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POSITIVE GROUND STATE SOLUTIONS TO
SCHRÖDINGER-POISSON SYSTEMS WITH A NEGATIVE

NON-LOCAL TERM

YAN-PING GAO, SHENG-LONG YU, CHUN-LEI TANG

Abstract. In this article, we study the Schrödinger-Poisson system

−∆u+ u− λK(x)φ(x)u = a(x)|u|p−1u, x ∈ R3,

−∆φ = K(x)u2, x ∈ R3,

with p ∈ (1, 5). Assume that a : R3 → R+ and K : R3 → R+ are nonnegative

functions and satisfy suitable assumptions, but not requiring any symmetry
property on them, we prove the existence of a positive ground state solution

resolved by the variational methods.

1. Introduction and main results

In this article we study the Schrödinger-Poisson system

−∆u+ V (x)u+ λK(x)φ(x)u = f(x, u), x ∈ R3,

−∆φ = K(x)u2, x ∈ R3,
(1.1)

where V (x) = 1, λ < 0, f(x, s) = a(x)sp and a(x),K(x) satisfying some suitable
assumptions, we will prove problem (1.1) exists a positive ground state solution.

Similar problems have been widely investigated and it is well known they have
a strong physical meaning because they appear in quantum mechanics models (see
e.g. [9]) and in semiconductor theory [7, 8, 14, 15]. Variational methods and critical
point theory are always powerful tools in studying nonlinear differential equations.
In recent years, system (1.1) has been studied widely via modern variational meth-
ods under the various hypotheses, see [2, 4, 14, 19, 16] and the references therein.
Many researches have been devoted to the study of problem (1.1), but they mainly
concern either the autonomous case or, in the non-autonomous case, the search
of the so-called semi-classical states. We refer the reader interested in a detailed
bibliography to the survey paper [2]. All these works deal with systems like (1.1)
with λ > 0 and the nonlinearity f(x, s) = sp with p subcritical.

To the best of our knowledge, there are only a few article on the existence
of ground state solutions to (1.1) with the negative coefficient of the non-local
term. Recently, in [17], the author obtained a ground state solution. In [18], the
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author considered the nonlinearity f(x, s) = a(x)s2 and obtained a ground state
solution. In this article, we consider the nonlinearity f(x, s) = a(x)sp for following
Schrödinger-Poisson system

−∆u+ u− λK(x)φ(x)u = a(x)|u|p−1u, x ∈ R3,

−∆φ = K(x)u2, x ∈ R3.
(1.2)

It is worth noticing that there are few works concerning on this case up to now.
As we shall see in Section 2, problem (1.2) can be easily transformed in a non-

linear Schrödinger equation with a non-local term. Briefly, the Poisson equation
is solved by using the Lax-Milgram theorem, then, for all u ∈ H1(R3), a unique
φu ∈ D1,2(R3) is obtained, such that −∆φ = K(x)u2 and that, inserted into the
first equation, gives

−∆u+ u− λK(x)φu(x)u2 = a(x)|u|p−1u, x ∈ R3. (1.3)

This problem is variational and its solutions are the critical points of the functional
defined in H1(R3) by

I(u) =
1
2
‖u‖2 − λ

4

∫
R3
K(x)φu(x)u2dx− 1

p+ 1

∫
R3
a(x)|u|p+1dx. (1.4)

In our research, we deal with the case in which p ∈ (1, 5), moreover we always
assume that a(x) and K(x) satisfy:

(A1) There exists a constant c > 0, such that a(x) > c for all x ∈ R3 and
a(x)− c ∈ L

6
5−p (R3);

(K1) K ∈ L2(R3).
Our main result reads as follows.

Theorem 1.1. Suppose a,K : R3 → R+, λ > 0 and p ∈ (1, 5). Let (A1), (K1)
hold. Then problem (1.2) has a positive ground state solution.

Remark 1.2. To the best of our knowledge, there are only two articles [17, 18] on
the existence of ground state solutions to (1.1) with the negative coefficient of the
non-local. In [17], the author discusses the negative coefficient of the non-local term
under symmetry assumption, but we get the positive ground state solution without
any symmetry assumption. Compared with the [18], we do not need conditions

lim
|x|→+∞

a(x) = a∞ and lim
|x|→+∞

K(x) = K∞.

The remainder of this paper is organized as follows. In Section 2, notation and
preliminaries are presented. In Section 3, we give the proof of Theorem 1.1.

2. Notation and preliminaries

Hereafter we use the following notation:
H1(R3) is the usual Sobolev space endowed with the standard scalar product

and norm

(u, v) =
∫

R3
(∇u · ∇v + uv)dx; ‖u‖2 =

∫
R3

(|∇u|2 + u2)dx.

D1,2(R3) is the completion of C∞0 (R3) with respect to the norm

‖u‖D1,2 =
(∫

R3
|∇u|2dx

)1/2

.
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Lp(Ω), 1 ≤ p ≤ +∞, Ω ⊆ R3, denotes a Lebesgue space, the norm in Lp(Ω) is
denoted by ‖u‖Lp(Ω) = |u|p,Ω when Ω is a proper subset of R3, by ‖u‖Lp(Ω) = | · |p
when Ω = R3.
L∞(Ω) is the space of measurable functions in Ω; that is,

ess supx∈Ω |u(x)| = inf{C > 0 : |u(x)| ≤ C a. e. in Ω} < +∞.
For any ρ > 0 and for any z ∈ R3, Bρ(z) denotes the ball of radius ρ centered

at z, and |Bρ(z)| denotes its Lebesgue measure. C,C0, C1, C2 are various positive
constants which can change from line to line.

From the embeddings, H1(R3) ↪→ L6(R3) and D1,2(R3) ↪→ L6(R3), we obtain
the inequalities

|u|6 ≤ C1‖u‖ ∀u ∈ H1(R3)\{0},
|u|6 ≤ C2‖u‖ ∀u ∈ D1,2(R3)\{0}.

It is well known and easy to show that problem (1.2) can be reduced to a single
equation with a non-local term. Actually, considering for all u ∈ H1(R3), the linear
functional Lu defined in D1,2(R3) by

Lu(v) =
∫

R3
K(x)u2v dx,

the Hölder and Sobolev inequalities imply

Lu(v) ≤ |K|2|u2|3|v|6 = |K|2|u|26|v|6 ≤ C2|K|2 · |u|26‖v‖D1,2 . (2.1)

Hence, from the Lax-Milgram theorem, for every u ∈ H1(R3), the Poisson equation
−∆φ = K(x)u2 exists a unique φu ∈ D1,2(R3) such that∫

R3
K(x)u2v dx =

∫
R3
∇φu · ∇v dx, (2.2)

for any v ∈ D1,2(R3). Using integration by parts, we get∫
R3
∇φu · ∇v dx = −

∫
R3
v∆φudx,

therefore,
−∆φu = K(x)u2,

in a weak sense and the representation formula

φu =
∫

R3

K(y)
|x− y|

u2(y)dy =
1
|x|
∗Ku2 (2.3)

holds. Moreover, φu > 0 when u 6= 0, because K does, and by (2.1), (2.2) and the
Sobolev inequality, the relations

‖φu‖D1,2 ≤ C2C
2
1 · |K|2‖u‖2, |φu|6 ≤ C2‖φu‖D1,2 , (2.4)∫

R3

∫
R3

K(x)K(y)
|x− y|

u2(x)u2(y)dxdy =
∫

R3
K(x)φuu2dx ≤ C2

2C
4
1 · |K|22‖u‖4 (2.5)

hold. Substituting φu in problem (1.2), we are led to (1.3), whose solutions can be
obtained by looking for critical points of the functional I : H1(R3)→ R where I is
defined in (1.4). Indeed, (2.4) and (2.5) imply that I is a well-defined C2 functional,
and that

〈I ′(u), v〉 =
∫

R3

(
∇u · ∇v + uv − λK(x)φuuv − a(x)|u|p−1uv

)
dx. (2.6)
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Hence, if u ∈ H1(R3) is a critical point of I, then the pair (u, φu), with φu as in
(2.3), is a solution of (1.2).

Let us define the operator Φ:H1(R3)→ D1,2(R3) as

Φ[u] = φu.

In the next lemma we summarize some properties of Φ, useful for the study our
problem.

Lemma 2.1 ([11]). (1) Φ is continuous;
(2) Φ maps bounded sets into bounded sets;
(3) if un ⇀ u in H1(R3) then Φ[un] ⇀ Φ[u] in D1,2(R3);
(4) Φ[tu] = t2Φ[u] for all t ∈ R.

Lemma 2.2 ([13]). Suppose r > 0, 2 < q < 2∗(= 6). If {un} ⊂ H1(R3) is bounded
and

sup
y∈R3

∫
B(y,r)

|un|qdx→ 0, as n→ +∞,

then un → 0 in Lq(R3) for 2 < q < 2∗.

3. Proof of main results

First wee give some properties of the nonlinear Schrödinger equation

−∆u+ u = c|u|p−1u, (3.1)

that has been broadly studied in [13, 12]. We set

N∞ := {u ∈ H1(R3)\{0} : ‖u‖2 = c|u|p+1
p+1}. (3.2)

Then for any u ∈ N∞, we have

I∞(u) =
1
2
‖u‖2 − c

p+ 1

∫
R3
|u|p+1dx =

(1
2
− 1
p+ 1

)
‖u‖2, (3.3)

and m∞ := inf{I∞(u) : u ∈ N∞}.
It is well known that (3.1) has at least a ground state solution which we denote

w∞. By using (3.2) and (3.3), we know that

m∞ = I∞(w∞) =
(1

2
− 1
p+ 1

)
‖w∞‖2

and
‖w∞‖2 = c

∫
R3
|w∞|p+1dx. (3.4)

For (1.2), it is not difficult to verify that the functional I is bounded either from
below or from above. So it is convenient to consider I restricted to a natural
constraint, the Nehari manifold, that contains all the nonzero critical points of I
and on which I turns out to be bounded from below. We set

N := {u ∈ H1(R3)\{0} : G(u) = 0}
where

G(u) = 〈I ′(u), u〉 = ‖u‖2 − λ
∫

R3
K(x)φuu2dx−

∫
R3
a(x)|u|p+1dx. (3.5)

The following lemma states the main properties of N .

Lemma 3.1. I is bounded from below on N by a positive constant.
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Proof. Let u ∈ N , from (A1) and Hölder’s inequality, we have

0 = ‖u‖2 − λ
∫

R3
K(x)φuu2dx−

∫
R3
a(x)|u|p+1dx

≥ ‖u‖2 − C‖u‖4 − C0‖u‖p+1

(3.6)

from which we have

‖u‖ ≥ C1 > 0, ∀u ∈ N (3.7)

Using this inequality, λ > 0, K > 0, a > 0, when 1 < p < 3, we obtain

I(u) =
(1

2
− 1
p+ 1

)
‖u‖2 +

( 1
p+ 1

− 1
4

)
λ

∫
R3
K(x)φuu2dx

≥
(1

2
− 1
p+ 1

)
‖u‖2

≥
(1

2
− 1
p+ 1

)
C2

1 > 0,

(3.8)

when 3 ≤ p < 5,

I(u) =
1
4
‖u‖2 +

(1
4
− 1
p+ 1

)∫
R3
a(x)|u|p+1dx

≥ 1
4
‖u‖2

≥ 1
4
C2

1 > 0.

(3.9)

Setting m := inf{I(u) : u ∈ N}, as a consequence of Lemma 3.1, m turns out to
be a positive number. Then we obtain a sequence {un} ⊂ N , such that

lim
n→∞

I(un) = m. (3.10)

�

Now we give the proof of our main result.

Proof of Theorem 1.1. First, we prove that

m < m∞. (3.11)

We know that w∞ ∈ N∞ and I∞(w∞) = m∞. We claim that there exists t0 > 0
such that t0w∞ ∈ N . Indeed, from (3.5), for all t ≥ 0 one has

G(tw∞) = t2‖w∞‖2 − λt4
∫

R3
K(x)φw∞w

2
∞dx− tp+1

∫
R3
a(x)|w∞|p+1dx,

then G(0) = 0 and G(tw∞)→ −∞ as t→ +∞. Moreover,

G′t(tw∞) = t
(

2‖w∞‖2−4λt2
∫

R3
K(x)φw∞w

2
∞dx−(p+1)tp−1

∫
R3
a(x)|w∞|p+1dx

)
,

then there exists tmax > 0 such that G′t(tw∞) > 0 for all 0 < t < tmax and
G′t(tw∞) < 0 for all t > tmax. Then G(tw∞) is increasing for all 0 < t < tmax
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and G(tw∞) decreasing for all t > tmax. Thus there exists t0 > 0 such that
G(t0w∞) = 0. That is, t0w∞ ∈ N . Our claim is true. It follows that

m ≤ I(t0w∞)

=
t20
2
‖w∞‖2 −

t40
4
λ

∫
R3
K(x)φw∞(x)w2

∞dx−
tp+1
0

p+ 1

∫
R3
a(x)|w∞|p+1dx

<
t20
2
‖w∞‖2 −

tp+1
0

p+ 1

∫
R3
c|w∞|p+1dx

≤
(1

2
− 1
p+ 1

)
‖w∞‖2

= I∞(w∞) = m∞.

(3.12)

We assume that {un} is what obtained in (3.10). From (2.3), we can get {|un|} is
also a minimize sequence. Setting un(x) ≥ 0 in R3 a.e. by (3.8) and (3.9), we have
if p ∈ (1, 3), then

I(un) ≥
(1

2
− 1
p+ 1

)
‖un‖2,

and if p ∈ [3, 5), then

I(un) ≥ 1
4
‖un‖2.

In both cases, being I(un) is bounded, {un} is also bounded.
On the other hand, since {un} is bounded in H1(R3), there exists u ∈ H1(R3)

such that, up to a subsequence,

un ⇀ u, in H1(R3); (3.13)

un → u, in Lp+1
loc (R3); (3.14)

un(x)→ u(x), a.e. in R3. (3.15)

Setting
z1
n(x) = un(x)− u(x).

Obviously, z1
n ⇀ 0 in H1(R3), but not strongly. A direct computation gives

‖un‖2 = ‖z1
n + u‖2 = ‖z1

n‖2 + ‖u‖2 + o(1). (3.16)

According to the Brezis-Lieb Lemma [10], we deduce

|un|p+1
p+1 = |u|p+1

p+1 + |z1
n|
p+1
p+1 + o(1). (3.17)

Then, we claim that, for any h ∈ H1(R3), we have∫
R3
|un|p−1unh dx→

∫
R3
|u|p−1uh dx. (3.18)

For every h ∈ C∞0 (R3), there exists a bounded open subset Ω ⊂ R3, such that
supph ⊂ Ω, where supph = {x ∈ R3 : h(x) 6= 0}. From (3.14), we have∣∣ ∫

R3
|un|p−1unh dx− |u|p−1uh dx

∣∣
<

∫
R3

∣∣|un|p−1unh− |u|p−1uh
∣∣dx

≤
∫

R3
p(|un|p−1 + |u|p−1)|un − u||h|dx
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=
∫

R3
p|un|p−1|un − u||h|dx+

∫
R3
p|u|p−1|un − u||h|dx

< p|un|p+1|un − u|p+1,Ω|h|p+1 + p|u|p+1|un − u|p+1,Ω|h|p+1 < ε

which proves (3.18). Let us show that∫
R3
K(x)φunu

2
ndx =

∫
R3
K(x)φuu2dx+ o(1), (3.19)∫

R3
K(x)φununh dx =

∫
R3
K(x)φuuh dx+ o(1). (3.20)

First let us observe that, in view of the Sobolev embedding theorem, (3.13) and (3)
of Lemma 2.1, un ⇀ ū in H1(R3) implies

un ⇀ u, in L6(R3); (3.21)

u2
n → u2, in L3

loc(R3); (3.22)

φun ⇀ φu, in D1,2(R3); (3.23)

φun → φu, in L6
loc(R3). (3.24)

Furthermore, considering (3.22) and (3.24) respectively, we can assert that for any
choice of ε > 0 and ρ > 0, the relations

|u2
n − u2|3,Bρ(0) < ε, (3.25)

|φun − φu|6,Bρ(0) < ε (3.26)

hold for large n.
On the other hand, un being bounded in H1(R3), φun is bounded in D1,2(R3)

and in L6(R3), because of (2) of Lemma 2.1 and the continuity of the Sobolev
embedding of D1,2(R3) in L6(R3). Moreover K ∈ L2(R3), for any ε > 0, there
exists ρ = ρ(ε) such that

|K|2,R3\Bρ(0) < ε, ∀ρ ≥ ρ. (3.27)

Hence, by (3.25) and (3.27), for large n, we deduce that∣∣∣ ∫
R3
K(x)φunu

2
ndx−

∫
R3
K(x)φuu2dx

∣∣∣
≤
∣∣∣ ∫

R3
K(x)φun(u2

n − u2)dx+
∫

R3
K(x)(φun − φu)u2dx

∣∣∣
≤
∣∣∣ ∫

R3
K(x)φun(u2

n − u2)dx
∣∣∣+
∣∣∣ ∫

R3
K(x)(φun − φu)u2dx

∣∣∣
≤
∣∣∣ ∫

R3\Bρ(0)

K(x)φun(u2
n − u2)dx

∣∣∣+
∣∣∣ ∫
Bρ(0)

K(x)φun(u2
n − u2)dx

∣∣∣
+
∣∣∣ ∫

R3\Bρ(0)

K(x)(φun − φu)u2dx
∣∣∣+
∣∣∣ ∫
Bρ(0)

K(x)(φun − φu)u2dx
∣∣∣

≤ |K|2,R3\Bρ(0)

(
|φun |6,R3\Bρ(0)|u2

n − u2|3,R3\Bρ(0)

+ |φun − φu|6,R3\Bρ(0)|u2|3,R3\Bρ(0)

)
+ |K|2,Bρ(0)|φun |6,Bρ(0)|u2

n − u2|3,Bρ(0)

+ |K|2,Bρ(0)|φun − φu|6,Bρ(0)|u2|3,Bρ(0)

≤ Cε
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which proves (3.19).
Analogously, by (3.26) and (3.27), for large n, we infer that∣∣∣ ∫

R3
K(x)φununh dx−

∫
R3
K(x)φuuh dx

∣∣∣ ≤ ε
which proves (3.20). Therefore, by (3.16), (3.17) and (3.19) respectively, we obtain

I(un) =
1
2
‖un‖2 −

λ

4

∫
R3
K(x)φunu

2
ndx−

1
p+ 1

∫
R3
a(x)|un|p+1dx

=
1
2
‖z1
n‖2 +

1
2
‖u‖2 − λ

4

∫
R3
K(x)φuu2dx− 1

p+ 1

∫
R3
a(x)|u|p+1dx

− c

p+ 1

∫
R3
|z1
n|p+1dx+ o(1)

= I(u) + I∞(z1
n) + o(1).

(3.28)

By (3.18) and (3.20) for any h ∈ C∞0 (R3),

〈I ′(un), h〉 =
∫

R3
(∇un · ∇h+ unh− λK(x)φununh− a(x)|un|p−1unh)dx

=
∫

R3
(∇u · ∇h+ uh− λK(x)φuuh− a(x)|u|p−1uh)dx+ o(1)

= 〈I ′(u), h〉+ o(1).

(3.29)

We now claim that
∇I(un)→ 0, in H1(R3). (3.30)

By Lagrange’s multiplier theorem, we know that there exists λn ∈ R such that

o(1) = ∇I|N (un) = ∇I(un)− λn∇G(un). (3.31)

So, taking the scalar product with un, we obtain

o(1) = (∇I(un), un)− λn(∇G(un), un).

G turns out to be a C1 functional. Using (3.6) and λ > 0,K > 0, a > 0, when
1 < p ≤ 3, we deduce

〈G′(u), u〉 = 2‖u‖2 − 4λ
∫

R3
K(x)φuu2dx− (p+ 1)

∫
R3
a(x)|u|p+1dx

= (1− p)‖u‖2 + λ(p− 3)
∫

R3
k(x)φuu2dx

≤ (1− p)‖u‖2

≤ −(p− 1)C1 < 0,

(3.32)

when 3 < p < 5,

〈G′(u), u〉 = 2‖u‖2 − 4λ
∫

R3
K(x)φuu2dx− (p+ 1)

∫
R3
a(x)|u|p+1dx

= −2‖u‖2 + (3− p)
∫

R3
a(x)|u|p+1dx

≤ −2‖u‖2

≤ −2C2 < 0.

(3.33)

Since un ∈ N , we have (∇I(un), un) = 0; by inequalities (3.32) and (3.33), we have
(∇G(un), un) < C < 0. Thus λn → 0 for n→ +∞. Moreover, by the boundedness
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of {un}, ∇G(un) is bounded and this implies λn∇G(un)→ 0, so (3.31) follows from
(3.30). By (3.29) and (3.30), we have 〈I ′(u), h〉 = 0, so u is a solution of problem
(1.2). By (3.19), we have

〈I ′(un), un〉 = ‖un‖2 − λ
∫

R3
K(x)φunu

2
ndx−

∫
R3
a(x)|un|p+1)dx

= ‖u‖2 + ‖z1
n‖2 − λ

∫
R3
K(x)φuu2dx−

∫
R3
a(x)|u|p+1dx

− c
∫

R3
|z1
n|p+1dx+ o(1)

= 〈I ′(u), u〉+ 〈I ′∞(z1
n), z1

n〉+ o(1),

which implies that

o(1) = 〈I ′∞(z1
n), z1

n〉 = ‖z1
n‖2 − c|z1

n|
p+1
p+1. (3.34)

Setting

δ := lim sup
n→+∞

(
sup
y∈R3

∫
B1(y)

|z1
n|p+1dx

)
.

We claim δ = 0. By [19, Lemma 1.21], one has

z1
n → 0, in Lp+1(R3). (3.35)

From (3.34) and (3.35), we obtain

o(1) = 〈I ′∞(z1
n), z1

n〉

= ‖z1
n‖2 − c|z1

n|
p+1
p+1

= ‖z1
n‖2 + o(1)

= ‖un − u‖2 + o(1),

so un → u in H1(R3). Let u = u, so I(u) = m, I ′(u) = 0 and u(x) > 0 a.e. in R3.
Let us prove δ = 0. Actually, if δ > 0, there exists sequence {y1

n} ⊂ R3, such
that ∫

B1(y1
n)

|z1
n|p+1dx >

δ

2
.

Let us now consider z1
n(· + y1

n). We assume that z1
n(· + y1

n) ⇀ u1 in H1(R3) and,
then, z1

n(x+ y1
n) → u1(x) a.e. on R3. Since∫

B1(0)

|z1
n(x+ y1

n)|p+1dx >
δ

2
,

from the Rellich theorem it follows that∫
B1(0)

|u1(x)|p+1dx ≥ δ

2
,

and thus u1 6= 0. Finally, let us set

z2
n(x) = z1

n(x+ y1
n)− u1(x).

Then, using (3.16), (3.17) and the Brezis-Lieb Lemma, we have

‖z2
n‖2 = ‖z1

n‖2 − ‖u1‖2 + o(1), (3.36)

|z2
n|
p+1
p+1 = |un|p+1

p+1 − |u|
p+1
p+1 − |u1|p+1

p+1 + o(1). (3.37)
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These equalities imply

I∞(z2
n) = I∞(z1

n)− I∞(u1) + o(1),

hence, by using (3.28), we obtain

I(un) = I(u) + I∞(z1
n) + o(1)

= I(u) + I∞(u1) + I∞(z2
n) + o(1).

(3.38)

Using (3.34), (3.36) and (3.37), we obtain

〈I ′∞(z1
n), z1

n〉 = ‖z1
n‖2 − c|z1

n|
p+1
p+1

= ‖u1‖2 − c|u1|p+1
p+1 + ‖z2

n‖2 − c|z2
n|
p+1
p+1 + o(1)

= 〈I ′∞(u1), u1〉+ 〈I ′∞(z2
n), z2

n〉+ o(1),

which implies
o(1) = 〈I ′∞(z2

n), z2
n〉 = ‖z2

n‖2 − c|z2
n|
p+1
p+1.

Moreover, we obtain

I∞(z2
n) =

1
2
‖z2
n‖2 −

c

p+ 1
|z2
n|
p+1
p+1 =

(1
2
− 1
p+ 1

)
‖z2
n‖2 + o(1). (3.39)

Since z1
n ⇀ u1 in H1(R3) and u1 6= 0, according to (3.34), one has u1 ∈ N∞.

Because of u ∈ N , from Lemma 3.1, we obtain I(u) > 0. Thus, using (3.38) and
(3.39), we obtain

m = lim inf
n→∞

I(un)

≥ I(u) + I∞(u1) + lim inf
n→∞

I∞(z2
n)

≥ I∞(u1) ≥ m∞
which contradicts with (3.11). �
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