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K-DIMENSIONAL NONLOCAL BOUNDARY-VALUE PROBLEMS
AT RESONANCE

KATARZYNA SZYMAŃSKA-DȨBOWSKA

Abstract. In this article we show the existence of at least one solution to the

system of nonlocal resonant boundary-value problem

x′′ = f(t, x), x′(0) = 0, x′(1) =

Z 1

0
x′(s) dg(s),

where f : [0, 1]× Rk → Rk, g : [0, 1]→ Rk.

1. Introduction

In this article we study the system of ordinary differential equations

x′′ = f(t, x), x′(0) = 0, x′(1) =
∫ 1

0

x′(s) dg(s), (1.1)

where f = (f1, . . . , fk) : [0, 1] × Rk → Rk is continuous, and g = (g1, . . . , gk) :
[0, 1]→ Rk has bounded variation. Observe that (1.1) can be written down as the
system of equations

x′′i (t) = fi(t, x(t)),

x′i(0) = 0,

x′i(1) =
∫ 1

0

x′i(s)dgi(s),

where t ∈ [0, 1], i = 1, . . . , k and the integrals
∫ 1

0
x′i(s)dgi(s) are meant in the sense

of Riemann-Stieltjes.
Our main goal is to show that the problem (1.1) has at least one solution. We

impose on the function f a sign condition, which we called: the asymptotic integral
sign condition. The idea comes from [16], where the author shows that the first
order equation x′ = f(t, x) has periodic solutions. The method can be successfully
applied to other BVPs (not necessarily only for differential equations of the first
or second order but, for instance, involving p-Laplacians), for which the function f
does not depend on x′.

2010 Mathematics Subject Classification. 34B10, 34B15.
Key words and phrases. Nonlocal boundary value problem; perturbation method;

boundary value problem at resonance; Neumann BVP.
c©2015 Texas State University - San Marcos.

Submitted February 2, 2015. Published June 6, 2015.

1
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As far as we are aware, (1.1) has not been studied in this generality so far. Note
that a special case of (1.1) is the Neumann BVP

x′′ = f(t, x), x′(0) = 0, x′(1) = 0.

Under suitable monotonicity conditions or nonresonance conditions, some existence
or uniqueness theorems or methods for Neumann BVPs have been presented (see,
for instance, [1, 4, 12, 18, 17, 19, 20, 21, 22] and the references therein).

In [8], the authors study the Neumann boundary value problem x′′ + µ(t)x+ −
ν(t)x− = p(t, x), x′(0) = 0 = x′(π), where µ, ν lie in L1(0, π), p(t, x) is a
Carathéodory function, p ≥ 0, x+(t) = max(x(t), 0), and x−(t) = max(−x(t), 0).
They obtain several necessary and sufficient conditions on p so that the Neumann
problem has a positive solution or a solution with a simple zero in (0, π).

In [9], the author uses phase plane and asymptotic techniques to discuss the
number of solutions of the problems −x′′ = f(t, x), x′(0) = σ1, x′(π) = σ1. It
is assumed that f : [0, π] × R → R is a continuous jumping nonlinearity with
nonnegative asymptotic limits: x−1f(t, x) → α as x → −∞ and x−1f(t, x) → β
as x → ∞. The limit problem where f(t, x) = αx− + βx+ plays a key role in
his methods. The authors describe how the number of solutions of the problem
depends on the four parameters: α, β, σ1, σ2. The results differ from those obtained
by various authors who were mainly concerned with forcing the equation with large
positive functions and keeping the boundary conditions homogeneous.

The boundary-value problem

x′′ = f(t, x, x′), x′(0) = 0, x′(1) = 0,

is considered in [6]. The authors obtain some results of existence of solutions
assuming that there is a constant M > 0 such that yf(t, x, y) > 0 for |y| > M and
the function f satisfies the Bernstein growth condition (or the Bernstein-Nagumo
growth condition).

In [14] the author shows the existence of a solution to the Neumann problem for
the equation

(d/dt)[A(t)dx/dt] = f(t, x, x′),

where A : [0, 1]→ L(Rk,Rk) and f : [0, 1]×Rk×Rk → Rk, applying the coincidence
degree theory.

The generalization of the Neumann problem (1.1) is a nonlocal problem. BVPs
with Riemann-Stieltjes integral boundary conditions include as special cases multi-
point and integral BVPs.

The multi-point and integral BCs are widely studied objects. The study of multi-
point BCs was initiated in 1908 by Picone [15]. Reviews on differential equations
with BCs involving Stieltjes measures has been written in 1942 by Whyburn [24]
and in 1967 by Conti [2].

Since then, the existence of solutions for nonlocal nonlinear BVPs has been
studied by many authors by using, for instance, the Leray-Schauder degree theory,
the coincidence degree theory of Mawhin, the fixed point theorems for cones. For
such problems and comments on their importance, we refer the reader to [3, 5, 10,
23, 25, 26] and the references therein.
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2. The perturbed problem

First, we shall introduce notation and terminology. Throughout the paper | · |
will denote the Euclidean norm on Rk, while the scalar product in Rk correspond-
ing to the Euclidean norm will be denoted by (·|·). Denote by C1([0, 1],Rk) the
Banach space of all continuous functions x : [0, 1]→ Rk which have continuous first
derivatives x′ with the norm

‖x‖ = max
{

sup
t∈[0,1]

|x(t)|, sup
t∈[0,1]

|x′(t)|
}
. (2.1)

The Lemma below, which is a straightforward consequence of the classical Arzelà-
Ascoli theorem, gives a compactness criterion in C1([0, 1],Rk).

Lemma 2.1. For a set Z ⊂ C1([0, 1],Rk) to be relatively compact, it is necessary
and sufficient that:

(1) there exists M > 0 such that for any x ∈ Z and t ∈ [0, 1] we have |x(t)| ≤M
and |x′(t)| ≤M ;

(2) for every t0 ∈ [0, 1] the families Z := {x : x ∈ Z} and Z ′ := {x′ : x ∈ Z}
are equicontinuous at t0.

Now, let us consider problem (1.1) and observe that the homogeneous linear
problem, i.e.,

x′′ = 0, x′(0) = 0, x′(1) =
∫ 1

0

x′(s) dg(s),

has always nontrivial solutions, hence we deal with a resonant situation.
The following assumptions will be needed throughout this article:

(i) f = (f1, . . . , fk) : [0, 1]× Rk → Rk is a continuous function.
(ii) g = (g1, . . . , gk) : [0, 1]→ Rk has bounded variation on the interval [0, 1].
(iii) There exists a uniform finite limit

h(t, ξ) := lim
λ→∞

f(t, λ ξ)

with respect to t and ξ ∈ Rk, |ξ| = 1.
(iv) Set

h0(ξ) :=
∫ 1

0

h(u, ξ)du−
∫ 1

0

∫ s

0

h(u, ξ)du dg(s).

For every ξ ∈ Rk, |ξ| = 1, we have (ξ : h0(ξ)) < 0.
Problem (1.1) is resonant. Hence, there is no equivalent integral equation. The

existence of a solution will be obtained by considering the perturbed boundary-value
problem

x′′ = f(t, x), t ∈ [0, 1], (2.2)

x′(0) = 0, (2.3)

x′(1) =
∫ 1

0

x′(s) dg(s) + αnx(0), αn ∈ (0, 1), αn → 0. (2.4)

Notice that problem (2.2), (2.3), (2.4) is always nonresonant.
Now, let us consider the equation (2.2) and integrate it from 0 to t. By (2.3),

we obtain

x′(t) =
∫ t

0

f(u, x(u))du. (2.5)
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By (2.4) and (2.5), we obtain∫ 1

0

f(u, x(u))du =
∫ 1

0

∫ s

0

f(u, x(u))du dg(s) + αnx(0),

so

x(0) =
1
αn

[ ∫ 1

0

f(u, x(u))du−
∫ 1

0

∫ s

0

f(u, x(u))du dg(s)
]
,

Moreover, by (2.5), we have

x(t) = x(0) +
∫ t

0

∫ s

0

f(u, x(u)) du ds.

Now, it is easily seen that the following Lemma holds.

Lemma 2.2. A function x ∈ C1([0, 1],Rk) is a solution of (2.2), (2.3), (2.4) if
and only if x satisfies the integral equation

x(t) =
∫ t

0

∫ s

0

f(u, x(u)) du ds+
1
αn

[ ∫ 1

0

f(u, x(u))du−
∫ 1

0

∫ s

0

f(u, x(u))du dg(s)
]
.

To search for solutions of (2.2), (2.3), (2.4), we first reformulate the problem as
an operator equation. Given x ∈ C1([0, 1],Rk) and fixed n ∈ N let

(Anx)(t) =
∫ t

0

∫ s

0

f(u, x(u)) du ds

+
1
αn

[ ∫ 1

0

f(u, x(u))du−
∫ 1

0

∫ s

0

f(u, x(u))du dg(s)
]
.

Then

(Anx)′(t) =
∫ t

0

f(u, x(u))du. (2.6)

It is clear that Anx, (Anx)′ : [0, 1]→ Rk are continuous. It follows that the operator

An : C1([0, 1],Rk)→ C1([0, 1],Rk)

is well defined.
By assumption (iii), function f is bounded and we put

M := sup
t∈[0,1],x∈Rk

|f(t, x)|.

By (2.6), we have
sup
t∈[0,1]

|(Anx)′(t)| ≤M. (2.7)

Moreover, we obtain

sup
t∈[0,1]

|(Anx)(t)| ≤M +
1
αn

(M +M Var(g)) , (2.8)

where Var(g) means the variation of g on the interval [0, 1].
From (ii), L := Var(g) <∞. Put Mn := M + 1

αn
(M +M L), then ‖Anx‖ ≤Mn

for every n ∈ N. Moreover, (Anx)′′(t) and (Anx)′(t), t ∈ [0, 1], are bounded,
hence the families (Anx)′ and (Anx) are equicontinuous. Now, by Lemma 2.1, the
following Lemma holds.

Lemma 2.3. The operator An is completely continuous.
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Let Bn := {x ∈ C1([0, 1],Rk) : ‖x‖ ≤Mn}. Now, considering operator

An : Bn → Bn,

by Schauder’s fixed point Theorem, we get that the operator An has a fixed point
in Bn for every n. We have proved the following result.

Lemma 2.4. Under assumptions (i)–(iii), problem (2.2), (2.3), (2.4) has at least
one solution for every n ∈ N.

3. Main results

Let ϕn be a solution of the problem (2.2), (2.3), eqrefnon3, where n is fixed.

Lemma 3.1. The sequence (ϕn) is bounded in C1([0, 1],Rk).

Proof. Assume that the sequence (ϕn) is unbounded. Then, passing to a subse-
quence if necessary, we have ‖ϕn‖ → ∞. We can proceed analogously as in (2.7)
to show that

sup
t∈[0,1]

|(ϕn)′(t)| ≤M,

for every n. Hence, supt∈[0,1] |ϕn(t)| → ∞, when n→∞.
Let us consider the following sequence ( ϕn

‖ϕn‖ ) ⊂ C1([0, 1],Rk) and notice that
the norm of the sequence equals 1. Hence, the sequence is bounded. Moreover, the
family ( ϕn

‖ϕn‖ ) (and simultaneously ( ϕ′
n

‖ϕn‖ )) is equicontinuous, since ϕ′
n(t)
‖ϕn‖ (or ϕ′′

n(t)
‖ϕn‖ )

is bounded. By Lemma 2.1, there exists a convergent subsequence of ( ϕn

‖ϕn‖ ). To
simplify the notation, let us denote this subsequence as ( ϕn

‖ϕn‖ ).

First, observe that ϕ′
n(t)
‖ϕn‖ → 0 ∈ Rk. Now, we shall show that

ϕn(t)
‖ϕn‖

→ ξ, (3.1)

where ξ = (ξ1, . . . , ξk) does not depend on t and |ξ| = 1.
Indeed, notice that ϕn(t)

‖ϕn‖ is given by

ϕn(t)
‖ϕn‖

=

∫ t
0

∫ s
0
f(u, ϕn(u)) du ds
‖ϕn‖

+

∫ 1

0
f(u, ϕn(u))du−

∫ 1

0

∫ s
0
f(u, ϕn(u))du dg(s)

αn‖ϕn‖
.

(3.2)

Since f is bounded, we obtain

lim
n→∞

∫ t
0

∫ s
0
f(u, ϕn(u)) du ds
‖ϕn‖

= 0 ∈ Rk. (3.3)

Now, by (3.2) and (3.3), we can easily observe that the limit (3.1) does not depend
on t. The norm of the sequence ( ϕn

‖ϕn‖ ) equals 1. Hence ϕn(t)
‖ϕn‖ → ξ, where |ξ| = 1.
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On the other hand,

ξ = lim
n→∞

ϕn(t)
‖ϕn‖

=

∫ t
0

∫ s
0
f(u, ϕn(u)) du ds
‖ϕn‖

+

∫ 1

0
f(u, ϕn(u))du−

∫ 1

0

∫ s
0
f(u, ϕn(u))du dg(s)

αn‖ϕn‖

= lim
n→∞

(∫ 1

0
f(u, ‖ϕn‖ϕn(u)

‖ϕn‖ )du

αn‖ϕn‖
−

∫ 1

0

∫ s
0
f(u, ‖ϕn‖ϕn(u)

‖ϕn‖ )du dg(s)

αn‖ϕn‖

)
.

(3.4)

Now, observe, that there exist a uniform limits of∫ 1

0

f(u, ‖ϕn‖
ϕn(u)
‖ϕn‖

)du

and ∫ 1

0

∫ s

0

f(u, ‖ϕn‖
ϕn(u)
‖ϕn‖

)du dg(s)

Moreover, by (iv), the sum of the limits is different from zero. Hence, since (3.1)
holds, there exists γ ∈ (0,∞) such that γ := limn→∞ 1/(αn‖ϕn‖).

Now, by assumption (iii), we obtain

ξ = lim
n→∞

ϕn(t)
‖ϕn‖

= γ
[ ∫ 1

0

h(u, ξ)du−
∫ 1

0

∫ s

0

h(u, ξ)du dg(s)
]
. (3.5)

Finally, by (3.5) and (iv), we obtain

1 = (ξ | ξ) = γ
(
ξ |
∫ 1

0

h(u, ξ)du−
∫ 1

0

∫ s

0

h(u, ξ)du dg(s)
)

= γ(ξ | h0(ξ)) < 0

a contradiction. Hence, the sequence (ϕn) is bounded. �

Now, it is easy to see that the following lemma holds.

Lemma 3.2. The set Z = {ϕn : n ∈ N} is relatively compact in C1([0, 1],Rk).

By the above Lemmas, we get the proof of the following result.

Theorem 3.3. Under assumptions (i)–(iv) problem (1.1) has at least one solution.

Proof. Lemma 3.2 implies that (ϕn) has a convergent subsequence (ϕnl
), ϕnl

→ ϕ.
We know that ϕnl

(ϕ′nl
) converges uniformly to ϕ (ϕ′) on [0, 1]. Since (ϕnl

) is
equibounded and f is uniformly continuous on compact sets, one can see that
f(t, ϕnl

) is uniformly convergent to f(t, ϕ). Since

ϕ′′nl
(t) = f(t, ϕnl

(t)),

the sequence ϕ′′nl
(t) is also uniformly convergent. Moreover, ϕ′′nl

(t) converges uni-
formly to ϕ′′(t).

Note that we have actually proved that function ϕ ∈ C1([0, 1],Rk) is a solution
of the equation of problem (1.1). By (2.3) and (2.4), it is easy to see that ϕ satisfies
boundary conditions of problem (1.1). This completes the proof. �
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4. Applications

To illustrate our results we shall present some examples.

Example 4.1. Let us consider the Neumann BVP

x′′ = f(t, x), x′(0) = 0, x′(1) = 0.

In this case gi(t) = constant, i = 1, . . . , k, t ∈ [0, 1] and condition (ii) always holds.
Moreover, we have

h0(ξ) =
∫ 1

0

h(s, ξ)ds.

Hence for any f which satisfies conditions (i), (iii) and (iv) the Neumann BVP has
at least one solution.

Example 4.2. Let k = 1, g(t) = t and f(t, x) = t−|x|x
x2+1 . We have

h(t, ξ) = lim
λ→∞

f(t, λ ξ) =

{
−1, ξ = 1
1, ξ = −1 .

Then h0(1) = −1/2 and h0(−1) = 1/2 and we get (ξ|h0(ξ)) < 0. Hence, problem
(1.1) has at least one nontrivial solution.

Example 4.3. Let k = 3, g(t) = (t, t, t) and

f1(t, x1, x2, x3) =
−x1√

x2
1 + x2

2 + x2
3 + sin2 t+ 1

,

f2(t, x1, x2, x3) =
−x2 − t√

x2
1 + x2

2 + x2
3 + 1

,

f3(t, x1, x2, x3) =
−x3 + arctan(x2 − t)√

x2
1 + x2

2 + x2
3 + 1

.

For every ξ = (ξ1, ξ2, ξ3) with |ξ| = 1, we obtain

h(t, ξ) = lim
λ→∞

f(t, λξ) =
(
− ξ1
|ξ|
,− ξ2
|ξ|
,− ξ3
|ξ|

)
,

h0(ξ) =
(
− ξ1

2|ξ|
,− ξ2

2|ξ|
,− ξ3

2|ξ|

)
.

Then

(ξ|h0(ξ)) = −1
2

( ξ2
1

|ξ|
+
ξ2
2

|ξ|
+
ξ2
3

|ξ|

)
= −1

2
|ξ| < 0.

Hence, problem (1.1) has at least one nontrivial solution.
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