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EXISTENCE AND UNIQUENESS OF POSITIVE ALMOST
PERIODIC SOLUTIONS FOR SYSTEMS OF NONLINEAR

DELAY INTEGRAL EQUATIONS

ABDELLATIF SADRATI, ABDERRAHIM ZERTITI

Abstract. This article shows the existence and uniqueness of positive almost

periodic solutions for some systems of nonlinear delay integral equations. After
constructing a new fixed point theorem in the cone, which extend some existing

results even in the case of scalar version, we apply it to a model of the evolution

in time of two species in interaction.

1. Introduction

The theory of almost periodicity began with the pioneering papers of Bohr (1923)
and developed by Bochner [3]. Almost periodicity as a structural property of func-
tions is a generalization of pure periodicity, and certainly one of the important
successes of this newer theory was the development of rather complete theory of
Fourier series for almost periodic functions. This theory opens a way of studying a
wide class of trigonometric series of the general type and of exponential series. The
general property of almost periodicity can be illustrated by means of the particular
example f(t) = sin 2πt+ sin 2πt

√
2.

On the other hand, the existence of almost periodic solutions has became an
interesting and important topic in the study of qualitative theory of differential
and integral equations related to dynamical systems or flows. In the present work,
we are concerned with the system

x(t) =
∫ t

t−τ1(t)
f̃(s, x(s), y(s))ds

y(t) =
∫ t

t−τ2(t)
g̃(s, x(s), y(s))ds

(1.1)
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which is a model for the evolution in time of two species in interaction and is more
general than the one studied in [7]

x(t) =
∫ t

t−τ1
f(s, x(s), y(s))ds

y(t) =
∫ t

t−τ2
g(s, x(s), y(s))ds

(1.2)

First of all we have interest to describe the meaning of the system (1.1) in the
biologic context. x(t), y(t) are, respectively, the numbers of individuals present
in the populations x, y at time t and which live to the ages τ1(t), τ2(t), and the
functions f, g are, respectively, the numbers of new births per time unit in x, y. Also,
we can describe (1.1) in the context of epidemics. x(t), y(t) are the populations at
time t of infectious individuals, τ1(t), τ2(t) are the durations of infectivity and the
functions f, g are the instantaneous rates of infection.

In our work, we show firstly an adequate fixed point theorem for vectorial version
with two components (see theorem 2.7) which extend some existing results even in
the case of scalar version and in the case of discrete systems (we refer the reader
to [10, 11, 12, 22]) ,and then, we apply it for obtain the existence and uniqueness
of positive almost periodic solutions for the system (1.1). Let us introduce a short
history of the problem.

In 1976, Cooke and Kaplan [8] published an article where they formulate and
study the existence of positive periodic solutions for the integral equation

x(t) =
∫ t

t−τ
f(s, x(s))ds. (1.3)

This model, explain the spread of some infectious diseases and have also been
used as a growth equation for single species population when the birth rate varies
seasonally. These authors proposed in the same article the system (1.2), which is a
model of the evolution in time of two populations in interaction.

First results of the existence of positive periodic solutions in cases of cooperative
and competitive type of system (1.2), has been obtained by Cañada and Zertiti
[7] using the method of upper and lower solutions, which allows them to apply
the Schauder’s fixed point theorem. Since then, the existence of positive periodic
solutions for other form of (1.2)

x(t) =
∫ τ1(t)

0

f(t, s, x(t− s− l), y(t− s− l))ds

y(t) =
∫ τ2(t)

0

g(t, s, x(t− s− l), y(t− s− l))ds

has been discussed in [20, 24] via the method of upper and lower solutions and in
[5, 21] by topological method. Also, the case of discrete systems was studied by
Wen-Hai Pan and Wei Long [22].

However, as far as we know, many authors have studied the existence and unique-
ness of periodic, almost periodic and almost automorphic solutions for various forms
of (1.3) (see, e. g., [4, 10, 11, 12, 17, 23] and references therein), but we do not
know any result concerning the existence of almost periodic solutions for the above
systems.
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In many works, the authors have investigated mixed monotone operators in
Banach space, and obtained a lot of interesting and important results about the
existence of almost periodic and almost automorphic solutions for the scalar case.
Therefore, in this paper, we propose to extend this results by proving an adequate
fixed point theorem for vectorial version with two components, and then, we apply
it for obtain the existence and uniqueness of positive almost periodic solutions for
system (1.1).

2. Preliminaries

We denote by R the set of real numbers, R+ the set of nonnegative real numbers
and by C(E), where E is a metric set, the space of continuous functions defined
on E with values in R. For f ∈ C(R)(resp. C(R × R+) or C(R × R+ × R+)),
the translation of f is the function τsf(t) = f(t − s), t ∈ R, (resp. τsf(t, x) =
f(t− s, x), (t, x) ∈ R×R+ and τsf(t, x, y) = f(t− s, x, y), (t, x, y) ∈ R×R+×R+).

Definition 2.1 ([9, 14]). A function f ∈ C(R)(resp. C(R×R+) or C(R×R+×R+))
is called almost periodic (resp. almost periodic in t ∈ R, uniformly in x ∈ R+ or
(x, y) ∈ R+ × R+), if for each ε > 0(resp. ε > 0 and compact K ⊂ R+ or compact
K ′ ⊂ R+ × R+ ), there exists lε > 0 such that every interval of length lε > 0
contains a number µ with the property that

sup
s∈R
|τµf(s)− f(s)| < ε

(resp. sup
(s,x)∈R×K

|τµf(s, x)− f(s, x)| < ε

or sup
(s,x,y)∈R×K′

|τµf(s, x, y)− f(s, x, y)| < ε).

Denote AP (R) (resp. AP (R×R+) or AP (R×R+×R+)) the set of all such functions.

Definition 2.2. A continuous function f : R → R is called normal if for every
sequence of real numbers (S′m)m there exists a subsequence (Sn)n such that the
sequence [f(t+ Sn)]n converges uniformly to a function limit.

Theorem 2.3 (Bochner [3]). A function f is almost periodic if and only if it is
normal.

Suppose that f belongs to AP (R). Let [λj ] denote the set of all real numbers
such that

lim
T→+∞

∫ T

0

f(t) exp(−iλt)dt 6= 0.

It is well known that the set of numbers [λj ] in the above formula is countable. The

set [
N∑
j=1

njλj ] for all integers N and integers nj is called the module of f(t), denoted

by mod(f).

Lemma 2.4 ([14]). Suppose that f and g are almost periodic. Then the following
statements are equivalent:

(i) mod(f) ⊃ mod(g);
(ii) For any sequence of real numbers (S′m)m, if limm→+∞ f(t+S′m) = f(t) for

each t ∈ R, then there exists a subsequence (Sn)n such that limn→+∞ g(t+
Sn) = g(t) for each t ∈ R,
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Lemma 2.5 ([2, 9, 19]). Assume that f, g ∈ AP (R) and λ is any scalar. Then the
following statements hold:

(i) f + g, f.g, λf , fτ (t) = f(t+ τ), f̃(t) = f(−t) are almost periodic.
(ii) The range Rf = [f(t) : t ∈ R] is precompact in R, and so f is bounded.
(iii) If f is almost periodic, then f is uniformly continuous.
(iv) Let F be a uniformly continuous function and f be almost periodic. Then

F ◦ f is almost periodic.
(v) If [fn]n is a sequence of almost periodic functions and fn → f uniformly

on R, then f is almost periodic.
(vi) AP (R) equipped with the sup norm

‖f‖ = sup
t∈R
|f(t)|

turns out to be a Banach space.

Definition 2.6. Let E be a real Banach space. A closed convex set P in E is
called a convex cone if the following conditions are satisfied

(1) If x ∈ P , then λx ∈ P for any λ ∈ R+;
(2) If x ∈ P and −x ∈ P , then x = 0.

A cone P induces a partial ordering ≤ in E defined by x ≤ y if y − x ∈ P . A cone
P is called normal if there exists a constant N > 0 such that 0 ≤ x ≤ y implies
‖x‖ ≤ N‖y‖, where ‖ · ‖ is the norm on E. We denote by P̊ the interior set of P .
A cone P is called a solid cone if P̊ 6= ∅.

Theorem 2.7. Let P be a cone in a Banach space and Φ1,Φ2 : P̊ × P̊ × P̊ → P̊
are operators such that

(A1) Φ1(·, u, y) is nondecreasing and Φ1(x, ·, y), Φ1(x, u, ·) are nonincreasing;
Φ2(·, u, y), Φ2(x, ·, y) are nonincreasing and Φ2(x, u, ·) is nondecreasing.

(A2) There exist a constant α0 ∈ [0, 1) and functions φi : (0, 1)× P̊ × P̊ × P̊ →
(0,+∞), i = 1, 2 such that φi(α, x, u, y) > α and

Φ1(αx,
1
α
u,

1
α
y) ≥ φ1(α, x, u, y)Φ1(x, u, y),

Φ2(
1
α
x,

1
α
u, αy) ≥ φ2(α, x, u, y)Φ2(x, u, y),

for each x, u, y ∈ P̊ , for each α ∈ (α0, 1).
(A3) There exist x0, x

0, y0, y
0 ∈ P̊ with x0 ≤ x0, y0 ≤ y0 such that

x0 ≤ Φ1(x0, x
0, y0), Φ1(x0, x0, y0) ≤ x0,

y0 ≤ Φ2(x0, y0, y0), Φ2(x0, y0, y
0) ≤ y0

(2.1)

and for each α ∈ (α0, 1),

φ1(α) = inf
y∈[y0,y0],x,u∈[x0,x0]

φ1(α, x, u, y) > α,

φ2(α) = inf
x∈[x0,x0],v,y∈[y0,y0]

φ2(α, x, v, y) > α

Then Φ : P̊ × P̊ × P̊ × P̊ → P̊ × P̊ defined by Φ(x, u, v, y) = (Φ1(x, u, y),Φ2(x, v, y))
has a unique fixed point (x∗, y∗) ∈ [x0, x

0]× [y0, y0]; that is,

Φ(x∗, x∗, y∗, y∗) = (x∗, y∗).
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Moreover, constructing successively the iterative sequences

un+1 = Φ1(un, un, vn), vn+1 = Φ2(un, vn, vn)

for any initial (u0, v0) ∈ [x0, x
0]× [y0, y0], we have

‖un − x∗‖ → 0, ‖vn − y∗‖ → 0, as n→ +∞.

Proof. Construct the sequences

xn+1 = Φ1(xn, xn, yn), xn+1 = Φ1(xn, xn, yn),

yn+1 = Φ2(xn, yn, yn), yn+1 = Φ2(xn, yn, yn).

From (A3), it is easy to show by induction that

x0 ≤ x1 ≤ · · · ≤ xn ≤ · · · ≤ xn ≤ · · · ≤ x1 ≤ x0,

y0 ≤ y1 ≤ · · · ≤ yn ≤ · · · ≤ yn ≤ · · · ≤ y1 ≤ y0. (2.2)

Let
rn = sup[r > 0 : xn ≥ rxn and yn ≥ ryn].

It follows that xn ≥ rnxn, yn ≥ rnyn, n = 1, 2, . . . , and then

xn+1 ≥ xn ≥ rnxn ≥ rnxn+1, yn+1 ≥ yn ≥ rnyn ≥ rnyn+1, n = 1, 2, . . .

Therefore rn+1 ≥ rn, which implies that (rn)n is increasing with rn ≤ 1.
Set r∗ = limn→+∞ rn. We claim that r∗ = 1. In fact, if we suppose to the

contrary that rn ≤ r∗ < 1, we distinguish two cases.
Case 1: there exists k such that rk = r∗. In this case we have that for all n ≥ k,

xn+1 = Φ1(xn, xn, yn) ≥ Φ1

(
r∗xn,

1
r∗
xn,

1
r∗
yn

)
≥ φ1(r∗, xn, xn, yn)xn+1,

yn+1 = Φ2(xn, yn, yn) ≥ Φ2

( 1
r∗
xn,

1
r∗
yn, r

∗yn
)
≥ φ2(r∗, xn, yn, yn)yn+1.

Thus,

xn+1 ≥ min{φ1(r∗), φ2(r∗)}xn+1, yn+1 ≥ min{φ1(r∗), φ2(r∗)}yn+1.

This implies that rn+1 ≥ min{φ1(r∗), φ2(r∗)} > r∗. This is a contradiction. PAGE
5.
Case 2: rn < r∗ < 1, n = 1, 2, . . . . Setting η1(α, x, u, y) = φ1(α,x,u,y)

α − 1 and
η2(α, x, v, y) = φ2(α,x,v,y)

α − 1, for all α ∈ (0, 1), for all x, u, v, y ∈ P̊ , we have that

xn+1 = Φ1(xn, xn, yn)

≥ Φ1

(
rnx

n,
1
rn
xn,

1
rn
yn

)
= Φ1

(rn
r∗
r∗xn,

r∗

rn

1
r∗
xn,

r∗

rn

1
r∗
yn

)
≥ φ1

(rn
r∗
, r∗xn,

1
r∗
xn,

1
r∗
yn

)
Φ1

(
r∗xn,

1
r∗
xn,

1
r∗
yn

)
≥ rn
r∗
φ1

(
r∗, xn, xn, yn)Φ1(xn, xn, yn

)
≥ rn
r∗
r∗[1 + η1(r∗, xn, xn, yn)]Φ1(xn, xn, yn).

This implies xn+1 ≥ rn [1 + η1(r∗, xn, xn, yn)]xn+1.
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Also we obtain yn+1 ≥ rn[1 + η2(r∗, xn, yn, yn)]yn+1. Thus

xn+1 ≥ rn min{
φ1(r∗)
r∗

,
φ2(r∗)
r∗
}xn+1, yn+1 ≥ rn min{

φ1(r∗)
r∗

,
φ2(r∗)
r∗
}yn+1.

It follows that

rn+1 ≥ rn min{
φ1(r∗)
r∗

,
φ2(r∗)
r∗
}.

Therefore,

r∗ ≥ r∗min{
φ1(r∗)
r∗

,
φ2(r∗)
r∗
} > r∗.

Which is a contradiction. Hence limn→+∞ rn = r∗ = 1. Now, for any natural
number p we have

0 ≤ xn+p − xn ≤ xn − xn ≤ xn − rnxn ≤ (1− rn)x0,

0 ≤ xn − xn+p ≤ xn − xn ≤ xn − rnxn ≤ (1− rn)x0

and

0 ≤ yn+p − yn ≤ yn − yn ≤ yn − rnyn ≤ (1− rn)y0,

0 ≤ yn − yn+p ≤ yn − yn ≤ yn − rnyn ≤ (1− rn)y0.

Since P is normal cone, we have

‖xn+p − xn‖ ≤ N(1− rn)‖x0‖, ‖xn − xn+p‖ ≤ N(1− rn)‖x0‖,
‖yn+p − yn‖ ≤ N(1− rn)‖y0‖, ‖yn − yn+p‖ ≤ N(1− rn)‖y0‖.

Here N is the normality constant. So [xn], [xn], [yn], [yn] are cauchy sequences.
Thus, there exist u∗, u∗ ∈ [x0, x

0] and v∗, v∗ ∈ [y0, y0] such that xn → u∗, xn → u∗,
yn → v∗ and yn → v∗ when n→ +∞. By (2.2), we have

0 ≤ u∗ − u∗ ≤ xn − xn ≤ (1− rn)x0,

0 ≤ v∗ − v∗ ≤ yn − yn ≤ (1− rn)y0.

Thus, u∗ = u∗ and v∗ = v∗. Let x∗ = u∗ = u∗ and y∗ = v∗ = v∗, we obtain
Φ(x∗, x∗, y∗, y∗) = (x∗, y∗).

Suppose that (x∗, y∗) ∈ [x0, x
0] × [y0, y0] is a fixed point of Φ. Then, from

the definition of xn, xn, yn, yn we have xn ≤ x∗ ≤ xn, yn ≤ y∗ ≤ yn, and by
the normality of P , we get x∗ = x∗ and y∗ = y∗. Also, we have for any initial
(u0, v0) ∈ [x0, x

0] × [y0, y0], xn ≤ un ≤ xn and yn ≤ vn ≤ yn, where un =
Φ1(un−1, un−1, vn−1) and vn = Φ1(un−1, vn−1, vn−1). Therefore, ‖un − x∗‖ → 0,
‖vn − y∗‖ → 0 as n→ +∞. �

3. Existence and uniqueness of almost periodic solution

In this section, we show the existence and uniqueness of positive almost periodic
solution for system (1.1). Throughout the rest of this article, we assume that the
functions f̃ and g̃ admit a decomposition

f̃(t, x, y) = h(t, x)f(t, x, y) and g̃(t, x, y) = k(t, y)g(t, x, y).

Firstly, we introduce some notations and lemmas. Set, uniformly in t ∈ R,

lim inf
y→0+

lim inf
y 6=0,x→+∞

f(t, x, y)
x

= f(+∞,0+)(t), lim inf
u→0+

h(t, u) = h0+(t),
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lim inf
y→+∞

lim inf
x→0+

f(t, x, y)
x

= f(0+,+∞)(t), lim inf
u→+∞

h(t, u) = h+∞(t),

lim sup
y→0+

lim sup
y 6=0,x→+∞

f(t, x, y)
x

= f (+∞,0+)(t), lim sup
u→0+

h(t, u) = h0+
(t),

lim inf
x→0+

lim inf
x 6=0,y→+∞

g(t, x, y)
x

= g(+∞,0+)(t), quad lim inf
u→0+

k(t, u) = k0+(t),

lim inf
x→+∞

lim inf
y→0+

g(t, x, y)
x

= g(0+,+∞)(t), lim inf
u→+∞

k(t, u) = k+∞(t),

lim sup
x→0+

lim sup
x6=0,x→+∞

g(t, x, y)
x

= g(+∞,0+)(t), lim sup
u→0+

k(t, u) = k0+
(t).

Denote by P the following set in the Banach space AP (R)

P = [x ∈ AP (R) : x(t) ≥ 0, ∀t ∈ R].

It is not difficult to verify that P is a normal and solid cone in AP (R) and

P̊ = {x ∈ P : ∃ε > 0 such that x(t) > ε, ∀t ∈ R}.
We will need the following three lemmas in the proof of our result.

Lemma 3.1. Suppose that f ∈ AP (R×R+) and x ∈ P ( resp. f ∈ AP (R×R+ ×
R+) and (x, y) ∈ P ×P ). Then f(·, x(.)) ∈ AP (R) (resp. f(·, x(.), y(.)) ∈ AP (R)).

Lemma 3.2. Let f ∈ AP (R) and τ ∈ AP (R). Then

F (t) =
∫ t

t−τ(t)
f(s)ds ∈ AP (R).

Proofs of the two lemmas above and more details can be found in [9, 13].
For c ∈ AP (R) and τ ∈ AP (R), we denote by r(L(τ,c)) = limn→+∞ ‖(L(τ,c))n‖1/n

the spectral radius of the linear operator L(τ,c) : AP (R)→ AP (R) defined by

L(τ,c)(x)(t) =
∫ t

t−τ(t)
c(s)x(s)ds, ∀x ∈ AP (R), ∀t ∈ R .

Lemma 3.3. Let τ ∈ AP (R) is positive function, ρ ∈ AP (R) is nonnegative

function such that
◦
D 6= ∅, where D = [s ∈ R : ρ(s) = 0]. Then, for each x ∈ P \ [0]

the function z defined by

z(t) =
∫ t

t−τ(t)
ρ(s)x(s)ds

is in P̊ .

Proof. Recall that if x ∈ AP (R). Then the closure, in the uniform topology, of the
set Hull(x) = [x(t+ β)]β∈R is compact in the uniform topology. Let Cx = [t ∈ R :
x(t) = 0]. One can show, by using the compactness of Hull(x), that there exists
M > 0 such that if v ∈ Hull(x) and [a, b] ⊂ Cv then b − a ≤ M . Now, if there is
t0 ∈ R such that z(t0) = 0, Choose n ∈ N satisfying nτ(t0) > M . Then

z(t0) =
∫ t0

t0−τ(t0)
ρ(s)x(s) ds = 0.

It follows x(s) = 0 in the interval [t0 − τ(t0), t0]. Repeating the process with the
points t0 − τ(t0) and t0 we obtain x(s) = 0 in the interval [t0 − 2τ(t0), t0]. If we
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repeat the process n times we obtain x(s) = 0 in the interval [t0−nτ(t0), t0] which
is contradiction. Thus, z(t) > 0 for all t ∈ R. Suppose that inft∈R z(t) = 0. Then
there exists a sequence (αn)n ⊆ R such that z(αn)→ 0 as n→ +∞. Since [x(t+αn)]
and [z(t + αn)] are precompact, we may consider x(t + αn) → v(t) uniformly on
R and z(t + αn) → w(t) uniformly on R, where v ∈ Hull(x), w ∈ Hull(z). Then
we have w(0) = 0, and it is easily checked that v(s) = 0 on an interval of length
greater than M , which contradicts our previous assertion. Thus z ∈ P̊ . �

We list the following assumptions that we will use them throughout the rest of
this article:

(H1) f, g ∈ AP (R × R+ × R+), h, k ∈ AP (R × R+) are nonnegative functions
and τ1, τ2 ∈ AP (R) are positive functions.

(H2) for all s ∈ R, the functions f(s, ., y) and g(s, x, .) are nondecreasing and
f(s, x, .), g(s, ., y), h(s, .), k(s, .) are nonincreasing.

(H3) There exist positive functions ϕ1, ϕ2 defined on (0, 1) × (0,+∞), ψ1, ψ2

defined on (0, 1)× (0,+∞)× (0,+∞) such that

h(s,
1
α
x) ≥ ϕ1(α, x)h(s, x), f(s, αx,

1
α
y) ≥ ψ1(α, x, y)f(s, x, y),

k(s,
1
α
x) ≥ ϕ2(α, x)k(s, x), g(s,

1
α
x, αy) ≥ ψ2(α, x, y)f(s, x, y)

and
ϕi(α, x) > α, ψi(α, x, y) > α, i = 1, 2,

for all x, y > 0, all α ∈ (0, 1), all s ∈ R. Moreover, for any 0 < a ≤ b < +∞
and 0 < c ≤ d < +∞,

inf
y∈[c,d], x,u∈[a,b]

ϕ1(α, u)ψ1(α, x, y) > α,

inf
x∈[a,b], u,y∈[c,d]

ϕ2(α, u)ψ2(α, x, y) > α,

for all α ∈ (0, 1).
Now, we are in a position to present the existence and uniqueness theorem.

Theorem 3.4. Assume that (H1)–(H3) hold and
(i)

min
t∈R

∫ t

t−τ1(t)
h0+(s)f(+∞,0+)(s)ds > 0, min

t∈R

∫ t

t−τ2(t)
k0+(s)g(+∞,0+)(s)ds > 0.

(ii)

r
(
L(τ1,h+∞f(0+,+∞))

)
> 1, r

(
L(τ2,k+∞g(0+,+∞))

)
> 1.

Moreover D̊1 6= ∅, D̊2 6= ∅, where D1 = {s ∈ R : h+∞(s)f(0+,+∞)(s) = 0}
and D2 = {s ∈ R : k+∞(s)g(0+,+∞)(s) = 0}.

(iii)

r
(
L(τ1,h0+f(+∞,0+))

)
< 1, r

(
L(τ2,k0+g(+∞,0+))

)
< 1.

Then, system (1.1) has exactly one almost periodic solution (x∗, y∗) ∈ P̊ × P̊ .
Moreover, for any initial (u0, v0) ∈ P̊ × P̊ and

un+1(t) =
∫ t

t−τ1(t)
h(s, un(s))f(s, un(s), vn(s))ds,
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vn+1(t) =
∫ t

t−τ2(t)
k(s, vn(s))g(s, un(s), vn(s))ds

we have ‖un − x∗‖ → 0, ‖vn − y∗‖ → 0, as n→ +∞.

Proof. We prove that all hypotheses of theorem 2.7 are satisfied for adequate op-
erators Φ1 and Φ2. Consider the nonlinear operator Φ defined by Φ(x, u, v, y) =
(Φ1(x, u, y),Φ2(x, v, y)), where

Φ1(x, u, y)(t) =
∫ t

t−τ1(t)
h(s, u(s)f(s, x(s), y(s))ds,

Φ2(x, v, y)(t) =
∫ t

t−τ2(t)
k(s, v(s)g(s, x(s), y(s))ds

for all x, u, v, y ∈ P̊ and all t ∈ R. From (H1), (H3), lemmas 2.5, 3.1 and 3.2, we
obtain Φ1(x, u, y) ∈ AP (R) and Φ2(x, v, y) ∈ AP (R) for all x, u, v, y ∈ P̊ . Since

min
t∈R

∫ t

t−τ1(t)
h0+(s)f(+∞,0+)(s)ds > 0,

there exists a positive number ε > 0 such that

min
t∈R

∫ t

t−τ1(t)
(h0+(s)− ε)(f(+∞,0+)(s)− ε)ds > 0.

it follows that there exist numbers δ,M with 0 < δ < M such that

h(s, u) ≥ (h0+(s)− ε), ∀u ≤ δ, ∀s ∈ R, and

f(s, x, y) ≥ (f(+∞,0+)(s)− ε)x, ∀x ≥M, ∀y ≤ δ, ∀s ∈ R.

Let x, u, y ∈ P̊ . We consider α ∈ (0, 1) satisfying the inequalities 1
α (mint∈R x(t)) ≥

M , α(maxt∈R y(t)) ≤ δ and α(maxt∈R u(t)) ≤ δ. Then for all t ∈ R,

Φ1(x, u, y)(t)

=
∫ t

t−τ1(t)
h(s, u(s))f(s, x(s), y(s))ds

=
∫ t

t−τ1(t)
h(s,

1
α
αu(s))f(s, α

1
α
x(s),

1
α
αy(s))ds

≥
∫ t

t−τ1(t)
ϕ1(α, αu(s))h(s, αu(s))ψ1(α,

1
α
x(s), αy(s))f(s,

1
α
x(s), αy(s))ds

≥ α2

∫ t

t−τ1(t)
h(s, αu(s))f(s,

1
α
x(s), αy(s))ds

≥ α
∫ t

t−τ1(t)
(h0+(s)− ε)(f(+∞,0+)(s)− ε)x(s)ds

≥ αmin
s∈R

x(s)
∫ t

t−τ1(t)
(h0+(s)− ε)(f(+∞,0+)(s)− ε)ds > 0.

This implies that Φ1 : P̊ × P̊ × P̊ → P̊ . Analogously, Φ2 : P̊ × P̊ × P̊ → P̊ .
On the other hand, from (H2) it easy to show that Φ1 and Φ2 satisfy assumption

(A1) of theorem 2.7. We prove that assumption (A2) holds. Let x, u, y ∈ P̊ and
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α ∈ (0, 1). By setting

a(x, u, y) = min{ inf
s∈R

x(s), inf
s∈R

u(s), inf
s∈R

y(s)},

b(x, u, y) = max{sup
s∈R

x(s), sup
s∈R

u(s), sup
s∈R

y(s)},

we have 0 < a(x, u, y) ≤ b(x, u, y) < +∞ and x(s), u(s), y(s) ∈ {a(x, u, y), b(x, u, y)},
for all s ∈ R. We define

φi(α, x, u, y) = inf
β,γ,η∈{a(x,u,y),b(x,u,y)}

ϕi(α, γ)ψi(α, β, η), i = 1, 2.

By (H3), it easy to see that φi(α, x, u, y) > α for all x, u, y ∈ P̊ and for all α ∈ (0, 1).
Also, we have

Φ1(αx,
1
α
u,

1
α
y)(t) =

∫ t

t−τ1(t)
h(s,

1
α
u(s))f(s, αx(s),

1
α
y(s))ds

≥
∫ t

t−τ1(t)
ϕ1(α, u(s))ψ1(α, x(s), y(s))h(s, u(s))f(s, x(s), y(s))ds

≥ φ1(α, x, u, y)
∫ t

t−τ1(t)
h(s, u(s))f(s, x(s), y(s))ds.

Which means that

Φ1(αx,
1
α
u,

1
α
y) ≥ φ1(α, x, u, y)Φ1(x, u, y)

for each x, u, y ∈ P̊ and α ∈ (0, 1). Analogously we obtain

Φ2(
1
α
x,

1
α
u, αy) ≥ φ2(α, x, u, y)Φ2(x, u, y)

for each x, u, y ∈ P̊ and α ∈ (0, 1). Thus, assumption (A2) in theorem 2.7 is
satisfied.

Finally, by combining lemma 3.3 and the same reasoning as in the proof of [20,
corollary 3.2], we obtain the existence of (x0, y0), (x0, y0) ∈ P̊ × P̊ satisfying (2.1)
in assumption (A3) of theorem 2.7. �

Remark 3.5. Recall that in [7], Cañada and Zertiti studied system (1.2) which is a
special case of system (1.1) where τ1(t) ≡ τ1, τ2(t) ≡ τ2, h(t, x) ≡ 1 and k(t, x) ≡ 1.
In deed, they defined three particular cases of system (1.2):

(a) Of a competition type if

f(t, x, y)↗ x, f(t, x, y)↘ y; g(t, x, y)↘ x, g(t, x, y)↗ y.

(b) Of a cooperative type if

f(t, x, y)↗ x, f(t, x, y)↗ y; g(t, x, y)↗ x, g(t, x, y)↗ y.

(c) Of a prey-predator type if

f(t, x, y)↗ x, f(t, x, y)↘ y; g(t, x, y)↗ x, g(t, x, y)↗ y.

Then, the authors gave some results about the existence of positive periodic solu-
tions of just the competition and the cooperative types. In our case, it is clear that
it contains the case (a), but one can give similar theorems to the theorem 2.7 for
obtain the existence and uniqueness of positive almost periodic solutions of (1.1)
in two other cases that generalize system (1.2) in the cases (b) and (c).
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Example 3.6. Let us consider system (1.1) by setting

f(t, x, y) = {1 + sin2 2π
(

sinπt+ sin(
√

2πt)
)
}xx

2y + 3
x2y + 1

, h(t, x) = 1

g(s, x, y) = {1 +
1
2
| cos 2π

(
sinπt+ sin

√
(2πt)

)
|}yx

2y3 + 4
x2y3 + 2

, k(t, x) = 1

ψ1(α, x, y) = α
αx2y + 3
αx2y + 1

x2y + 1
x2y + 3

, ψ2(α, x, y) = α
αx2y3 + 4
αx2y3 + 2

x2y3 + 2
x2y3 + 4

,

ϕ1(α, x) = ϕ2(α, x) = 1 and τ1(t) =
3 + 1

2 sin2 t

8
, τ2(t) =

4 + 1
3 cos2 t
7

.

for all (t, x, y) ∈ R×R+×R+ and for all α ∈ (0, 1). Then, all hypotheses of theorem
3.4 are verified. Therefore, system (1.1) with the above functions f, g, h, k, τ1 and
τ2 has a unique positive almost periodic solution.
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BP 2121, Tétouan, Morocco
E-mail address: abdo2sadrati@gmail.com

Abderrahim Zertiti
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