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EXTENDING INFINITY HARMONIC FUNCTIONS
BY ROTATION

GUSTAF GRIPENBERG

Abstract. If u(x, y) is an infinity harmonic function, i.e., a viscosity solution

to the equation −∆∞u = 0 in Ω ⊂ Rm+1 then the function v(x, z) = u(x, ‖z‖)
is infinity harmonic in the set {(x, z) : (x, ‖z‖) ∈ Ω} (provided u(x,−y) =
u(x, y)).

1. Introduction and statement of results

A function u : Ω → R, where Ω is an open subset of Rd, is said to be infinity
harmonic if u is a viscosity solution to the equations

−∆∞u = −
d∑

i,j=1

uxi
uxj

uxixj
= 0,

in Ω. In order for u to be a viscosity solution it has to be both a subsolution and
a supersolution (that is, infinity subharmonic and infinity superharmonic, respec-
tively) and the requirement for u to be a subsolution to −∆∞u = 0 is that u is
upper semicontinuous and if ϕ is twice continuously differentiable in a neighbour-
hood of a point x1 ∈ Ω, u(x1) = ϕ(x1) and u(x) ≤ ϕ(x) when |x − x1| < δ for
some δ > 0, then −

∑d
i,j=1 ϕxiϕxjϕxixj ≤ 0 at the point x1. In the requirements

for u to be a supersolution the inequalities ≤ are reversed and u is required to be
lower semicontinuous, so that u is a supersolution if and only if −u is a subsolution
(because ∆∞(−ϕ) = −∆∞ϕ if ϕ is twice continuously differentiable).

This equation arises when one wants to find a Lipschitz continuous function u
in Ω satisfying given boundary values on ∂Ω and one requires that this function
in addition is an absolutely minimizing extension in the sense that if Ω0 is an
open bounded subset of Ω and u = v on ∂Ω0, where v is a continuous function
in the closure of Ω0, then the Lipschitz constant of u in Ω0 is not larger than the
one of v, see e.g. [2] and [5]. In addition infinity harmonic functions and their
generalizations appear in several other contexts, see e.g. [3], in particular the value
of a “Tug-of-war” game is an infinity harmonic function, see [6].

The purpose of this note is to extend the observation that both the function
u(x, y) = |x|4/3 − |y|4/3 and its extension v(x,y) = ‖x‖4/3 − ‖y‖4/3 are infin-
ity harmonic in R2 and Rm+n, respectively, where ‖ · ‖ is the Euclidean norm.
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More precisely, we show that if u(x, y) is infinity harmonic, then so is the func-
tion v(x, z) = u(x, ‖z‖); that is, we can extend an infinity harmonic function to a
higher dimensional space by rotation. Here we formulate this result using coordi-
nates, writing vectors in Rm+1 and Rm+n in the form (x, y) and (x, z), respectively,
where x ∈ Rm, y ∈ R, and z ∈ Rn but note that the property of being infinity har-
monic does not depend on the coordinate system, that is, if u is infinity harmonic
in Ω then u ◦ T is infinity harmonic in T−1Ω when T is an isometry.

Observe that the extension property studied here does not hold for standard
harmonic functions, as for example log(|x|2 + |y|2) is harmonic in R2 \ {0} but the
function log(|x|2 + ‖z‖2) is not harmonic in R× R2 \ {0}.

Theorem 1.1. Assume that m,n ≥ 1 and that

(i) Ωm,1 ⊆ Rm+1 is open and if (x, y) ∈ Ωm,1 with x ∈ Rm and y < 0, then
(x,−y) ∈ Ωm,1;

(ii) u : Ωm,1 → R is infinity harmonic (subharmonic, superharmonic) in Ωm,1
and if (x, y) ∈ Ωm,1 with x ∈ Rm and y < 0, then u(x,−y) = u(x, y).

Then v is infinity harmonic (subharmonic, superharmonic) in Ωm,n where

(a) Ωm,n = {(x, z) : x ∈ Rm, z ∈ Rn, (x, ‖z‖) ∈ Ωm,1};
(b) v(x, z) = u(x, ‖z‖), (x, z) ∈ Ωm,n.

The main property of infinity harmonic functions that we need in order to prove
this extension property is “comparison with cones” which is formulated in the form
we need here in the following theorem. This well known result and its corollary are
stated for subsolutions, but the corresponding results with inequlities reversed and
sup replaced by inf hold for supersolutions as well.

Theorem 1.2. Assume that d ≥ 1, Ω ⊂ Rd is open, and w : Ω→ R. Then w is a
subsolution to the equation −∆∞w = 0 in Ω if and only if w is locally bounded and

w(x) ≤ w(x0) + sup
‖ξ−x0‖=r

w(ξ)− w(x0)
r

‖x− x0‖, ‖x− x0‖ ≤ r, (1.1)

when {ξ : ‖ξ − x0‖ ≤ r} ⊂ Ω.

This theorem is proved in [4] but for completeness and since it is there not
formulated in the form above we give a self-contained proof below. Observe that
the “only if” part is a consequence of the comparison principle which holds for
infinity harmonic functions, see e.g. [1], and of the fact that a cone function x 7→
a+ b‖x− x0‖ is infinity harmonic in Rd \ {x0}.

A consequence of Theorem 1.2 is the well known strong maximum principle,
which we will need as well.

Corollary 1.3. Assume that d ≥ 1, Ω ⊂ Rd is open and connected, and w : Ω→ R
is a subsolution to −∆∞w = 0 in Ω. Then either w(x) < supξ∈Ω w(ξ) for all x ∈ Ω
or w is a constant in Ω.

2. Proofs

Proof of Theorem 1.1. Suppose first that u is infinity subharmonic in Ωm,1. Then
u and hence v is upper semicontinuous so that v is locally bounded. Let (x0, z0) ∈
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Ωm,n and r > 0 be such that {(ξ, ζ) ∈ Rm+n : ‖(ξ, ζ) − (x0, z0)‖ ≤ r} ⊂ Ωm,n. If
we can show that

v(x, z) ≤ v(x0, z0) + max
‖(ξ,ζ)−(x0,z0)‖=r

v(ξ, ζ)− v(x0, z0)
r

‖(x, z)− (x0, z0)‖, (2.1)

when ‖(x, z) − (x0, z0)‖ ≤ r then we have shown that v satisfies comparison with
cones from above and it follows from Theorem 1.2 that v is a subsolution to
−∆∞v = 0 in Ωm,n. If u is infinity superharmonic the same argument can be
applied to −u and −v and we can conclude that v is infinity superharmonic. Thus
the claims of the theorem follow provided we can show that inequality (2.1) holds
under the assumption that u is infinity subharmonic.

Note that we may, without loss of generality, assume that (x, y) ∈ Ωm,1 if and
only if (x,−y) ∈ Ωm,1 and u(x, y) = u(x,−y), because we can, if needed, extend u
to {(x, y) ∈ Rm+1 : (x,−y) ∈ Ωm,1} by u(x, y) = u(x,−y) as the the property of
being a subsolution is a local one and the function (x, y) 7→ (x,−y) is an isometry.
Suppose that ‖(ξ, µ) − (x0, ‖z0‖)‖ ≤ r. We want to show that (ξ, µ) ∈ Ωm,1 and
because we may assume that µ ≥ 0 we can take ζ = µ

‖z0‖z0 if z0 6= 0 and otherwise
take ζ to be an arbitrary vector in Rn so that ‖ζ‖ = µ. Then |µ−‖z0‖| = ‖ζ−z0‖
so that ‖(ξ, ζ) − (x0, z0‖ ≤ r which by the defintion of Ωm,n, our choice of r and
by the fact that ‖ζ‖ = µ implies that (ξ, µ) ∈ Ωm,1.

Suppose that ξ0 and µ0 are such that ‖(ξ0, µ0)− (x0, ‖z0‖)‖ = r and

max
‖(ξ,µ)−(x0,‖z0‖)‖=r

(
u(ξ, µ)− u(x0, ‖z0‖)

)
= u(ξ0, µ0)− u(x0, ‖z0‖). (2.2)

Since u is upper semicontinuous, such a point (ξ0, µ0) exists.
If µ0 < 0 and ‖(ξ0,−µ0)−(x0, ‖z0‖)‖ < r then, since u(ξ0,−µ0) = u(ξ0, µ0), the

maximum value is obtained in an interior point in the ball with center (x0, ‖z0‖)
and radius r which by the strong maximum principle implies that u is a constant in
this ball. In this case we may take µ0 so that µ0 ≥ 0. If on the other hand µ0 < 0
and ‖(ξ0,−µ0) − (x0, ‖z0‖)‖ = r, then it follows again from the assumption that
u(ξ0,−µ0) = u(ξ0, µ0) that µ0 can be replaced by −µ0 so that we may without loss
of generality assume that µ0 ≥ 0.

Since u is infinity subharmonic we can apply Theorem 1.2 and using (2.2) we
obtain

u(x, ‖z‖) ≤ u(x0, ‖z0‖) + max
‖(ξ,µ)−(x0,‖z0‖)‖=r

u(ξ, µ)− u(x0, ‖z0‖)
r

× ‖(x, ‖z‖)− (x0, ‖z0‖)‖

= u(x0, ‖z0‖) +
u(ξ0, µ0)− u(x0, ‖z0‖)

r
‖(x, ‖z‖)− (x0, ‖z0‖)‖.

(2.3)

By the definition of v, the triangle inequality, and by the fact that u(ξ0, µ0) −
u(x0, ‖z0‖) ≥ 0 (use Corollary 1.3) we conclude from inequality (2.3) that

v(x, z) ≤ v(x0, z0) +
u(ξ0, µ0)− u(x0, ‖z0‖)

r
‖(x, z)− (x0, z0)‖. (2.4)

As above we choose ζ0 = µ0
‖z0‖z0 if z0 6= 0 and otherwise we take ζ0 to be an

arbitrary vector in Rn such that ‖ζ0‖ = µ0 so that ‖ζ0‖ = µ0 as we have µ0 ≥ 0.
Hence it follows from the definition of v that

u(ξ0, µ0)− u(x0, ‖z0‖) = v(ξ0, ζ0)− v(x0, z0). (2.5)
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Our choice of ζ0 implies in addition that ‖ζ0 − z0‖ = |µ0 − ‖z0‖| from which it
follows that

‖(ξ0, ζ0)− (x0, z0)‖ = ‖(ξ0, µ0)− (x0, ‖z0‖)‖ = r.

This result combined with (2.5) shows that

u(ξ0, µ0)− u(x0, ‖z0‖)
r

≤ max
‖(ξ,ζ)−(x0,z0)‖=r

v(ξ, ζ)− v(x0, z0)
r

.

This inequality combined with (2.4) shows that inequality (2.1) holds and the proof
is complete. �

Proof of Theorem 1.2. Assume first that w is a subsolution to −∆∞w = 0 in Ω.
By definition w is upper semicontinuous and hence locally bounded. Suppose {ξ :
‖ξ − x0‖ ≤ r} ⊂ Ω for some x0 ∈ Rd and r > 0. Let α ∈ (0, 1), choose β to be

β =
1
rα

max
‖ξ−x0‖=r

(w(ξ)− w(x0)),

and define
ψ(x) = w(x0) + β‖x− x0‖α, x ∈ Rd.

By definition, w(x) ≤ ψ(x) when x = x0 and when ‖x−x0‖ = r so that if we have
max‖x−x0‖≤r

(
w(x) − ψ(x)

)
> 0 and define ϕ(x) = ψ(x) + max‖x−x0‖≤r

(
w(x) −

ψ(x)
)
, then there is a point x1 such that 0 < ‖x1 − x0‖ < r, ϕ(x1) = w(x1) and

w(x) ≤ ϕ(x) when ‖x − x1‖ < min{‖x1 − x0‖, r − ‖x1 − x0‖}. But since w is a
subsolution it follows from the definition of a subsolution that−∆∞ϕ(x1) ≤ 0 which
is a contradiction since a calculation shows that −∆∞ϕ(x) = −β3α3(α − 1)‖x −
x0‖3α−4 > 0 when x 6= x0. Thus we know that w(x) ≤ ψ(x) when ‖x − x0‖ ≤ r
and taking the limit α ↑ 1 we get inequality (1.1).

Assume next that w is locally bounded and (1.1) holds when {ξ : ‖ξ − x0‖ ≤
r} ⊂ Ω. Then if follows from (1.1) that w is upper semicontinuous. If w is not a
subsolution to −∆∞w = 0 in Ω, then there is a point x1 ∈ Ω and a function ϕ which
is twice continuously differentiable in the set {x : ‖ξ − x1‖ < δ} ⊂ Ω where δ > 0,
such that w(x) ≤ ϕ(x) when ‖x − x1‖ < δ, w(x1) = ϕ(x1), and −∆∞ϕ(x1) > 0.
The Taylor expansion of ϕ is

ϕ(x) = ϕ(x1) + 〈p,x− x1〉+ 1
2 〈A(x− x1),x− x1〉+ o(‖x− x1‖2), (2.6)

where p = Dϕ(x1), A = D2ϕ(x1) and 〈·, ·〉 is the inner product in Rd. Note that
since −∆∞ϕ(x1) > 0 we have 〈Ap,p〉 < 0 and therefore also p 6= 0. We define
p0 = 1

‖p‖p and introduce new coordinates (t,y) by writing x = x1 + tp0 +y where
〈p,y〉 = 0. Then we have

〈A(tp0 + y), tp0 + y〉 ≤ t2〈Ap0,p0〉+ 2t‖Ap0‖‖y‖+ ‖A‖‖y‖2

≤ −2c1t2 + 1
2c2‖y‖

2,
(2.7)

where c1 and c2 are positive constants, (in fact we can choose c1 = − 1
3 〈Ap0,p0〉

and c2 = 2(‖Ap0‖2
c1

+ ‖A‖)).
Since w(x) ≤ ϕ(x) when ‖x− x1‖ < δ and w(x1) = ϕ(x1) we can by (2.6) and

(2.7) choose r so that

w(x1+tp0+y) ≤ w(x1)+‖p‖t−c1t2+c2‖y‖2, ‖tp0+y‖ ≤ 3
2
r, 〈p,y〉 = 0, (2.8)
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and

0 < r < min
{2δ

3
,
‖p‖

c1 + 2c2

}
. (2.9)

Now we choose x0 = x1− r
2p0 and we will show that the inequality in (1.1) does

not hold if x = x1. Since ‖x1 − x0‖ = r
2 we have to show that

w(x1) >
1
2
w(x0) +

1
2

max
‖ζ−x0‖=r

w(ζ). (2.10)

With the aid of the upper bounds for both terms on the right-hand side in this
inequality that we get from (2.8) we see that it suffices to show that

−‖p‖r
2
− c1r

2

4
+ max

(t+ r
2 )2+‖y‖2=r2

(
‖p‖t− c1t2 + c2‖y‖2

)
< 0.

This inequality holds because

max
(t+ r

2 )2+‖y‖2=r2

(
‖p‖t− c1t2 + c2‖y‖2

)
= max
− 3

2 r≤t≤
r
2

(
‖p‖t− c1t2 + c2

(
r2 −

(
t+

r

2
)2))

= ‖p‖r
2
− c1

r2

4
,

where we used the fact that assumption (2.9) implies that the function to be max-
imized is increasing in the interval [− 3r

2 ,
r
2 ]. Thus we get the desired contradiction

(2.10) and the proof is completed. �

Proof of Corollary 1.3. Let S = supξ∈Ω w(ξ). Suppose there is a point x ∈ Ω such
that w(x) = S and w is not a constant. Then there are, because Ω is open and
connected, points x0 and x1 ∈ Ω such that {ξ : ‖ξ − x0‖ ≤ 2‖x1 − x0‖} ⊂ Ω and

w(x0) < S = w(x1). (2.11)

Since S is the supremum we have sup‖ξ−x0‖=2‖x1−x0‖(w(ξ)−w(x0)) ≤ S −w(x0).
But then it follows from (1.1) that

w(x1) ≤ w(x0) +
1
2

(S − w(x0)) < S,

which is a contradiction by (2.11). �
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