Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 148, pp. 1-8.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu

K-DIMENSIONAL NONLOCAL BOUNDARY-VALUE PROBLEMS
AT RESONANCE

KATARZYNA SZYMANSKA-DEBOWSKA

ABSTRACT. In this article we show the existence of at least one solution to the
system of nonlocal resonant boundary-value problem

1
o = f(tx), a'(0)=0, 2(1) = /O o/(s) dg(s),

where f:[0,1] x R¥ = R*, ¢g:[0,1] — R,

1. INTRODUCTION

In this article we study the system of ordinary differential equations

1
2 = f(t,z), 2/(0)=0, /(1) :/0 2'(s) dg(s), (1.1)

where f = (f1,..., fx) : [0,1] x R¥ — RF is continuous, and g = (g1,...,9%) :
[0,1] — R* has bounded variation. Observe that (I.1)) can be written down as the
system of equations

i (t) = fi(
x(0) =0,

#(1) = / 2()dgi(5),

\.@F
8
—~
~
~—
~—

where t € [0,1],7 =1, ...,k and the integrals fol x%(s)dgi(s) are meant in the sense
of Riemann-Stieltjes.

Our main goal is to show that the problem has at least one solution. We
impose on the function f a sign condition, which we called: the asymptotic integral
sign condition. The idea comes from [I6], where the author shows that the first
order equation ' = f(t, z) has periodic solutions. The method can be successfully
applied to other BVPs (not necessarily only for differential equations of the first
or second order but, for instance, involving p-Laplacians), for which the function f
does not depend on z’.
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As far as we are aware, (|1.1)) has not been studied in this generality so far. Note
that a special case of (1.1) is the Neumann BVP

2" = f(t,x), 2'(0)=0, 2'(1)=0.

Under suitable monotonicity conditions or nonresonance conditions, some existence
or uniqueness theorems or methods for Neumann BVPs have been presented (see,
for instance, [1I, 4] [12] 18, 17, 19} 20, 2], 22] and the references therein).

In [§], the authors study the Neumann boundary value problem z” + u(t)z; —
v(it)r— = p(t,x), 2/(0) = 0 = 2/(rw), where u, v lie in L*(0,7), p(t,x) is a
Carathéodory function, p > 0, x4 (t) = max(z(t),0), and z_(t) = max(—z(t),0).
They obtain several necessary and sufficient conditions on p so that the Neumann
problem has a positive solution or a solution with a simple zero in (0, 7).

In [9], the author uses phase plane and asymptotic techniques to discuss the
number of solutions of the problems —z” = f(¢t,z), '(0) = o1, 2/(7) = o1. It
is assumed that f : [0,7] x R — R is a continuous jumping nonlinearity with
nonnegative asymptotic limits: 271 f(t,2) — a as * — —oo and z~ 1 f(t,z) — 8
as © — oo. The limit problem where f(¢t,z) = ax_ + Bx4 plays a key role in
his methods. The authors describe how the number of solutions of the problem
depends on the four parameters: «, 3,01, 02. The results differ from those obtained
by various authors who were mainly concerned with forcing the equation with large
positive functions and keeping the boundary conditions homogeneous.

The boundary-value problem

2" = f(t,z,2"), 2'(0)=0, 2'(1)=0,

is considered in [6]. The authors obtain some results of existence of solutions
assuming that there is a constant M > 0 such that yf(¢,z,y) > 0 for |y| > M and
the function f satisfies the Bernstein growth condition (or the Bernstein-Nagumo
growth condition).

In [I4] the author shows the existence of a solution to the Neumann problem for
the equation

(d/dt)[A(t)dz/dt] = f(t,z,z"),

where A : [0,1] — L(R* R¥) and f : [0, 1] xR* x R¥ — R* applying the coincidence
degree theory.

The generalization of the Neumann problem is a nonlocal problem. BVPs
with Riemann-Stieltjes integral boundary conditions include as special cases multi-
point and integral BVPs.

The multi-point and integral BCs are widely studied objects. The study of multi-
point BCs was initiated in 1908 by Picone [15]. Reviews on differential equations
with BCs involving Stieltjes measures has been written in 1942 by Whyburn [24]
and in 1967 by Conti [2].

Since then, the existence of solutions for nonlocal nonlinear BVPs has been
studied by many authors by using, for instance, the Leray-Schauder degree theory,
the coincidence degree theory of Mawhin, the fixed point theorems for cones. For
such problems and comments on their importance, we refer the reader to [3] [ [I0L
23, 25| 26] and the references therein.
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2. THE PERTURBED PROBLEM

First, we shall introduce notation and terminology. Throughout the paper |- |
will denote the Euclidean norm on R¥, while the scalar product in R¥ correspond-
ing to the Euclidean norm will be denoted by (-|-). Denote by C([0,1],RF) the
Banach space of all continuous functions x : [0, 1] — R* which have continuous first
derivatives x’ with the norm

1| :max{ sup |z(t)|, sup |z'(t |} (2.1)
te| te[0,1]

)

The Lemma below, which is a straightforward consequence of the classical Arzela-
Ascoli theorem, gives a compactness criterion in C*([0, 1], R¥).

Lemma 2.1. For a set Z C C*([0,1],R¥) to be relatively compact, it is necessary
and sufficient that:
(1) there exists M > 0 such that for any x € Z and t € [0, 1] we have |z(t)| < M
and |2’ (t)| < M;
(2) for every ty € [0,1] the families Z :={x :x € Z} and Z' .= {a’ : x € Z}
are equicontinuous at tg.

Now, let us consider problem (1.1)) and observe that the homogeneous linear
problem, i.e.,

2 =0, '(0) =0, x'(1)=/0 2/(s) dg(s),

has always nontrivial solutions, hence we deal with a resonant situation.
The following assumptions will be needed throughout this article:

(i) f=(f1,---,fr) :[0,1] x R¥* — R* is a continuous function.
(i) g = (g1,---,9x) : [0,1] — R* has bounded variation on the interval [0, 1].
(iii) There exists a uniform finite limit

A(t,€) = lim f(t,A¢)

with respect to t and ¢ € R¥, |¢] = 1.

(iv) Set
/huﬁdu—//hu{dudg s).

For every € €R¥ €] =1, we have (€ : ho(€

Problem is resonant. Hence, there is no equlvalent integral equation. The
existence of a solution will be obtained by considering the perturbed boundary-value
problem

2" = f(t,z), te]lo,1],
2'(0) =0,
1
(1) = /0 2'(s) dg(s) + anz(0), an € (0,1), a, — 0. (2.4)

Notice that problem (2.2)), (2.3]), (2.4) is always nonresonant.
Now, let us consider the equation (2.2) and integrate it from 0 to t. By (2.3)),

we obtain \
"(t) :/0 f(u, z(u))du. (2.5)
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By and (2.5)), we obtain
1 1 s
du = du d n ,
/0 (1t 2(10) ) / / £, () du dg(s) + anz(0)

SO
1 1 s
x(0) = ain[/o f(u,x(u))du—/o /0 fu,z(u))dudg(s)],
Moreover, by 7 we have

t s
z(t) = z(0) + / / f(u, z(w)) duds.
o Jo
Now, it is easily seen that the following Lemma holds.

Lemma 2.2. A function x € C'([0,1],R*) is a solution of ([2.2), 2.3), @.4) if

and only if © satisfies the integral equation

x(t) = /Ot /OS f(u,z(u)) duds+ a—ln [/01 f(u,ac(u))du—/o1 /Os f(u,x(u))dudg(s)}.

To search for solutions of (2.2)), (2.3), (2.4]), we first reformulate the problem as
an operator equation. Given z € C1([0,1],R*) and fixed n € N let

(Ana)(t) = /Ot /0 Fu, () duds

1 1 1 s
+ — [/ flu,z(u))du — / / flu,z(u))du dg(s)].
Qo 0 o Jo

Then ,
(Apz) (t) = / f(u, z(u))du. (2.6)

0
It is clear that A, x, (A,x)" : [0,1] — R* are continuous. It follows that the operator

A, - CY([0,1],RF) — C*([0,1],RF)

is well defined.
By assumption (iii), function f is bounded and we put

Mi= s |f(t,2)]
te[0,1],zERk
By (2.6), we have
sup [(Anz)'(t)] < M. (2.7)
te(0,1]
Moreover, we obtain
1
sup [(Anz)(t)] < M + — (M + M Var(g)) (2.8)
tel0,1] Qnp

where Var(g) means the variation of g on the interval [0, 1].

From (ii), L := Var(g) < co. Put M, := M + ;1 (M + M L), then ||A,z| < M,
for every n € N. Moreover, (A,z)"(t) and (A,z)'(t), t € [0,1], are bounded,
hence the families (A,x)" and (A,x) are equicontinuous. Now, by Lemma the
following Lemma holds.

Lemma 2.3. The operator A,, is completely continuous.
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Let B, := {z € C*([0,1],R*) : ||z|| < M,,}. Now, considering operator
A, By — By,

by Schauder’s fixed point Theorem, we get that the operator A,, has a fixed point
in B,, for every n. We have proved the following result.

Lemma 2.4. Under assumptions (i)—(iii), problem (2.2), (2.3)), (2.4) has at least
one solution for every n € N.

3. MAIN RESULTS

Let ¢, be a solution of the problem ({2.2)), (2.3)), eqrefnon3, where n is fixed.
Lemma 3.1. The sequence (p,,) is bounded in C([0, 1], R¥).

Proof. Assume that the sequence (¢,) is unbounded. Then, passing to a subse-
quence if necessary, we have ||p,|| — oco. We can proceed analogously as in (2.7)
to show that

sup [(¢n)'(t)] < M,
t€[0,1]

for every n. Hence, supc(o 11 [n(t)| — 0o, when n — ooc.

Let us consider the following sequence (ﬁ) C C*(]0,1],R¥) and notice that

the norm of the sequence equals 1. Hence, the sequence is bounded. Moreover, the
©; 20!

family (H ) (and simultaneously (“ ”)) is equicontinuous, since 2 (or T"i(t”))
is bounded. By Lemma there exists a convergent subsequence of (Hin\l ). To
simplify the notation, let us denote this subsequence as (ﬁ).
First, observe that ‘ﬁi;(f”) — 0 € R*. Now, we shall show that
n(t
onlt) o (3.1)
[lnl
where £ = (&1, ..., &) does not depend on t and || = 1.
Indeed, notice that ‘ﬁ;y(f”) is given by
on(l) fO fO ) duds
”‘Pn” 1 HQPnH (3.2)
+ fo u, on(u fo fo u, o (u))dudg(s )
anH‘Pﬂ”
Since f is bounded, we obtain
t prs
, dud
lim J0Jo f(u|‘p"”(u)) % g eR-. (3.3)
n—oo (pn

Now, by (3.2) and (3.3]), we can easily observe that the limit (3.1)) does not depend
on t. The norm of the sequence (Hiﬁ) equals 1. Hence m(t”) — &, where €| = 1.
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On the other hand,
N0

n—00 ||<Pn||

fo Iy f(u, on(u) duds

llonl
1 (3.4)
N I Fluson(u))du — [y [ f(u, on(u))dudg(s)
anlenl
. (fo ||50n gﬂ;ﬁ\))du fo fo ”‘Pn ﬁ:;(j\))du d9(5>>
= lim .

Now, observe, that there exist a uniform limits of

(1)
/’funnnudp

/ /f eull S (e

Moreover, by (iv), the sum of the limits is different from zero. Hence, since (3.1))
holds, there exists vy € (0, 00) such that v := lim, . 1/(anll@nl])-
Now, by assumption (iii), we obtain

€= lim ||<pi|f - [/Olh(u,g)du— /O1 /O h(u, g)dudg(s)] (3.5)

Finally, by (3.5)) and (iv), we obtain

1=€19=7(¢l [ hwoa— [ [ oo
— (€| Ro(€) <0

a contradiction. Hence, the sequence (¢,,) is bounded. O

and

Now, it is easy to see that the following lemma holds.

Lemma 3.2. The set Z = {¢,, : n € N} is relatively compact in C1(]0, 1], R¥).
By the above Lemmas, we get the proof of the following result.

Theorem 3.3. Under assumptions (1)—(iv) problem (L.1) has at least one solution.

Proof. Lemma implies that (¢,,) has a convergent subsequence (@n,), ¥n, — ¢
We know that ¢, (¢,) converges uniformly to ¢ (¢') on [0,1]. Since (¢n,) is
equibounded and f is uniformly continuous on compact sets, one can see that
f(t, ©n,) is uniformly convergent to f(t, ). Since

@, () = f(t,on, (1)),
the sequence ¢}, () is also uniformly convergent. Moreover, ¢, (t) converges uni-
formly to ¢" ().
Note that we have actually proved that function ¢ € C1([0, 1], R¥) is a solution
of the equation of problem . By and , it is easy to see that ¢ satisfies
boundary conditions of problem . This completes the proof. (I
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4. APPLICATIONS
To illustrate our results we shall present some examples.
Example 4.1. Let us consider the Neumann BVP
"= f(t,x), 2/(0)=0, 2'(1)=0.

In this case g;(t) = constant, i =1,...,k, t € [0,1] and condition (ii) always holds.
Moreover, we have
/ h(s,&)d

Hence for any f which satisfies conditions (i), (iii) and (iv) the Neumann BVP has
at least one solution.

Example 4.2. Let k=1, g(t) =t and f(t,z) = tﬂ;'i'f". We have

ht,€) = lim F(t06) = {1_1’ i

Then ho(1) = —1/2 and ho(—1) = 1/2 and we get (£|ho(§)) < 0. Hence, problem
(1.1) has at least one nontrivial solution.

Example 4.3. Let k =3, g(t) = (¢,t,t) and

Nt ) —
1L, X1, T2, 3) =
’ Va2 + a2 + 22 +sin?t 4+ 17

—x9 — 1t
2ol a2+’
—x3 + arctan(xzy — t)
2 fa2+1
For every & = (&1, &2,&3) with || = 1, we obtain

fa(t, x1, 22, 23) =

f3(t,$17x271'3) =

A(t,€) = lim f(t2E) = (- E‘lﬁg_%)
_ &1 & &
mo(@) = (= 5393141
Then 2 1
w00 =3 (E+ - )

Hence, problem (/1.1 has at least one nontrivial solution.
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