]. Moreover, z ∈
UAC([a, b],R) if and only if −z ∈ LAC([a, b],R).

Remark 2.2. If z ∈ UAC([a, b],R) (z ∈ LAC([a, b],R)), then z is left-hand side
lower (upper) semicontinuous and right-hand side upper (lower) semicontinuous.

Remark 2.3. Notice that if z ∈ UAC([a, b],R) then z(t) −
∫ t
a
z′(τ)dτ is nonin-

creasing. From the property of monotone functions and by the continuity and a.e.
differentiability of

∫ t
a
z′(τ)dτ we see that, upper absolutely continuous function has

at most countably many points of discontinuity and one-sided limits in every point
of [a, b].

Proposition 2.4. z ∈ UAC([a, b],R) if and only if there exists an integrable func-
tion l : [a, b]→ R such that for all s, t ∈ [a, b],

s ≤ t⇒ z(t)− z(s) ≤
∫ t

s

l(τ)dτ. (2.3)

Proof. The proof (only “⇐” is not obvious) follows from [15, Theorem 1]. �

Corollary 2.5. A function z : [a, b] → R is non-increasing if and only if z ∈
UAC([a, b],R) and z′ ≤ 0 a.e. in [a, b].
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Proposition 2.6. Suppose that z ∈ UAC([a, b],R) has a left-hand side local max-
imum in t̂ ∈ (a, b] and A is a full measure subset of [a, b]. Then there exists a
sequence tm → t̂− such that tm ∈ A for every m, and z′(tm) ≥ 0.

Proof. There exists δ1 > 0 such that z(t) ≤ z(t̂) in [t̂−δ1, t̂]. The conclusion follows
from the fact that the following sentence is false: there exists 0 < δ < δ1 such that
the set {t ∈ [t̂− δ, t̂] : z′(t) < 0} has Lebesgue measure δ. Of course, it follows from
Corollary 2.5 that z is non-increasing in [t̂− δ, t̂] for such δ. This implies that z is
constant and z′(t) = 0 in [t̂− δ, t̂], a contradiction. �

We write c+ = max{c, 0} and c− = max{−c, 0} for c ∈ R. For a given scalar
function z we define functions z+, z− in an obvious way.

Proposition 2.7. If z ∈ UAC([a, b],R), then z+ ∈ UAC([a, b],R) and (z+)′ =
(sgn z+)z′ a.e.

Proof. Since z satisfies (2.1), for t ≥ s, z+(t)− z+(s) ≤ (z(t)− z(s))+ ≤
∫ t
s
l+(τ)dτ

and z+ ∈ UAC([a, b]). Consider the set B ⊆ (a, b) of all t such that z′(t) and
(z+)′(t) exist. Of course, B has Lebesgue measure b− a. It is not difficult to show
that for t ∈ B we have (z+)′(t) = z′(t) if z(t) > 0, and (z+)′(t) = 0 if z(t) < 0.
Moreover, the set {t ∈ B : z(t) = 0, z′(t) 6= 0} contains only isolated points, hence
it has at most countable many elements. On the other hand, if t ∈ B is such that
z(t) = 0, z′(t) = 0, then

(z+)′(t) = lim
h→0

z+(t+ h)
h

= lim
h→0

(sgn z+(t+ h))z(t+ h)
h

= 0.

�

Similarly, if z ∈ LAC([a, b]), then z− ∈ UAC([a, b]) and (z−)′ = −(sgnz−)z′ a.e.

3. Comparison theorems

Define ET = [0, T ]×Rn, T > 0, E0 = {0} ×Rn, ΘT = ET \E0. Let S[n] be the
set of all symmetric n×n real matrices. For X, Y ∈ S[n], X ≤ Y means that Y −X
is a positive semidefinite matrix. For X ∈ S[n], |X| is any matrix norm of X and
for p ∈ Rn, |p| is any vector norm of p. Suppose that g : ΘT ×R×Rn × S[n]→ R
is monotone in matrix variable i.e. if X ≤ Y , then g(t, x, z, p,X) ≤ g(t, x, z, p, Y )
and ψ : E0 → R. Consider problem

Dtv = g(t, x, v,Dv,D2v) in ΘT , (3.1)

v = ψ in E0 (3.2)

(we write Dv = Dxv, D2v = D2
xv and Dtv = ∂

∂tv).
Notice that our formulation includes as a particular case the first order equation

(g does not depend on a matrix argument).

Definition 3.1. We say that v : ET → R is a subsolution (supersolution, solution)
of (3.1) if

(i) for every x ∈ Rn, c ∈ (0, T ), v(·, x) ∈ UAC([c, T ],R) (LAC([c, T ],R),
AC([c, T ],R)),

(ii) there exist Dv,D2v in ΘT ,
(iii) for every x ∈ Rn, Dv(·, x), D2v(·, x) are left-hand side continuous in (0, T ],
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(iv) for every x ∈ Rn v satisfies

Dtv ≤ g(t, x, v,Dv,D2v) a.e in t ∈ (0, T ] (“ ≥ ”, “ = ”). (3.3)

(In case of first order equations (g does not depend on X) we assume that (ii) and
(iii) are satisfied only for Dv.)

We write v ∈ Sub(g, ψ) (Sup(g, ψ), Sol(g, ψ)) if v is a subsolution (supersolution,
solution) of (3.1), and in addition v ≤ ψ (“ ≥ ”, “ = ”) in E0. Of course, Sol(g, ψ) =
Sub(g, ψ) ∩ Sup(g, ψ).

We say that v satisfies (3.3) ((3.3) with a reversed inequality) in a generalized
sense if it is a subsolution (supersolution) of (3.1).

Condition (iii) in Definition 3.1 has a technical meaning. We need it in the
proof of the maximum principle (see Theorem 3.1). It can be relaxed (Remark
3.4). What is interesting is that it will be necessary also in the last section where
viscosity solutions are considered (see Theorem 4.4). We give a simple example of
the problem such that (iii) in Definition 3.1 is not satisfied. Consider Dtu+Du =
0, u(0, x) = ψ(x) in [0, 2]× R where ψ′ exists is bounded but ψ′ is not right hand
continuous at x = 0. It is easy to verify that u(t, x) = ψ(x−t) satisfies all condition
of Definition 3.1 except for (iii) at point (1, 1).

The notion of subsolutions (supersolutions, solutions) given in Definition 3.1
extends the definition of classical subsolutions (supersolutions, solutions) (Remark
3.4). Moreover, in the case of first order equations it covers the definition of CC−
solutions considered by Cinquni-Cibrario (see [2,3] for existence results). In [1] close
but not the same extension of CC− solutions is considered and some comparison
results are proved under the assumption that solutions exist.

The reason why we introduce Definition 3.1 is the theorem on differential in-
equalities (see Proposition 3.13 and Corollary 3.15). In the definition we require
as little as is needed in the proof. Our notion of subsolutions (supersolutions, so-
lutions) is placed between classical definition and more generalized definitions a.e.
“almost everywhere” in the case of first order equations and viscosity subsolutions
(supersolutions, solutions) in the case of first and second order equations. It is,
however, still close to the classical meaning and we need relatively simple assump-
tions on g to obtain the theorem on differential inequalities and comparison results.
We cannot say the same when we consider “almost everywhere” solutions (first
order equations) where convexity in p is required and uniqueness is proved under
additional “entropy condition” (see [9]). In the case of viscosity solutions even more
complicated assertions are needed to obtain comparison theorems (see [4, 5]).

Let C(ET ,R), LSC(ET ,R), USC(ET ,R), be sets of scalar functions which are
resp. continuous, lower semicontinuous and upper semicontinuous in ET . Let
Cb(ET ,R), LSCb(ET ,R), USCb(ET ,R) be sets of such functions which are in ad-
dition resp. bounded, bounded from below, and bounded from above.

We write ω ∈M if ω : [0,∞)→ R ∪ {∞} and limr→0+ ω(r) = ω(0) = 0.

Theorem 3.2. Suppose that
(i) v ∈ USCb(ET ,R) is a subsolution of (3.1),
(i) for every R > 0 there exists ωR ∈ M such that g(t, x, z, p,X) ≤ ωR(|p| +
|X|) for z ∈ [0, R].

Then
sup
ET

v+ = sup
E0

v+. (3.4)
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Proof. It is sufficient to prove that supET
v ≤ supE0

v+. Define w(t, x) = v(t, x)−ηt
for η > 0. We will show

sup
ET

w ≤ sup
E0

w+ = sup
E0

v+. (3.5)

The proof will be completed by letting η → 0.
Set M = supET

w. We only need to consider the case M > 0 for some η. For
every M/2 > δ > 0 there exists (t̄δ, x̄δ) ∈ ET such that

M ≥ w(t̄δ, x̄δ) > M − δ > M

2
.

Define
Φδ(t, x) = w(t, x) + 2δξδ(x),

where ξδ ∈ C2
0 (Rn), ξδ(x̄δ) = 1, 0 ≤ ξδ ≤ 1, |Dξδ|, |D2ξδ| ≤ 2.

Since Φδ(t, x) = w(t, x) ≤M when x 6∈ supp ξδ and

Φδ(t̄δ, x̄δ) = w(t̄δ, x̄δ) + 2δξδ(x̄δ) > M − δ + 2δ = M + δ > M (3.6)

Φδ attains its supremum in some (tδ, xδ) ∈ ET , where xδ ∈ supp ξδ .
It follows from (3.6) that

w(tδ, xδ) + 2δ ≥ Φδ(tδ, xδ) ≥ Φδ(t̄δ, x̄δ) >
M

2
+ 2δ (3.7)

and consequently

v(tδ, xδ) ≥ w(tδ, xδ) >
M

2
. (3.8)

Define Aδ as the full measure set of all t ∈ [0, T ] such that Dtv(t, xδ) exists and (3.3)
is satisfied at point (t, xδ). Let us fix a sequence δm ∈ (0, M2 ), m ∈ N approaching
zero. We consider two cases (taking a subsequence if necessary).

(i) If tδm
= 0 for m ∈ N then supET

Φδm
≤ supE0

Φδm
, m ∈ N, which implies

that (3.5) holds true.
(ii) Suppose now that tδm > 0, m ∈ N. Note that Dtw = DtΦδm (in the set

of existence). It follows from the fact that Φδm(·, xδm) has a local maximum in
tδm

(left-hand side if tδm
= T ) that for every m there exists tk,m ∈ Aδm

such
that Dtw(tk,m, xδm) ≥ 0 and tk,m → t−δm

when k → ∞ (see Proposition 2.6).
Moreover, by the left-hand side continuity of v in t and by (3.8) we can assume
that v(tk,m, xδm) > 0 and Dv(tk,m, xδm), D2v(tk,m, xδm) exist.

Since (3.1) is satisfied in (tk,m, xδm) and Dtv(tk,m, xδm) = Dtw(tk,m, xδm)+η ≥ η
we obtain

η ≤ g(tk,m, xδm
, v(tk,m, xδm

), Dv(tk,m, xδm
), D2v(tk,m, xδm

)) (3.9)

where

Dv(tk,m, xδm
) = Dv(tk,m, xδm

)−Dv(tδm
, xδm

)− 2δmDξδ(xδ) (3.10)

(DΦ(tδm
, xδm

) = Dv(tδm
, xδm

) + 2δmDξδm
(xδm

) = 0) and

D2v(tk,m, xδm
) ≤ D2v(tk,m, xδm

)−D2v(tδm
, xδm

)− 2δmD2ξδm
(xδm

) = Bk,m
(3.11)

(D2Φ(tδm , xδm) = D2w(tδm , xδm) + 2δD2ξδ(xδm) ≤ 0).
We will show that the above estimation leads to a contradiction. It follows from

(ii) that for every ε > 0 and R > 0 there exists ρ > 0 such that g(t, x, z, p,X) ≤ ε
if |p|, |X| < ρ and z ∈ [0, R]. Let ρ > 0 be such that g(t, x, z, p,X) ≤ η/2 for
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|p|, |X| ≤ ρ, 0 ≤ z ≤ R = supET
|v+|. Fix m such that δm < ρ

8 . This gives
2δm|D2ξδm

(xδm
)| ≤ ρ

2 and 2δm|Dξδm
(xδm

)| ≤ ρ/2.
On the other hand, (see Definition 3.1 (iii)) there exists k such that

|Dv(tk,m, xδm)−Dv(tδm , xδm)| < ρ

2
,

|D2v(tk,m, xδm
)−D2v(tδm

, xδm
)| ≤ ρ

2
.

Applying (3.10), (3.11) we have |Dv(tk,m, xδm
)|, |Bk,m| < ρ. Finally, in view of

(3.9) and (3.11) we obtain

η ≤ g(tk,m, xδm
, v(tk,m, xδm

), Dv(tk,m, xδm
), Bk,m) ≤ η

2
a contradiction. �

Remark 3.3. The statement of Theorem 3.1 holds if we assume that (ii)-(iv) in
Definition 3.1 hold only in the set v−1((0,∞)) ∩ ΘT . Note that if v satisfies (i) of
Definition 3.1 then v(t, x) > 0, t > 0 implies that v(s, x) > 0, s ∈ (t− ε, t] for some
ε > 0 (see Remark 2.2).

Remark 3.4. The statement of Theorem 3.1 holds if in place of Definition 3.1
(iii) we assume that Dv(·, x), D2v(·, x) are left-hand side continuous in every point
(t, x) ∈ (0, T ]× Rn such that Dtv(t, x) does not exist.

Proposition 3.5. Suppose that
(i) v ∈ USCb(ET ,R) is a subsolution of (3.1),
(ii) there exists integrable function h : [0, T ] → R+ and for every R > 0 there

exists ωR ∈M such that g(t, x, z, p,X) ≤ h(t)+ωR(|p|+|X|) if z ∈ [0, R].
Then

sup
Et

v+ ≤ sup
E0

v+ +
∫ t

0

h(s)ds for t ∈ [0, T ].

Proof. Set v̄(t, x) = v(t, x)−
∫ t

0
h(s)ds and

ḡ(t, x, z, p,X) = g(t, x, z +
∫ t

0

h(s)ds, p,X)− h(t).

For z ∈ [0, R] we have

ḡ(t, x, z, p,X) = g(t, x, z +
∫ t

0

h(s)ds, p,X)− h(t) ≤ ωR+R1(|p|+ |X|)

where R1 =
∫ T

0
h(s)ds.

It follows easily that v̄ is a subsolution of (3.1) with g repleaded by ḡ. Thus we
can apply Theorem 3.2 to v̄ and ḡ in the set Et = {(s, x) ∈ ET : s ≤ t}. This gives:

sup
Et

v+ −
∫ t

0

h(s)ds ≤ sup
(τ,x)∈Et

{(v(τ, x)−
∫ τ

0

h(s)ds)+} = sup
E0

v+

which completes the proof. �

Analogically to Remark 3.3 we can formulate

Remark 3.6. The statement of Proposition 3.5 holds true if we assume that (ii)-
(iv) in Definition 3.1 hold only in the set Z = {(t, x) ∈ ΘT : v+(t, x) >

∫ t
0
h(s)ds}.
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Remark 3.7. It follows from Proposition 3.5 (ii) that g(t, x, z, 0, 0) ≤ h(t) in
ΘT × R+. Moreover, if we assume this and the following: for every R > 0 there
exists ωR ∈M such that g(t, x, z, p,X)−g(t, x, z, 0, 0) ≤ ωR(|p|+|X|) for z ∈ [0, R],
then (ii) is satisfied.

Definition 3.8. For M ∈ R+ and σ : [0, T ]× R+ 7→ R+ we write σ ∈ OM , if
(i) σ = σ(t, z) is nondecreasing in z,
(ii) σ(t, z(t)) is integrable for every nondecreasing z : [0, T ]→ R,

(iii) there exists µ(t) = µσ(t,M) ∈ AC([0, T ],R+) such that µ(t) is a solution
of the problem

z′(t) = σ(t, z(t)), a.e. in [0, T ], z(0) = M (3.12)

and

µ(t) = max{z ∈ AC([0, T ],R) : z′(t) ≤ σ(t, z(t)) a.e in [0, T ], z(0) = M}.

A typical example of σ ∈ OM (for every M ≥ 0) is σ(t, z) = l(t)z +m(t) where
l : [0, T ]→ R+ integrable. It is not difficult to show that we can also take σ which
is nondecreasing in both variables and sublinear or if it satisfies the well known
Carathéodory conditions (see [8] for even more general conditions). Note that σ is
not supposed to be continuous.

For v : ET → R bounded and 0 ≤ t ≤ T we define ‖v‖t = supEt
|v|.

Proposition 3.9. Suppose that
(i) v ∈ Sub(g, ψ) ∩ USCb(ET ,R),M+ = supE0

ψ+,
(ii) there exists σ ∈ OM+ and for every R > 0 there exists ωR ∈ M such that

g(t, x, z, p,X) ≤ σ(t, z) + ωR(|p|+ |X|) if z ∈ [0, R].
Then

‖v+‖t ≤ µσ(t,M+) for t ∈ [0, T ].

Proof. Define ḡ(t, x, z, p,X) = g(t, x, v+(t, x), p,X). Notice that ḡ satisfies assump-
tion (ii) of Proposition 3.5 with h(t) = σ(t, ‖v+‖t) ≥ 0 independently of R (ḡ does
not depend on z). Indeed,

ḡ(t, x, z, p,X) = g(t, x, v+(t, x), p,X) ≤ σ(t, v+(t, x)) + ωR̃(|p|+ |X|)
≤ σ(t, ‖v+‖t) + ωR̃(|p|+ |X|) = h(t) + ωR̃(|p|+ |X|)

where R̃ = ‖v+‖T . On the other hand v+ satisfies

Dtv ≤ ḡ(t, x, v,Dxv,D
2
xv)

in the set Z = {(t, x) ∈ ΘT : v+(t, x) >
∫ t

0
h(s)ds}. Indeed since v+ = v, Dtv

+ =
Dtv, Dv+ = Dv, D2v+ = D2v in Z, we obtain

Dtv
+ = Dtv ≤ g(t, x, v,Dv,D2v) = g(t, x, v+, Dv+, D2v+)

= ḡ(t, x, v+, Dv+, D2v+)

in Z a.e in t.
This gives (see Proposition 3.5 and Remark 3.6)

‖v+‖t ≤ ‖v+‖0 +
∫ t

0

σ(τ, ‖v+‖τ )dτ.
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Similarly, for t ≥ s we have

‖v+‖t ≤ ‖v+‖s +
∫ t

s

σ(τ, ‖v+‖τ )dτ.

This implies that α(t) = ‖v+‖t is in UAC([0, T ]) and α′(t) ≤ σ(τ, α(t)) a.e in [0, T ].
Since α is nondecreasing, it belongs to AC([0, T ]). This completes the proof in view
of Definition 3.8 (iii). �

Proposition 3.10. Suppose that
(i) v ∈ Sup(g, ψ) ∩ LSCb(ET ,R), M− = supE0

ψ−,
(ii) there exists σ ∈ OM− and for every R > 0 there exists ωR ∈ M such that

g(t, x, z, p,X) ≥ −σ(t,−z)− ωR(|p|+ |X|) if z ∈ [−R, 0].
Then

‖v−‖t ≤ µσ(t,M−) for t ∈ [0, T ].

Proof. Notice that v− = (−v)+, ψ− = (−ψ)+, −v ∈ Sub(g̃,−ψ) where

g̃(t, x, z, p,X) = −g(t, x,−z,−p,−X)

and g̃ satisfies all assumptions of Proposition 3.9. �

Corollary 3.11. Let assumptions of Propositions 3.10 hold, and µσ(·, 0) ≡ 0. Then
ψ ≥ 0 implies v ≥ 0.

Proposition 3.12. Suppose that
(i) v ∈ Sol(g, ψ) ∩ Cb(ET ,R), M = supE0

|ψ|,
(ii) there exists σ ∈ OM and for every R > 0 there exists ωR ∈M such that

(sgn z)g(t, x, z, p,X) ≤ σ(t, |z|) + ωR(|p|+ |X|) for z ∈ [−R,R].

Then
‖v‖t ≤ µσ(t,M) for t ∈ [0, T ].

Proof. Since |v| = max {v+, v−}, M = max {M+,M−} and µ(t,M−), µ(t,M+) ≤
µ(t,M) the conclusion follows from Propositions 3.9 and 3.10. �

Proposition 3.13. Suppose that
(i) v ∈ Sub(g, ψ) ∩ USCb(ET ,R), v̄ ∈ Sup(ḡ, ψ̄), v − v̄ ∈ USCb(ET ,R) M+ =

supE0
(ψ − ψ̄)+,

(ii) there exists σ ∈ OM+ and for every R > 0 there exists ωR ∈M such that

g(t, x, z, p,X)− ḡ(t, x, z̄, p̄, X̄) ≤ σ(t, z − z̄) + ωR(|p− p̄|+ |X − X̄|)
for z − z̄ ∈ [0, R].

Then
‖(v − v̄)+‖t ≤ µσ(t,M+) for t ∈ [0, T ].

Proof. It is easy to check that v − v̄ ∈ Sub(G,ψ − ψ̄) where

G(t, x, z, p,X) = g(t, x, z + v̄, p+Dv̄,X +D2v̄)− ḡ(t, x, v̄,Dv̄,D2v̄). (3.13)

The conclusion follows from Proposition 3.9. �

In a similar way Proposition 3.12 yields the following result.

Proposition 3.14. Suppose that
(i) v ∈ Sol(g, ψ), v̄ ∈ Sol(ḡ, ψ̄), v − v̄ ∈ Cb(ET ,R) and M = supE0

|ψ − ψ̄|,
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(ii) there exists σ ∈ OM and for every R > 0 there exists ωR ∈M such that

sgn(z − z̄)[g(t, x, z, p,X)− ḡ(t, x, z̄, p̄, X̄)] ≤ σ(t, |z − z̄|) + ωR(|p− p̄|+ |X − X̄|)

for |z − z̄| ≤ R.
Then

‖v − v̄‖t ≤ µσ(t,M) for t ∈ [0, T ].

Corollary 3.15. If µσ(·, 0) ≡ 0, g = ḡ, ψ = ψ̄, then Proposition 3.13 implies the
theorem on differential inequalities and Proposition 3.14 implies the theorem on the
uniqueness for problem (3.1) (3.2).

4. Viscosity solutions

Definition 4.1. We say that u : ET → R is a viscosity subsolution (resp. su-
persolution) of (3.1) if u ∈ USC(ET ,R) (resp. u ∈ LSC(ET ,R)) and for each
φ ∈ C1,2(ΘT ) if u−φ attains a local maximum (resp. local minimum) at (t̃, x̄) ∈ ΘT ,
then

Dtφ(t̃, x̃) ≤ g(t̃, x̃, u(t̃, x̃), Dφ(t̃, x̃), D2φ(t̃, x̃)) (resp. ≥)
We say that u is a viscosity solution of (3.1) if it is both viscosity subsolution and
supersolution.

It follows easily that if u ∈ C1,2(ΘT ), then u is a viscosity subsolution (superso-
lution, solution) of (3.1) if and only if it is a classical subsolution (supersolution,
solution). We will extend this result to subsolutions (supersolutions, solutions)
given by Definition 3.1

First we present rather known result which generalize this find in [6] (for first
order equations).

Lemma 4.2. Suppose that u : ET → R and Dtu,Du, D
2u exist at (t̄, x̄) ∈ ΘT and

in some neighborhood of (t̄, x̄) we have

u(t, x) = u(t̄, x̄) +Dtu(t̄, x̄)(t− t̄) + 〈Du(t̄, x̄), (x− x̄)〉
+ 〈D2u(t̄, x̄)(x− x̄), x− x̄〉+ o(|t− t̄|+ |x− x̄|2).

(4.1)

Then there exists φ ∈ C1,2(ΘT ) such that u − φ has a maximum at (t̄, x̄) and
Dtu(t̄, x̄) = Dtφ(t̄, x̄), Du(t̄, x̄) = Dφ(t̄, x̄), D2u(t̄, x̄) = D2φ(t̄, x̄).

Proof. Without loss of generality we can assume that u : R1+n → R, Dtu,Du, D
2u

exist at (0, 0) and u(0, 0) = Dtu(0, 0) = Du(0, 0) = D2u(0, 0) = 0.
Define α(t, x) = |x|2+t2√

|x|4+t2
for (t, x) 6= (0, 0) and α(0, 0) = 0. Set ū = αu y = (t, x)

and ū = ū(y). Since 1
2 (|x|2 + |t|) ≤

√
|x|4 + t2 ≤ |x|2 + |t| we easily see that

Dyū, D2
yū exist at 0 ∈ R1+n and ū(0) = Dyū(0) = D2

yū(0) = 0. We define
ρ(y) = ū(y)

|y|2 , y 6= 0 and ρ(0) = 0. Set ρ1(r) = max|y|≤r |ρ(y)| and

φ̄(y) =
∫ 2|y|

|y|
dτ

∫ 2τ

τ

ρ1(r)dr.

Since φ̄(y) ≤ 2|y|2ρ1(4|y|), we obtain φ̄(0) = Dφ̄(0) = D2φ̄(0) = 0. Since φ̄(y) ≥
ρ1(|y|)|y|2 ≥ ρ(|y|)|y|2 = ū(y), ū − φ̄ attains a maximum point at 0. It is easily
seen that φ̄ ∈ C1(Rn). In order to have φ̄ ∈ C2(Rn) we repeat the procedure with
ū replaced by φ̄.
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Define φ(t, x) = [α(t, x)]−1φ̄(t, x), (t, x) 6= (0, 0), φ(0, 0) = 0. It is not difficult
to verify that φ is a desired function. �

Proposition 4.3. Suppose that u satisfies (i), (ii) in Definition 3.1 and for every
x ∈ Rn (4.1) is satisfied for a.e t ∈ [0, T ]. If u is a viscosity subsolution (su-
persolution, solution) of (3.1) then u is a subsolution (supersolution, solution) of
(3.1).

Proof. Suppose that u satisfies (i), (ii) in Definition 3.1 and for every x ∈ Rn (4.1) is
satisfied for a.e t ∈ [0, T ]. Let (t̄, x̄) ∈ ΘT be such that Dtu(t̄, x̄) exists and (4.1) is
satisfied. Since Du(t̄, x̄), D2u(t̄, x̄) exist by Lemma 4.2 we have φ ∈ C1,2(ΘT ) such
that u−φ has a maximum at (t̄, x̄) and Dtu(t̄, x̄) = Dtφ(t̄, x̄), Du(t̄, x̄) = Dφ(t̄, x̄),
D2u(t̄, x̄) = D2φ(t̄, x̄). By Definition 4.1 this gives

Dtφ(t̄, x̄) ≤ g(t̄, x̄, u(t̄, x̄), Dφ(t̄, x̄), D2φ(t̄, x̄))

and consequently u satisfies (3.3) in (t̄, x̄). �

Theorem 4.4. Suppose that for (t̂, x̂, û, p̂, X̂) ∈ ΘT × R× Rn × S[n]

lim sup
(t,u,p,X)→(t̂−,û,p̂,X̂)

g(t, x̂, u, p,X) ≤ g(t̂, x̂, û, p̂, X̂). (4.2)

Then if u ∈ USC(ET ,R) is a subsolution of (3.1), then it is a viscosity subsolution
of (3.1).

Proof. Suppose that u is a subsolution of (3.1) and φ ∈ C1,2(ΘT ,R) such that u−φ
has a local maximum point in (t̃, x̃) ∈ ΘT . Let A be the full measure set of all t
such that Dtu(t, x̃) exists and

Dtu(t, x̃) ≤ g(t, x̃, u(t, x̃), Du(t, x̃), D2u(t, x̃)).

By Preposition 2.6 there exists a sequence tm → t̃− such that tm ∈ A for every m,
Dt(u− φ)(tm, x̃) ≥ 0 and

Dtφ(tm, x̃) ≤ Dtu(tm, x̃) ≤ g(tm, x̃, u(tm, x̃), Du(tm, x̃), D2u(tm, x̃)).

Notice that by Definition 3.1 (i) and Remark 2.2 u(·, x̃) is left-hand side continuous.
Using this, Definition 3.1 (iii) and (4.2) we obtain by letting tm → t̃

Dtφ(t̃, x̃) ≤ g(t̃, x̃, u(t̃, x̃), Du(t̃, x̃), D2u(t̃, x̃)).

Since Du(t̃, x̃) = Dφ(t̃, x̃), D2u(t̃, x̃) ≤ D2φ(t̃, x̃) we have

Dtφ(t̃, x̃) ≤ g(t̃, x̃, u(t̃, x̃), Dφ(t̃, x̃), D2φ(t̃, x̃)).

Hence, u is a viscosity subsolution of (3.1). �

Theorem 4.5. Suppose that for (t̂, x̂, û, p̂, X̂) ∈ ΘT × R× Rn × S[n]

lim inf
(t,u,p,X)→(t̂−,û,p̂,X̂)

g(t, x̂, u, p,X) ≥ g(t̂, x̂, û, p̂, X̂). (4.3)

Then if u ∈ LSC(ET ,R) is a supersolution of (3.1), then it is a viscosity superso-
lution of (3.1).

If (4.2), (4.3) hold (i.e. g is continuous (left-hand side in t )) and u ∈ C(ET ,R)
is a solution of (3.1) then it is a viscosity solution of (3.1).

It is evident that for Theorem 4.4 and Theorem 4.5 a remark, similar to Remark
3.4 holds.
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Remark 4.6. It is worth mentioning that by virtue of Theorem 4.4 and Theorem
4.5 we can use a subsolution and supersolution as an upper and lower function
in Perron method which is a main tool in proving existence results for viscosity
solutions.

In the following we discuss the optimality of assumptions in Theorem 4.4.

Example 4.7 (the necessity of (4.2) in t). Let a ≥ 0, b ∈ R. Consider the equation

Dtu− aD2u+ bDu = g(t) in ET = [0, 2]× R, (4.4)

where g(t) = 0, t ∈ [0, 1) and g(t) = −1, t ∈ [1, 2]. Set u(t, x) = 0, t ∈ (0, 1] and
u(t, x) = 1− t, t ∈ (1, 2]. It is not difficult to verify that u is a subsolution of (4.4).
To show that u is not a viscosity subsolution w set t̃ = 1, φ ≡ 0 in Definition 4.1.
(it will change if we redefine g by setting g(1) = 0).

Example 4.8 (the necessity of (4.2) in u). Consider equation (4.4) with g(t)
replaced by g(u) = u, u ∈ (−∞, e) and g(u) = 0, u ∈ [e,∞). Set u(t, x) = et,
t ∈ [0, 1] and u(t, x) = e, t ∈ (1, 2]. It is not difficult to verify that u is a subsolution.
To show that u is not a viscosity subsolution we set t̃ = 1, φ(t) = et in Definition
4.1 (it will change if we redefine g by setting g(e) = e).

Example 4.9 (the necessity of (4.2) in p). Consider the equation

Dtu = h(Du)x in ET = [0, 2]× R, (4.5)

where h(p) = p, p ∈ (−∞, e) and g(p) = 0, p ∈ [e,∞). Set u(t, x) = etx, t ∈ [0, 1]
and u(t, x) = ex, t ∈ (1, 2]. It is not difficult to verify that u is a subsolution
(solution) of (4.5). To show that u is not a viscosity subsolution w set (t̃, x̃) = (1, x̃),
x̃ > 0, φ(t, x) = etx in Definition 4.1. (it will change if we redefine h by setting
h(e) = e).

In a similar way, considering the equation Dtu = 1
2h(Du)x2 we can show the

necessity of (4.2) in X. The last example shows that upper absolutcontinuity plays
crucial role in Theorem 4.4.

Example 4.10 (the necessity of (i) in Definition 3.1). Let z : [0, 1]→ [0, 1] be the
Cantor function. Of course, z /∈ UAC([c, 1],R) for c ∈ (0, 1) and z′ = 0 a.e in [0, 1].
We will show that z is not a viscosity subsolution of z′ ≤ 0. Set φ(t) = t. It follows
from the construction of the Cantor function that there exists t̃ ∈ (0, 1) such that
z(t̃)− t̃ = sup{z(t)− t : t ∈ [0, 1]} > 0. Since φ′(t̃) = 1 and φ ∈ C1(0, 1) we have a
contradiction with Definition 4.1 (g ≡ 0).
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