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ASYMPTOTIC FORMULAS FOR THE IDENTIFICATION OF
SMALL INHOMOGENEITIES IN A FLUID MEDIUM

MOHAMED ABDELWAHED, NEJMEDDINE CHORFI, MAATOUG HASSINE

Abstract. We consider a viscous incompressible fluid flow governed by the

Stokes system. We assume that a finite number of small inhomogeneities (par-
ticles) are immersed in the fluid. The reciprocity gap functional is introduced

to describe the boundary data. An asymptotic formula for the reciprocity
gap functional is derived. The obtained formulas can form the basis for very

effective computational identification algorithms, aimed at determining infor-

mation about inhomogeneities from boundary measurements.

1. Introduction

The problem of determining interior information about a medium form boundary
field measurements has received considerable attention in the applied mathemati-
cal, as well as in the engineering literature (see [5, 7, 8, 11, 21, 26]). Examples of the
later type are found in connection with the identification of cracks [1, 2, 9, 10, 22].
Significant mathematical results on the determination of one or more small con-
ductivity imperfections inside a conductor of known background conductivity have
been established in [12, 13, 19]. The reconstruction of electromagnetic imperfec-
tions of small diameter form boundary measurement has been analyzed in [27]. A
rigorous derivation of the leading order boundary perturbation resulting from the
presence of a finite number of interior particles of small diameter for full Maxwell
equations is provided in [8]. A boundary integral formula for the reconstruction of
imperfections of small diameter in an elastic medium is derived in [3, 6].

This work concerns the fluid mechanics area. Our aim is to design an efficient
method to determine the location and size of a finite number of inhomogeneities of
small volume immersed in a fluid medium using boundary measurements.

The proposed method is based on a sensitivity analysis of the reciprocity gap
functional [9, 10] with respect to the presence of a small inhomogeneity. An as-
ymptotic formula is derived giving the relation between the known boundary data
(via the reciprocity gap functional) and the unknown inhomogeneities properties;
location, size and shape.

To present the leading term of the reciprocity gap functional variation we in-
troduce the concept of Viscous Moment Tensor. The concept is defined in away
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analogous to the polarization tensors in electro-magnetic [7] and the elastic moment
tensors in elasticity [5].

The obtained asymptotic formula will serve as very useful tools for developing
very effective algorithms for reconstruction of small inhomogeneities from boundary
measurements. Such algorithms can be used in various applications like fiber-
reinforced polymers [14, 18], colloid [20, 23, 28] and casting or injection filling
[15, 17, 25] where the design of the mixing of liquid metallic should be optimized.

This article is organized as follows. In the next section we present the governing
equations. The considered fluid is viscous and incompressible. The Stokes system
is used to describe the fluid motion. In Section 3, we introduce the reciprocity gap
functional and we establish a preliminary estimate. The main result is presented in
Section 4. We introduce the Viscous Moment Tensor and we derive the asymptotic
formulas. The case of single inhomogeneity is discussed in Section 4.1. The case
of multiples inhomogeneities is considered in Section 4.2. Section 5 is devoted to
the proof of the main result. The proof is based on some preliminary Lemmas. We
complete this article with some concluding remarks in the last section.

2. Governing equations

Consider a viscous incompressible fluid occupying a bounded and smooth domain
of Rd, d = 2, 3 with a smooth and connected boundary Γ = ∂Ω. We assume that
a finite number of immiscible liquid inhomogeneities (particles) F i, i = 1, . . . ,m
of small volume ωi

ε ⊂ Rd are immersed in the fluid. For simplicity, we assume
that the inhomogeneities are well separated and have constant physical properties.
With each inhomogeneity F i we associate its density ρi, its kinematic viscosity νi

and its geometry form ωi
ε = zi + εωi, where ε is the common order of magnitude

of the diameter of the inhomogeneities and ωi ⊂ Rd is a bounded, smooth domain
containing the origin.

The domains ωi determine the relative size and shape of the inhomogeneities.
The total collection of inhomogeneities thus takes the form ωε = ∪m

i=1(zi + εωi).
The points zi ∈ Ω, i = 1, . . . ,m determine the location of the inhomogeneities. We
shall assume that they satisfy

|zi − zj | ≥ d0 > 0, ∀j 6= i and dist(zi, ∂Ω) ≥ d0 > 0, i = 1, . . . ,m. (2.1)

We also assume that the parameter ε is sufficiently small so that the inhomogeneities
are disjoint and their distance to Rd\Ω is larger than d0/2.

Let ρ > 0 and ν > 0 denote the density and the kinematic viscosity of the
background fluid. We assume that

0 < c0 ≤ ρ = ρ(x) ≤ C0 <∞. 0 < c1 ≤ ν = ν(x) ≤ C1 <∞ ∀x ∈ Ω, (2.2)

for some fixed constants c0, C0, c1 and C1. For simplicity, we assume that ρ and ν
are C∞(Ω), but this latter assumption could be considerably weakened.

Using this notation, we introduce the density and the viscosity

ρε =

{
ρ if x ∈ Ωε = Ω\ωε

ρi if x ∈ ωi
ε = zi + εωi,

νε =

{
ν if x ∈ Ωε = Ω\ωε

νi if x ∈ ωi
ε = zi + εωi.

In this work, we assume that both the continuous phase (the background fluid) and
the dispersed phase (the inhomogeneities F i, i = 1, . . . ,m) are immiscible viscous
incompressible fluids governed by the Stokes equations. Just the gravitational force
is considered. We assume that Γ is partitioned into two parts Γd and Γn such that
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Γ = Γd ∪ Γn and Γd ∩ Γn = ∅. In the presence of the inhomogeneities, the velocity
vector uε and the pressure pε satisfy

−∇ · [2νεD(uε)] +∇pε = ρεG in Ω
∇ · uε = 0 in Ω
uε = ud on Γd

σ(uε, pε)n = g on Γn,

(2.3)

where G is the constant gravity acceleration, D(uε) = 1
2

(
∇uε +∇uT

ε

)
is the rate of

deformation tensor for the flow, σ(uε, pε) = 2νεD(uε) − pεI is the stress tensor, I
is the d × d identity matrix, ud is a given velocity on Γd and g is a given traction
force exerted on the free surface Γn.

As physical interpretation, the quantity (σ(uε, pε)n)(x) is the force at a point
x ∈ ∂Ω which acts on the fluid in Ω. Here, n denotes the unit normal to the
boundaries ∂Ω and ∂ωε which is outer with respect to Ω and ωε. In the absence of
any inhomogeneities, the velocity u0 and the pressure p0 satisfy

−∇ · [2νD(u0)] +∇p0 = ρG in Ω
∇ · u0 = 0 in Ω
u0 = ud on Γd

σ(u0, p0)n = g on Γn.

(2.4)

Alternatively, (2.3) may be formulated as

−∇ · [2νD(uε)] +∇pε = ρG in Ω\ωε

∇ · uε = 0 in Ω\ωε

−∇ · [2νiD(uε)] +∇pε = ρiG in zi + εωi, i = 1, . . . ,m

∇ · uε = 0 in zi + εωi, i = 1, . . . ,m.

(2.5)

The above equations are to be solved subject to appropriate boundary conditions.
At the exterior boundary Γ we consider the boundary conditions described in (2.3).

At the inhomogeneity surface ∂ωi
ε, kinematic and stress boundary conditions are

imposed. The kinematic boundary condition, which stipulates the continuity of
velocities at the interface, is

u+
ε |∂ωi

ε
(exterior fluid) = u−ε |∂ωi

ε
(interior fluid) on ∂ωi

ε, i = 1, . . . ,m.

The stress boundary condition requires that mechanical equilibrium be satisfied at
the interface. The stress exerted on the interface are the hydrodynamics forces
resulting from the interior and exterior fluids. Neglecting surface tension effects (at
low Reynold number), the stress boundary condition at the interface is therefore{

2ν(x)D(uε)− pεI
}+

n =
{

2νiD(uε)− pεI
}−

n on ∂ωi
ε, i = 1, . . . ,m .

3. Reciprocity gap functional

We introduce the reciprocity gap functional, one can see [9] for Laplace equation
or [4] for Stokes system. It is based on the boundary data. For the Stokes equations,
we have Rε : H1(Ω)d × L2(Ω)→ R by

Rε(w, ξ) =
∫

∂Ω

σ(w, ξ)nuε ds−
∫

∂Ω

σ(uε, pε)nw ds,

where (uε, pε) is the solution to (2.5).
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If we consider the restriction of the reciprocity gap function to the space

V(Ω) =
{

(w, ξ) ∈ H1(Ω)d × L2(Ω); −∇ · [2νD(w)] +∇ξ = 0, ∇ · w = 0 in Ω
}

we obtain the following preliminary estimate.

Proposition 3.1. For all (w, ξ) ∈ V(Ω), we have

Rε(w, ξ) = R0(w, ξ) +
∫

ωε

2[ν − νε]D(uε) : D(w) dx−
∫

ωε

(ρ− ρε)Gw dx.

Proof. Using Green’s formula, (2.3) and (2.4) we obtain∫
Ω

2νεD(uε) : D(w) dx =
∫

Ω

ρεG w dx+
∫

Γ

σ(uε, pε)nw ds ∀(w, ξ) ∈ V(Ω),∫
Ω

2νD(u0) : D(w) dx =
∫

Ω

ρG w dx+
∫

Γ

σ(u0, p0)nw ds ∀(w, ξ) ∈ V(Ω).

From the fact that −∇ · [2νD(w)] +∇ξ = 0, and ∇ · w = 0 in Ω, one gets∫
∂Ω

σ(w, ξ)nuε ds =
∫

Ω

2νD(w) : D(uε) dx∫
∂Ω

σ(w, ξ)nu0 ds =
∫

Ω

2νD(w) : D(u0) dx.

Combining the previous equalities, it follows that

Rε(w, ξ) = R0(w, ξ) +
∫

ωε

2[ν − νε]D(w) : D(uε) dx−
∫

ωε

(ρ− ρε)G w dx,

for all (w, ξ) ∈ V(Ω). �

Let (U(., z), P (., z)) ∈ (Rd × Rd) × Rd denote the fundamental solution to the
Stokes equations corresponding to a Dirac mass at the point z and to coefficient ν.
That is, for all 1 ≤ j ≤ d, (U j(., z), P j(., z)) is a solution to

−∇x · [2ν(x)Dx(U j)(x, z)] +∇xP
j(x, z) = δzej in Ω,

∇x · U j(x, z) = 0 in Ω,
(3.1)

where U j denotes the jth column of U .

Remark 3.2. In the case where ν is constant (see [16]), the fundamental solution
(U, P ) is given by

U(x, z) =
1

4πν
(
− log(r)I + ere

T
r

)
, P (x, z) =

x

2πr2
if d = 2,

U(x, z) =
1

8πνr
(
I + ere

T
r

)
, P (x, z) =

x

4πr3
, if d = 3,

with r = ‖x− z‖, er = x/r and eT
r is the transposed vector of er.

A Stokeslet of strength b ∈ Rd located at the point z ∈ Rd is a function of x
formed by the pair (U(x, z)b, P (x, z) · b). Let S(Ω) be the following set, obtained
by restriction to Ω of Stokeslets located at points in the exterior of Ω

S(Ω) = {(U(x, z)b, P (x, z).b), b ∈ Rd, z ∈ Rd\Ω}.
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It is clear that S(Ω) is a subset of V(Ω). For each fixed 1 ≤ j ≤ d, we denote by
Rj

ε the following reciprocity gap functional associated to Stokeslets of strength ej ,

Rj
ε(z) =

∫
∂Ω

σ
(
U j(x, z), P j(x, z)

)
nuε ds−

∫
∂Ω

σ(uε, pε)nU j(x, z) ds,

for all z ∈ Rd\Ω. By Proposition 3.1, we deduce that the unknown parameters m,
zk and ωk, k = 1, . . . ,m must satisfy the system.

Corollary 3.3. For each 1 ≤ j ≤ d, the reciprocity gap function Rj
ε satisfies the

expansion

Rj
ε(z)−Rj

0(z) =
m∑

k=1

∫
zk+εωk

2[ν − νε]Dx(U j(x, z)) : D(uε) dx

−
m∑

k=1

∫
zk+εωk

(ρ− ρε)GU j(x, z) dx, ∀z ∈ Rd\Ω.
(3.2)

4. Main results

In this section we derive an asymptotic formula for the reciprocity gap func-
tion Rj

ε. The obtained results will serve as very useful tools for the numerical
reconstruction of the “location” and “size” of the inhomogeneities.

We shall initially consider the case in which Ω contains a single inhomogene-
ity ωε = εω, that is centred at the origin. The case where Ω contains multiple
inhomogeneities is presented in section 4.2.

4.1. Single inhomogeneity. First, we introduce the concept of the Viscous Mo-
ment Tensor.

Definition 4.1. The viscous moment tensor associated to the domain ω and vis-
cosity ratio ν(0)/ν1 is given by

Mkl
pq = (

ν(0)
ν1
− 1)

∫
∂ω

ypeq

(
Ek,ln + (1− ν1

ν(0)
)[
ν(0)
ν1
Dy(vk,l)− qk,lI]+n

)
ds(y),

for 1 ≤ k, l, p, q ≤ d, where (eq)d
q=1 is the canonical basis of Rd, yp denotes the pth

component of y, and (vk,l, qk,l), denotes the solution to

−∇y · [
ν(0)
ν1
Dy(vk,l)] +∇yq

k,l = 0, ∇y · vk,l = 0, in Rd\ω

−∇y · [Dy(vk,l)] +∇yq
k,l = 0, ∇y · vk,l = 0, in ω

vk,l is continuous across ∂ω,(ν(0)
ν1
Dy(vk,l)− qk,lI

)+

n−
(
Dy(vk,l)− qk,lI

)−
n = −Ek,ln on ∂ω,

lim
|y|→+∞

vk,l(y) = 0,

(4.1)

where Ekl ∈ Rd × Rd, 1 ≤ k, l ≤ d is the symmetric matrix defined by

Ekl
pq =

1
2

(δpkδql + δplδqk), 1 ≤ p, q ≤ d.

Here δpq denotes the Kronecker symbol.
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Since vk,l is continuous across ∂ω, the solution (vk,l, qk,l) can be represented
with the help of a single layer potential (see e.g.[16]), namely there exists ηk,l ∈
H−1/2(∂ω)d such that

vk,l(y) =
∫

∂ω

U(y − x)ηk,l(x) ds(x), qk,l(y) =
∫

∂ω

P (y − x).ηk,l(x) ds(x).

In general the functions vk,l and qk,l cannot be computed explicitly. One exception
in the case when ω is a ball.

The main result of this case is given by the following theorem. We derive an
asymptotic formula connecting the inhomogeneity properties and the reciprocity
gap functional variation. The proof is relegated to section 5.

Theorem 4.2. For all z ∈ Rd\Ω, we have

Rj
ε(z)−Rj

0(z) = εd
{

2ν(0)Dx(U j)(0, z) :MDx(u0)(0)

− [ρ(0)− ρ1] |ω|GU j(0, z)
}

+ o(εd), j = 1, . . . , d.
(4.2)

Note that the viscous moment tensorM depends on the viscosity ratio, the size
and the shape of the inhomogeneities. The notion of polarization matrix has been
introduced by Schiffer and Szegö [24], and since it has been extensively studied (see
e.g.[5] and the references therein).

In particular, one can prove here that M is positive definite and symmetric in
the following sense

Mpq
kl =Mqp

kl , Mpq
kl =Mpq

lk , Mpq
kl =Mkl

pq, ∀p, q, k, l ∈ {1, . . . , d}.

For similar results and proofs one can consult [13] for the conductivity problem and
[5] for the elasticity system.

Remark 4.3. Using Green’s formula and the jump relation on ∂ω one can derive
the following expressions of M:

Mkl
pq = (

ν(0)
ν1
− 1)

{1
2
|ω|(δpkδql + δplδqk)

+ (1− ν1

ν(0)
)
∫

∂ω

ypeq[
ν(0)
ν1
Dy(vk,l)− qk,lI]+nds(y)

}
= (1− ν1

ν(0)
)
{1

2
|ω|(δpkδql + δplδqk)

+ (
ν(0)
ν1
− 1)

∫
∂ω

yp eq[Dy(vk,l)− qk,lI]−nds(y)
}

= (
ν(0)
ν1
− 1)

∫
∂ω

ypeq

(
[Dy(vk,l)− qk,lI]−n

− ν1

ν(0)
[
ν(0)
ν1
Dy(vk,l)− qk,lI]+n

)
ds(y).

4.2. Multiple inhomogeneities. In the case of more than one inhomogeneity, say
ωε = ∪m

i=1{zi + εωi}, the previous theorem may very simply be changed to proceed
inductively one inhomogeneity at time. The result is described by the following
Theorem.
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Theorem 4.4. For all z ∈ Rd\Ω, we have

Rj
ε(z)−Rj

0(z) = εd
m∑

i=1

{
2ν(zi)Dx(U j)(zi, z) :MiDx(u0)(zi)

− [ρ(zi)− ρi]|ω|GU j(zi, z)
}

+ o(εd), j = 1, . . . , d,

(4.3)

where Mi is the viscous moment tensor corresponding to the domain ωi and vis-
cosity ratio ν(zi)/νi.

For each z ∈ Rd\Ω, the variation Rj
ε(z)−Rj

0(z) can be entirely estimated from
numerical computation of the pair (U j(x, z), σ

(
U j(x, z), P j(x, z)

)
n) and boundary

measurement of the velocity uε and the stress tensor σ(uε, pε). Neglecting the
smaller order term, the equation (4.3) leads to a nonlinear system satisfied by the
unknown parameters m, zk and ωk, k = 1, dots,m.

5. Proof of the main result

To prove the main result, we introduced in section 5.1 some preliminary lemmas.
The proof is presented in section 5.2. Whenever no confusion is possible we shall
use the simpler notation U j(x) = U j(x, z) and P j(x) = P j(x, z).

5.1. Preliminary estimates.

Lemma 5.1. There exists a positive constant C, independent of ε, such that for
all j = 1, . . . , d ∣∣ ∫

ωε

[ν − ν(0)]Dx(U j) : Dx(uε) dx
∣∣ ≤ Cεd+1.

Proof. Expanding ν(x) = ν(0) + x · ∇xν(ηx), ηx ∈ Ω, and using the change of
variable x = εy, it follows that∫

ωε

[ν − ν(0)]Dx(U j) : Dx(uε)dx = εd+1

∫
ω

[y.∇xν(ηx)]Dx(U j)(εy) : Dx(uε)(εy) dy.

From the fact that xi → ∇xν(xi) is uniformly bounded on Ω we deduce∣∣ ∫
ωε

[ν − ν(0)]Dx(U j) : Dx(uε) dx
∣∣ ≤ Cεd+1‖Dx(U j)(εy)‖L2(ω)‖Dx(uε)(εy)‖L2(ω).

Using Green’s formula and equations (2.3) and (2.4), we have∫
Ω

2νε|D(uε − u0)|2dx

=
∫

ωε

2(ν − νε)D(u0) : D(uε − u0)dx−
∫

ωε

(ρ− ρε)G (uε − u0)dx.

From the fact that ν and ρ are uniformly bounded on Ω (due to hypotheses (2.2)),
and u0 and D(u0) are uniformly bounded on ωε (due to elliptic regularity), one can
obtain ∫

ωε

|Dx(uε − u0)|2 dx ≤ C εd.

Changing variable, we have∫
ω

|Dx(uε − u0)(εy)|2 dy ≤ C,
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and therefore, ∫
ω

|Dx(uε)(εy)|2 dy ≤ C.

Since dist(z, ωε) ≥ d0 > 0, it follows that

|
∫

ωε

[ν − ν(0)]Dx(U j) : Dx(uε)dx| ≤ C εd+1‖DxU
j(εy, z)‖L2(ω) ≤ C εd+1.

�

Lemma 5.2. We have the following asymptotic expansion∫
ωε

2ν1Dx(U j)(x, z) : Dx(uε)(x) dx

= εd
{∫

∂ω

2ν(0)Dx(u0)(0)nDx(U j)(0, z)y ds(y)

+
∫

∂ω

[2ν(0)Dy(v)− qI]+(y)nDx(U j)(0, z)y ds(y)
}

+O
(
εd+1/2

)
, j = 1, . . . , d.

Proof. Let (v, q) denote the solution to

−∇y · [2ν(0)Dy(v)] +∇yq = 0, ∇y · v = 0, in Rd\ω
−∇y · [2ν1Dy(v)] +∇yq = 0, ∇y · v = 0, in ω

v is continuous across ∂ω,(
2ν(0)Dy(v)− qI

)+

n−
(

2ν1Dy(v)− qI
)−

n

= −2[ν(0)− ν1]Dx(u0)(0)n on ∂ω,

lim
|y|→+∞

v(y) = 0.

(5.1)

The existence of (v, q) can be established in a manner similar to that of (vk,l, qk,l).
Setting

wε(x) = uε(x)− u0(x)− ε v(x/ε), sε(x) = pε(x)− p0(x)− q(x/ε),

we have ∫
ωε

2ν1Dx(U j) : Dx(uε) dx

=
∫

ωε

2ν1Dx(wε) : Dx(U j) dx+
∫

ωε

2ν1Dx(u0) : Dx(U j) dx

+ ε

∫
ωε

2ν1Dx(v)(x/ε) : Dx(U j) dx.

(5.2)

Now we shall estimate each term on the right hand side of (5.2) separately. Using
the change of variable x = εy, the first term can be written as∫

ωε

2ν1Dx(wε) : Dx(U j) dx = εd−1

∫
ω

2ν1Dy(wε)(εy) : Dx(U j)(εy) dy .

With the help of the Green’s formula and the fact that (wε, sε) is solution of

−∇x · [2ν1Dx(wε)] +∇xsε = −∇x · [2[ν − ν1]Dx(u0)]− (ρ− ρ1)G in ωε,

∇x · wε = 0 in ωε,
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one can derive that
‖Dy(wε)(εy)‖L2(ω) = O(ε3/2).

Then, using the previous estimate and the fact that Dx(U j)(εy) = Dx(U j)(εy, z)
is uniformly bounded on ω, we obtain∣∣ ∫

ωε

2ν1Dx(wε) : Dx(U j) dx
∣∣ ≤ εd−1‖Dy(wε)(εy)‖L2(ω)‖Dx(U j)(εy)‖L2(ω)

≤ Cεd+1/2.

(5.3)

Expanding the functions Dx(U j) and Dx(u0) in a Taylor series about the origin,
we see that the second term in (5.2) may be written as∫

ωε

2ν1Dx(u0) : Dx(U j) dx = εd

∫
ω

2ν1Dx(u0)(εy) : Dx(U j)(εy, z)dy

= 2ν1 |ω| εdDx(u0)(0) : Dx(U j)(0, z) +O
(
εd+1

)
.

(5.4)
To estimate the third term, we again use the change of variable x = εy, Taylor’s
theorem and the Green’s formula

ε

∫
ωε

2ν1Dx(v)(x/ε) : Dx(U j) dx

=
∫

ωε

2ν1Dy(v) : Dx(U j)dx

=
∫

ωε

2ν1Dy(v) : Dx(U j)(0) dx+
∫

ωε

2ν1Dy(v) : [Dx(U j)(x)−Dx(U j)(0)] dx

= εd

∫
∂ω

[2ν1Dy(v)− qI]−nDx(U j)(0)y ds(y) +O
(
εd+1

)
.

Using the jump relation on ∂ω we derive∫
∂ωε

[2ν1Dy(v)− qI]−(x/ε)nU j(x, z) ds(x)

= εd

∫
∂ω

[2ν(0)Dy(v)− qI]+nDx(U j)(0)y ds(y)

+ εd

∫
∂ω

2(ν(0)− ν1)Dx(u0)(0)nDx(U j)(0)y ds(y) +O
(
εd+1

)
= εd

∫
∂ω

(
[2ν(0)Dy(v)− qI]+n + 2ν(0)Dx(u0)(0)n

)
Dx(U j)(0)y ds(y)

− 2ν1|ω|εdDx(u0)(0) : Dx(U j)(0, z) +O
(
εd+1

)
.

(5.5)

Substituting (5.3), (5.4) and (5.5) in (5.2), we obtain∫
ωε

2ν1Dx(U j)(x, z) : Dx(uε)(x) dx

= εd
{∫

∂ω

2ν(0)Dx(u0)(0)nDx(U j)(0, z)y ds(y)

− 3cm+
∫

∂ω

[2ν(0)Dy(v)− qI]+(y)nDx(U j)(0, z)y ds(y)
}

+O
(
εd+1/2

)
,

for j = 1, . . . , d. �
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Lemma 5.3. We have the estimate∫
ωε

(ρ− ρ1)GU jdx = εd(ρ(0)− ρ1)|ω|GU j(0, z) +O(εd+1).

Proof. Expanding ρ(x) = ρ(0) + x · ∇xρ(θx), θx ∈ Ω, and using the change of
variable x = εy, we have∫

ωε

(ρ− ρ1)GU j dx

=
∫

ωε

(ρ(0)− ρ1)GU j dx+
∫

ωε

[x.∇xρ(θx)]GU j dx

= εd

∫
ω

(ρ(0)− ρ1)GU j(εy, z) dy + εd+1

∫
ω

[y.∇xρ(θx)]GU j(εy, z) dy.

Due to Taylor’s theorem and the fact that xi → ∇xρ(xi) is uniformly bounded on
Ω we derive ∫

ωε

(ρ− ρ1)GU j dx = εd(ρ(0)− ρ1)|ω|GU j(0, z) +O(εd+1). (5.6)

�

5.2. Proof of Theorem 4.2. By Proposition 3.1, we have

Rj
ε(z)−Rj

0(z) =
∫

ωε

2[ν − ν1]D(U j) : D(uε) dx−
∫

ωε

(ρ− ρ1)GU j dx.

From Lemmas 5.1 and 5.2, it follows that∫
ωε

2[ν − ν1]D(U j) : D(uε) dx

=
∫

ωε

2[ν − ν(0)]D(U j) : D(uε) dx+
∫

ωε

2[ν(0)− ν1]D(U j) : D(uε) dx

=
ν(0)− ν1

ν1
εd
{∫

∂ω

2ν(0)Dx(u0)(0)nDx(U j)(0, z)y ds(y)

+
∫

∂ω

[2ν(0)Dy(v)− qI]+ mathbfnDx(U j)(0, z)y ds(y)
}

+O
(
εd+1/2

)
,

(5.7)

for j = 1, . . . , d. The above equation can be rewritten as∫
ωε

2[ν − ν1]D(U j) : D(uε) dx

=
ν(0)− ν1

ν1
εdDx(U j)(0, z) :

{
2ν(0)

∫
∂ω

y ⊗Dx(u0)(0)n ds(y)

+
∫

∂ω

y ⊗ [2ν(0)Dy(v)− qI]+n ds(y)
}

+O
(
εd+1/2

)
, j = 1, . . . , d.

(5.8)

Using the definitions of Ek,l, (v, q) and (vk,l, qk,l), it is easy to show that

Dx(u0)(0) =
∑

1≤k,l≤d

[Dx(u0)(0)]klE
k,l,

v(y) =
ν(0)− ν1

ν1

∑
1≤k,l≤d

[Dx(u0)(0)]kl v
k,l,
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q(y) = 2(ν(0)− ν1)
∑

1≤k,l≤d

[Dx(u0)(0)]kl q
k,l,

where

[Dx(u0)(0)]kl =
1
2

(∂uk
0

∂xl
(0) +

∂ul
0

∂xk
(0)
)
.

The integral term in (5.8) may be decomposed as

2ν(0)
∫

∂ω

y ⊗Dx(u0)(0)nds(y) +
∫

∂ω

y ⊗ [2ν(0)Dy(v)− qI]+(y)nds(y)

= 2ν(0)
∑

1≤k,l≤d

[Dx(u0)(0)]kl

{∫
∂ω

y ⊗ Ek,ln ds(y)

+
ν(0)− ν1

ν(0)

∫
∂ω

y ⊗ [
ν(0)
ν1
Dy(vk,l)− qk,lI]+(y)n ds(y)

} (5.9)

Finally, inserting (5.9) in (5.8) and using Lemma 5.3 we conclude that

Rj
ε(z)−Rj

0(z) = εd
{

2ν(0)Dx(U j)(0, z) :MDx(u0)(0)

− (ρ(0)− ρ1)|ω|GU j(0, z)
}

+O(εd+1/2), j = 1, . . . , d.

which implies the desired asymptotic formula.

Conclusion. The asymptotic formulas derived in Section 4 can serve as very useful
tools for the numerical reconstruction of the “location” and “size” of the inhomo-
geneities. If for instance “the normal component of the stress tensor, σ(uε, pε) is
prescribed on Γn and measured on Γd” and “the velocity field uε is prescribed on
Γd and measured on Γn”, then the function

Rj
ε(z)−Rj

0(z) =
∫

∂Ω

σ(U j , P j)n(uε − u0) ds−
∫

∂Ω

σ(uε − u0, pε − p0)nU j ds,

for j = 1, . . . , d, may be considered as a measured datum on ∂Ω.
The parameters ρ and ν are assumed to be known, and we may easily compute

(u0, p0). From the asymptotic formula in Theorem 4.4 it now follows that, up to
terms of smaller order, we are in possession of the values of the quantity

m∑
i=1

{
2ν(zi)Dx(U j)(zi, z) :MiDx(u0)(zi)− [ρ(zi)− ρi]|ω|GU j(zi, z)

}
,

for z ∈ Rd\Ω and j = 1, . . . , d.
A first task of the identification process, is then to determine (as well as pos-

sible) the number m of “poles” (centers of inhomogeneities), and their locations
zk, 1 ≤ k ≤ m. A second task would be to determine other information about
the inhomogeneities, such as their sizes. A detailed account of this work and some
numerical results illustrating the identification method will be the subject of a
forthcoming article.
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[24] M. Schiffer, G. Szegö; Virtual mass and polarization, Amer. Math. Soc. 67(1949), 130-205.

[25] K. M. Shyue; A fluid-mixture type algorithm for compressible multicomponent flow with van
der Waals equation of state, J. Comput. Phys. 156 (1999), pp. 43-88.



EJDE-2015/186 ASYMPTOTIC FORMULAS 13

[26] J. Sylvester, G. Uhlmann; A global uniqueness theorem for inverse boundary value problem,

Annals of Math., 125(1987), pp. 153-169.

[27] M. Vogelius, D. Volkov; Asymptotic formulas for perturbations in the electromagnetic fields
due to the presence of inhomogeneities, Math. Model. Numer. Anal. 34 (2000), 723-748.

[28] H. Zhou, C. Pozrikidis; Adaptive singularity method for Stokes flow past particles, J. Comput.

Phys. 117 (1995), pp. 79-89.

Mohamed Abdelwahed
Department of Mathematics, College of Sciences, King Saud University, Riyadh, Saudi

Arabia
E-mail address: mabdelwahed@ksu.edu.sa

Nejmeddine Chorfi

Department of Mathematics, College of Sciences, King Saud University, Riyadh, Saudi
Arabia

E-mail address: nejmeddine.chorfi@yahoo.com

Maatoug Hassine
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